ON ISOMORPHISMS OF A BRAUER CHARACTER RING ONTO ANOTHER

Dedicated to Professor Hiroyuki Tachikawa

By

Kenichi Yamauchi

1. Introduction

Throughout this paper G, Z and Q denote a finite group, the ring of rational integers and the rational field respectively. Moreover we write \bar{Z} to denote the ring of all algebraic integers in the complex numbers and \bar{Q} to denote the algebraic closure of Q in the field of complex numbers. For a finite set S, we denote by $|S|$ the number of elements in S.

Let $\operatorname{Irr}(G)=\left\{\chi_{1}, \cdots, \chi_{h}\right\}$ be the complete set of absolutely irreducible complex characters of G. Then we can view $\chi_{1}, \cdots, \chi_{h}$ as functions from G into the complex numbers. We write $\bar{Z} R(G)$ to denote the \bar{Z}-algebra spanned by $\chi_{1}, \cdots, \chi_{h}$. For two finite groups G and H, let λ be a \bar{Z}-algebra isomorphism of $\bar{Z} R(G)$ onto $\bar{Z} R(H)$. Then we can write

$$
\lambda\left(\chi_{i}\right)=\sum_{j=1}^{h} a_{i j} \chi_{j}^{\prime}, \quad(i=1, \cdots, h)
$$

where $a_{i j} \in \bar{Z}$ and $\operatorname{Irr}(H)=\left\{\chi_{1}^{\prime}, \cdots, \chi_{h}^{\prime}\right\}$. In this case we write A to denote the $h \times h$ matrix with (i, j)-entry equal to $a_{i j}$ and say that A is afforded by λ with respect to $\operatorname{Irr}(G)$ and $\operatorname{Irr}(H)$.

As is well known, concerning the isomorphism λ, we have the following two results, which seem to be most important. (For example see Theorem 1.3 (ii) and Lemma 3.1 in [5])
(i) $\left|c_{G}\left(c_{i}\right)\right|=\left|c_{H}\left(c_{i^{\prime}}^{\prime}\right)\right|,(i=1, \cdots, h)$ where $\left\{c_{1}, \cdots, c_{h}\right\}$ and $\left\{c_{1^{\prime}}^{\prime}, \cdots, c_{h^{\prime}}^{\prime}\right\}$ are complete sets of representatives of the conjugate classes in G and H respectively and $c_{i} \xrightarrow{\lambda} c_{i^{\prime}}^{\prime}(i=1, \cdots, h)$. (Concerning a symbol " $c_{i} \xrightarrow{\lambda} c_{i^{\prime}}^{\prime}$ ", see the definition in [5] and also the definition in section 2 in this paper)
(ii) A is unitary where A is the matrix afforded by λ with respect to $\operatorname{Irr}(G)$ and $\operatorname{Irr}(H)$.

In this paper our main objective is to give a necessary and sufficient condition

[^0]under which the above statements (i) and (ii) hold, concerning an isomorphism λ of a Brauer character ring onto another, and to state a generalization of theorems of Saksonov and Weidman about character tables of finite groups. (See Theorem 2, Corollary 2.1 in [3] and Theorem 3 in [4])
From now on, when we consider homomorphisms from an algebra to another, unless otherwise specified, we shall only deal with algebra homomorphisms.

2. Preliminaries

We fix a rational prime number p and use the following notation with respect to a finite group G.
G_{o} : the set of all p-regular elements of G
$\operatorname{Cl}\left(G_{o}\right)=\left\{\mathfrak{C}_{1}=\{1\}, \cdots, \mathfrak{C}_{r}\right\}$: the complete set of p-regular conjugate classes in G
$\left\{c_{1}=1, \cdots, c_{r}\right\}$: a complete set of representatives of $\mathfrak{C}_{1}, \cdots, \mathfrak{§}_{r}$ respectively
$\operatorname{IBr}(G)=\left\{\varphi_{1}=1, \cdots, \varphi_{r}\right\}$: the complete set of irreducible Brauer characters of
G, which can be viewed as functions from G_{o} into the complex numbers
For any subring R of the field of complex numbers such that $1 \in R$, we write $R B R(G)$ to denote the ring of linear combinations of $\varphi_{1}, \cdots, \varphi_{r}$ over R. That is, $R B R(G)$ is the R-algebra spanned by $\varphi_{1}, \cdots, \varphi_{r}$. In particular we use the notation $B R(G)$ instead of $Z B R(G)$ and say that $B R(G)$ is the Brauer character ring of G. Moreover we add the following notation.
$G(\bar{Q} / Q)$: the Galois group of \bar{Q} over Q
If $A=\left(a_{i j}\right)$ is a matrix over \bar{Q}, then for $\sigma \in G(\bar{Q} / Q)$ we write A^{σ} to denote the matrix $\left(a_{i j}^{\sigma}\right)$. We use the common notation X^{*} for the conjugate transpose of a matrix X.

