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1. Introduction

Throughout this paper $G,$ $Z$ and $Q$ denote a finite group, the ring of rational
integers and the rational field respectively. Moreover we write $\overline{Z}$ to denote the

ring of all algebraic integers in the complex numbers and $\overline{Q}$ to denote the
algebraic closure of $Q$ in the field of complex numbers. For a finite set $S$ , we
denote by $|S|$ the number of elements in $S$ .

Let $Irr(G)=\{\chi_{1},\cdots,\chi_{h}\}$ be the complete set of absolutely irreducible complex
characters of $G$ . Then we can view $\chi_{1},\cdots,\chi_{h}$ as functions from $G$ into the
complex numbers. We write $ZR(G)$ to denote the Z-algebra spanned by
$\chi_{1},\cdots,\chi_{h}$ . For two finite groups $G$ and $H$ , let $\lambda$ be a $\overline{Z}$ -algebra isomorphism of
$ZR(G)$ onto $ZR(H)$ . Then we can write

$\lambda(\chi_{i})=\sum_{j=1}^{h}a_{ij}\chi_{j}^{\prime}$ , $(i=1,\cdots,h)$

where $a_{ij}\in\overline{Z}$ and $Irr(H)=\{\chi_{1}^{\prime},\cdots,\chi_{h}^{\prime}\}$ . In this case we write $A$ to denote the
$h\times h$ matrix with $(i,j)$ -entry equal to $a_{ij}$ and say that $A$ is afforded by $\lambda$ with
respect to $Irr(G)$ and $Irr(H)$ .

As is well known, conceming the isomorphism $\lambda$ , we have the following two
results, which seem to be most important. (For example see Theorem 1.3 (ii) and
Lemma 3.1 in [5])

(i) $|c_{G}(c_{i})|=|c_{H}(c_{i}^{\prime},)|,$ $(i=1,\cdots,h)$ where $\{c_{1},\cdots,c_{h}\}$ and $\{c_{1}^{\prime},,\cdots,c_{h}^{\prime},\}$ are
complete sets of representatives of the conjugate classes in $G$ and $H$ respectively
and $c_{i}\rightarrow^{\lambda}c_{i}^{\prime},$ $(i=1,\cdots,h)$ . (Conceming a symbol “

$c_{i}\rightarrow^{\lambda}c_{i}^{\prime},$ , see the definition
in [5] and also the definition in section 2 in this paper)

(ii) $A$ is unitary where $A$ is the matrix afforded by $\lambda$ with respect to $Irr(G)$

and $Irr(H)$ .
In this paper our main objective is to give a necessary and sufficient condition
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under which the above statements (i) and (ii) hold, concerning an isomorphism $\lambda$

of a Brauer character ring onto another, and to state a generalization of theorems
of Saksonov and Weidman about character tables of finite groups. (See Theorem
2, Corollary 2.1 in [3] and Theorem 3 in [4])

From now on, when we consider homomorphisms from an algebra to another,

unless otherwise specified, we shall only deal with algebra homomorphisms.

2. Preliminaries

We fix a rational prime number $p$ and use the following notation with respect
to a finite group $G$ .

$G_{o}$ : the set of all p-regular elements of $G$

$Cl(G_{0})=\{\mathfrak{C}_{1}=\{1\},\cdots,\mathfrak{C}_{r}\}$ : the complete set of p-regular conjugate classes in
$G$

$\{c_{1}=1,\cdots,c_{r}\}$ : a complete set of representatives of $\mathfrak{C}_{1},\cdots,\mathfrak{C}_{r}$ respectively
$IBr(G)=\{\varphi l=1,\cdots,\varphi_{r}\}$ : the complete set of irreducible Brauer characters of
$G$ , which can be viewed as functions from $G_{o}$ into the complex numbers
For any subring $R$ of the field of complex numbers such that $1\in R$ , we write

$RBR(G)$ to denote the ring of linear combinations of $\varphi_{1},\cdots,\varphi_{r}$ over $R$ . That is,

$RBR(G)$ is the R-algebra spanned by $\varphi_{1},\cdots,\varphi_{r}$ . In particular we use the notation
$BR(G)$ instead of $ZBR(G)$ and say that $BR(G)$ is the Brauer character ring of $G$ .
Moreover we add the following notation.

$G(\overline{Q}/Q)$ : the Galois group of $\overline{Q}$ over $Q$

If $A=(a_{ij})$ is a matrix over $\overline{Q}$ , then for $\sigma\in G(\overline{Q}/Q)$ we write $A^{\sigma}$ to denote
the matrix $(a_{ij}^{\sigma})$ . We use the common notation $X^{*}$ for the conjugate transpose of a
matrix $X$ .

Now we define characteristic class functions on $G_{0}$ .

DEFINITION 2.1. We define class functions $f_{i}$ on $G_{0}(i=1,\cdots,r)$ as follows

$f_{i}(c_{j})=1$ , $f_{i}(c_{j})=0$ $(i\neq j)$ .

In this case we say that these class functions are the characteristic class
functions on $G_{0}$ and that $f_{i}$ corresponds to $\mathfrak{C}_{j}$ or $\mathfrak{C}_{j}$ corresponds to $f_{i}$

$(i=1,\cdots, r)$ .
Now we prove an easy lemma conceming characteristic class functions on

$G_{0}$ .

LEMMA 2.2. Let $\{f_{1},\cdots,f_{r}\}$ be the complete set of characteristic class
functions on $G_{0}$ . Then we have
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$f_{i}\in\overline{Q}BR(G),$ $(i=1,\cdots,r)$ .

PROOF. Let $\hat{f}_{i}$ be a characteristic class function of $G$ such that $\hat{f}_{i}|_{G_{0}}=f_{i}$

where $\hat{f}_{i}|_{G_{o}}$ indicates the restriction of $f_{i}$ to $G_{0}$ . Then each $\hat{f}_{i}$ is written as a $\overline{Q}-$

linear combination of $\chi_{1},\cdots,\chi_{h}$ . That is,

(2.1) $\hat{f}_{i}=\sum_{j=1}^{h}\phi \mathfrak{C}_{i}|/|G|$ ) $\overline{\chi_{j}(c_{i})}\chi_{j}$ , $(i=1,\cdots,r)$

For each absolutely irreducible complex character $\chi_{j}$ of $G,$ $\chi_{i}|_{G_{o}}$ is written as a
Z-linear combination of $\varphi_{1},\cdots,\varphi_{r}$ . That is,

(2.2) $\chi_{j}|_{G_{o}}=\sum_{j}^{r_{--1}}d_{ij}\varphi_{j}$ , $(i=1,\cdots,h)$

where $(d_{ij})$ is the decomposition matrix of $G$ .
By virtue of the formulas (2.1) and (2.2), we can conclude that $f_{i}\in\overline{Q}BR(G)$ ,

$(i=1,\cdots, r)$ as required. Q.E.D.

We are given two finite groups $G$ and $H$ . For $G$ and $H$ we assume that there
exists an isomorphism $\lambda$ of $\overline{Z}BR(G)$ onto $\overline{Z}BR(H)$ . Then it follows that the rank
of $BR(G)=$ the rank of $BR(H)$ and $|Cl(G_{o})|=|Cl(H_{o})|$ . We also can extend $\lambda$ to

an isomorphism $\hat{\lambda}$ of $\overline{Q}BR(G)$ onto $\overline{Q}BR(H)$ by linearity. By Lemma 2.2 we have
$f_{i}\in\overline{Q}BR(G)$ . Here we use the following additional notation.

$Cl(H_{o})=\{\mathfrak{C}_{1}^{\prime}=\{1\},\cdots,\mathfrak{C}_{r}^{\prime}\}$

{c\’i $=1^{\prime},\cdots,c_{r}^{\prime}$ }: a complete set of representatives of $\mathfrak{C}_{1}^{\prime},\cdots,\mathfrak{C}^{\prime,}$ respectively

$\{f_{1}^{\prime},\cdots,f_{r^{\prime}}\}$ : the complete set of characteristic class functions on $H_{o}$ where $f_{i}^{\prime}$

corresponds to $\mathfrak{C}_{j}^{\prime}$ , $(i=1, \cdots, r)$ .

$IBr(H)=\{\varphi_{1}^{\prime}=1,\cdots,\varphi_{r}^{\prime}\}$ .

We now show a lemma which is actually the key step in the proof of Lemma
2.4.

LEMMA 2.3. In the above situation, $\hat{\lambda}(f_{i})$ is a characteristic class function on
$H_{o},$ $(i=1,\cdots,r)$ .

PROOF. Since $\overline{Q}BR(G)f_{i}=\overline{Q}f_{i}\cong\overline{Q},$ $\overline{Q}BR(G)f_{i}$ is a minimal ideal of $\overline{Q}BR(G)$

and so $f_{i}$ is a (central) primitive idempotent, $(i=1,\cdots,r)$ . Since $\hat{\lambda}(f_{i})\in\overline{Q}BR(H)$ ,

we can write

(2.3) $\hat{\lambda}(f_{i})=\sum_{j=1}^{r}a_{j}f_{j^{\prime}},$ $a_{j}\in\overline{Q}$

Since $f_{i}^{2}=f_{i}$ and $f_{i}^{\prime}f_{/}^{\prime}=0(i\neq j)$ , by the formula (2.3) we have

$\hat{\lambda}(f_{i})=\sum_{j=1}^{r}a_{j}^{2}f_{j^{\prime}}$ .
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Thus $a_{j^{2}}=a_{j},$ $(j=1\cdots, r)$ . Hence $a_{j}=0$ or $a_{j}=1,$ $(j=1\cdots,r)$ . It follows that
$\hat{\lambda}(f_{i})=f_{j}^{\prime}$ for some $j\in\{1,\cdots, r\}$ , because $f_{i}$ is a primitive idempotent, hence the

result. Q.E.D.

Now we define a bijection from $Cl(G_{o})$ to $Cl(H_{o})$ through the isomorphism
$\lambda$ as follows. For a p-regular conjugate class $\mathfrak{C}_{i}$ of $G,$ $\mathfrak{C}_{j}$ corresponds to a
characteristic class function $f_{i}$ on $G_{o}$ . Since by Lemma 2.3 $\hat{\lambda}(f_{i})$ is also a
characteristic class function $f_{i^{\prime\prime}}^{\prime}$ on $H_{o},\hat{\lambda}(f_{i})=f_{i\prime}^{\prime}$, corresponds to a p-regular
conjugate class $\mathfrak{C}_{i}^{\prime},$, of $H$ . Here we assign $\mathfrak{C}_{i}^{\prime},$, to $\mathfrak{C}_{j}(i=1,\cdots,r)$ . Thus we get a
one-to-one correspondence between $Cl(G_{o})$ and $Cl(H_{o})$ :

$c_{i}\in \mathfrak{C}_{j}\rightarrow f_{i}\rightarrow\hat{\lambda}(f_{i})=f_{i^{\prime\prime}}^{\prime}\rightarrow \mathfrak{C}_{i^{\prime\prime}}^{\prime}\ni c_{i^{\prime\prime}}^{\prime}$

where $i\rightarrow i^{\prime}(i=1\cdots, r)$ is a permutation. In this case we write $\mathfrak{C}_{j}\rightarrow^{\lambda}\mathfrak{C}_{i}^{\prime},$, or
$c_{j}\rightarrow^{\lambda}c_{i^{\prime\prime}}^{\prime}(i=1\cdots,r)$ .

Keeping the above notation, we give the following lemma conceming the
Brauer character table of $G$ . This lemma plays a fundamental role in the proof of
Theorem 3.1. The proof is the same as that of Theorem 2.2 in [5] and so we omit
its proof.

LEMMA 2.4. $(\varphi_{l}(c_{j}))=(\lambda(\varphi_{j})(c_{;^{\prime}},, ))$ ( $r\times r$ mafrices) where $c_{j}\rightarrow^{\lambda}c_{j}^{\prime},,$ ,

$(j=1,\cdots, r)$ .

3. Main theorems

Let $G$ and $H$ be two finite groups with Cartan matrices $C$ and $C^{\prime}$

respectively. Let $\lambda$ be an isomorphism of $\overline{Z}BR(G)$ onto $\overline{Z}BR(H)$ and $A=(a_{ij})$ be
the matrix afforded by $\lambda$ with respect to $IBr(G)=\{\varphi_{1},\cdots,\varphi_{r}\}$ and $IBr(H)=$

$\{\varphi_{1}^{\prime},\cdots,\varphi_{r}^{\prime}\}$ . We set $Cl(G_{o})=\{\mathfrak{C}_{1},\cdots,\mathfrak{C}_{r}\}$ and $Cl(H_{o})=\{\mathfrak{E}_{1}^{\prime},\cdots,\mathfrak{C}_{r}^{\prime}\}$ and assume that
$c_{i}\in C_{j}^{\zeta},$ $c_{i}^{\prime}\in \mathfrak{C}_{i}^{\prime}$ and $c_{i}\rightarrow^{\lambda}c_{i}^{\prime},$, where $i\rightarrow i^{\prime\prime}(i=1,\cdots, r)$ is a permutation. We
write $m$ to denote the vector with i-th entry equal to $|C_{G}(c_{j})|$ and $m^{\prime}$ to denote
the vector with i-th entry equal to $|C_{H}(c_{i}^{\prime},,)|,$ $(i=1,\cdots,r)$ . Then we have the
following two theorems.

THEOREM 3.1. With the above notation, $m=m^{\prime}$ iff $A^{*}CA=C^{\prime}$ . This neces-
sarily happens $\iota fCA=AC^{\prime}$ , in which case $A$ is clearly unifary.

PROOF. To prove this theorem, we introduce some simplifying notation: Write
$P$ to denote the $r\times r$ matrix with $(i,j)$ -entry equal to $\varphi_{j}(c_{j})$ and similarly write

$P^{\prime}$ for the matrix with $(i,j)$ -entry equal to $\varphi_{i}^{\prime}(c_{j^{\prime}},,)$ .
Since $\lambda(\varphi_{j})=\sum_{k=1}^{r}a_{ik}\varphi_{k}^{\prime}$ where $A=(a_{ij})$ , by Lemma 2.4 we have
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$\varphi_{i}(c_{j})=\lambda(\varphi_{j})(c_{j^{\prime}}^{\prime},)=\sum_{k=1}^{r}a_{ik}\varphi_{k}^{\prime}(c_{j}^{\prime},,)$ .

This implies that $P=AP^{\prime}$ . Also, if $B$ is the diagonal matrix with $(i, i)$ -entry equal
to $|C_{G}(c_{j})|$ , it follows that $P^{*}CP=B$ by Theorem 60.5 in [2]. Similarly
$(P^{\prime})^{*}C^{\prime}P^{\prime}=B^{\prime}$ , where $B^{\prime}$ is the diagonal matrix with $(i, i)$ -entry equal to
$|C_{H}(c_{i}^{\prime},,)|$ . Here we note that $B=B^{\prime}$ iff $m=m^{\prime}$ . Since $P^{*}=(P^{\prime})^{*}A^{*}$ , we have the
two equations

$(P^{\prime})^{*}A^{*}CAP^{\prime}=B$ and $(P^{\prime})^{*}C^{\prime}P^{\prime}=B^{\prime}$ .

It is now obvious that $B=B^{\prime}$ iff $A^{*}CA=C^{\prime}$ .
Now suppose $CA=AC^{\prime}$ . Then we show that $A$ is unitary. If we write

$J=A^{*}A$ , then we have $(P^{\prime})^{*}JC^{\prime}P^{\prime}=B$ . Thus $(B^{\prime})^{-1}B=(P^{\prime})^{-1}(C^{\prime})^{-1}JC^{\prime}P^{\prime}$ . This is
a diagonal matrix with rational entries and this shows that $J$ has rational
eigenvalues. But $J$ has algebraic integer entries, and so must have integer
eigenvalues. Thus $(B^{\prime})^{-1}B$ is a diagonal matrix with positive integer diagonal
entries. Also, $A$ is invertible over $\overline{Z}$ and thus $A^{*}$ is too. It follows that
$det(J)=det((B^{\prime})^{-1}B)=1$ and so $(B^{\prime})^{-1}B$ is the identity matrix $I$ . It follows that
$J=A^{*}A=I$ and so $A$ is unitary, as required. Q.E.D.

THEOREM 3.2. If $CA=AC^{\prime}$ , then we have
(i) $\lambda(\varphi_{i})=\epsilon_{j}\varphi_{i^{\prime}}$, where the $\epsilon_{j}$ are roots of 1 and $i\rightarrow i^{\prime}(i=1,\cdots, r)$ is a

permutafion.
(ii) The Brauer characler fables of $G$ and $H$ are the same.

PROOF. (i) Now we pay attention to the fact that if $\alpha\in\overline{Z}$ and $|\alpha^{\sigma}|\leq 1$ (an

absolute value) for all $\sigma\in G(\overline{Q}/Q)$ , then $\alpha=0$ or $\alpha is$ a root of 1.
If we use the same notation as in the proof of Theorem 3.1, then we have

$A=P(P^{\prime})^{-1}$ and so $A$ has entries that lie in a field with an abelian Galois group.
Thus $(A^{*})^{\sigma}=(A^{\sigma})^{*}$ for all $\sigma\in G(\overline{Q}/Q)$ . Since $A$ is unitary by Theorem 3.1, $A^{\sigma}$

is automatically unitary for all $\sigma\in G(\overline{Q}/Q)$ . Hence we have the equation with
respect to the i-th row of $A^{\sigma}$ .

$\sum_{j=1}^{r}a_{ij}^{\sigma}\overline{a_{ij}^{\sigma}}=\sum_{j=1}^{r}|a_{i/}^{\sigma}|^{2}=1$ , $(i=1,\cdots, r)$

Hence we have $|a_{ij}^{\sigma}|\leq 1$ for all $\sigma\in G(\overline{Q}/Q)$ . This implies that $a_{ij}=0$ or $a_{ij}$ is a

root of 1 because of the above attention. Thus it follows that for each $i\in\{1,\cdots,r\}$ ,

there exists $i^{\prime}\in\{1,\cdots, r\}$ such that $a_{ii}$ , is a root of 1 and $a_{i/}\cdot=0(j\neq i^{\prime})$ . Hence
$\lambda(\varphi_{i})=\epsilon_{j}\varphi_{i}^{\prime}$, where $\epsilon_{j}=a_{ii}$ , is a root of 1 and $i\rightarrow i^{\prime}(i=1,\cdots, r)$ is a permutation.

(ii) We state a one-to-one correspondence $\mu$ between $IBr(G)$ and $IBr(H)$



212 Kenichi YAMAUCHI

through the isomorphism $\lambda$ as follows. By (i) of this theorem, we have
$\lambda(\varphi_{j})=\epsilon_{j}\varphi_{i}^{\prime},$ $(i=1,\cdots, r)$ where the $\epsilon_{j}$ are roots of 1. Here we assign $\varphi_{i^{\prime}}$, to
$\varphi_{j}$ : $\mu(\varphi_{j})=\varphi_{i}^{\prime},$ $(i=1,\cdots, r)$ . Then $\mu$ can be extended to an isomorphism of $BR(G)$

onto $BR(H)$ by linearity. (See the proof of Lemma 3.2 in [5]) By Lemma 2.4 we
have $(\varphi_{j}(c_{j}))=(\varphi_{i^{\prime}},(c^{\prime}.,, ))$ ( $r\times r$ matrices) where $c_{j}\rightarrow^{\mu}c_{j^{\prime}},$, $(j=1,\cdots, r)$ . That is,
$G$ and $H$ have the same Brauer character table. Thus the result follows. Q.E.D.

REMARK. If the condition $m=m^{\prime}$ in Theorem 3.1 holds, then we can easily
prove $|G|=|H|$ . But we can give examples such that for two finite groups $G,$ $H$

with $|G|\neq|H|$ , a matrix $A$ is unitary where $A$ is afforded by an isomorphism of
$BR(G)$ onto $BR(H)$ . Actually, such an example is given by taking $G$ and $H$ to be
any two p-groups of different orders. Another example can be found in [1]. $(p=$

$2,$ $G=$ the symmetric group $S_{4}$ on 4 symbols and $H=$ the dihedral group $D_{6}$ of
order 12. See the examples of section 91 in [1])
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