Now we define characteristic class functions on G_{0}.
DEFINITION 2.1. We define class functions f_{i} on $G_{o}(i=1, \cdots, r)$ as follows

$$
f_{i}\left(c_{i}\right)=1, \quad f_{i}\left(c_{j}\right)=0 \quad(i \neq j)
$$

In this case we say that these class functions are the characteristic class functions on G_{0} and that f_{i} corresponds to \mathfrak{C}_{i} or \mathfrak{C}_{i} corresponds to f_{i} $(i=1, \cdots, r)$.

Now we prove an easy lemma concerning characteristic class functions on G_{0}.

Lemma 2.2. Let $\left\{f_{1}, \cdots, f_{r}\right\}$ be the complete set of characteristic class functions on G_{0}. Then we have

$$
f_{i} \in \bar{Q} B R(G), \quad(i=1, \cdots, r) .
$$

Proof. Let \hat{f}_{i} be a characteristic class function of G such that $\left.\hat{f}_{i}\right|_{G_{o}}=f_{i}$ where $\left.\hat{f}_{i}\right|_{\sigma_{o}}$ indicates the restriction of f_{i} to G_{o}. Then each \hat{f}_{i} is written as a \bar{Q} linear combination of $\chi_{1}, \cdots, \chi_{h}$. That is,

$$
\begin{equation*}
\hat{f}_{i}=\sum_{j=1}^{h} \backslash\left(\mathscr{C}_{i}|/|G|) \overline{\chi_{j}\left(c_{i}\right)} \chi_{j}, \quad(i=1, \cdots, r)\right. \tag{2.1}
\end{equation*}
$$

For each absolutely irreducible complex character χ_{i} of $G,\left.\chi_{i}\right|_{G_{o}}$ is written as a Z-linear combination of $\varphi_{1}, \cdots, \varphi_{r}$. That is,

$$
\begin{equation*}
\left.\chi_{i}\right|_{G_{o}}=\sum_{j=1}^{r} d_{i j} \varphi_{j}, \quad(i=1, \cdots, h) \tag{2.2}
\end{equation*}
$$

where $\left(d_{i j}\right)$ is the decomposition matrix of G.
By virtue of the formulas (2.1) and (2.2), we can conclude that $f_{i} \in \bar{Q} B R(G)$, $(i=1, \cdots, r)$ as required.
Q.E.D.

We are given two finite groups G and H. For G and H we assume that there exists an isomorphism λ of $\bar{Z} B R(G)$ onto $\bar{Z} B R(H)$. Then it follows that the rank of $B R(G)=$ the rank of $B R(H)$ and $\left|C l\left(G_{o}\right)\right|=\left|C l\left(H_{o}\right)\right|$. We also can extend λ to an isomorphism $\hat{\lambda}$ of $\bar{Q} B R(G)$ onto $\bar{Q} B R(H)$ by linearity. By Lemma 2.2 we have $f_{i} \in \bar{Q} B R(G)$. Here we use the following additional notation.
$C l\left(H_{o}\right)=\left\{\mathfrak{C}_{1}^{\prime}=\{1\}, \cdots, \mathfrak{C}_{r}^{\prime}\right\}$
$\left\{c_{1}^{\prime}=1^{\prime}, \cdots, c_{r}^{\prime}\right\}$: a complete set of representatives of $\mathfrak{5}_{1}^{\prime}, \cdots, \mathfrak{5}_{r}^{\prime}$ respectively
$\left\{f_{1}^{\prime}, \cdots, f_{r}^{\prime}\right\}$: the complete set of characteristic class functions on H_{o} where f_{i}^{\prime} corresponds to $\mathfrak{C}_{i}^{\prime}, \quad(i=1, \cdots, r)$.
$\operatorname{IBr}(H)=\left\{\varphi_{1}^{\prime}=1, \cdots, \varphi_{r}^{\prime}\right\}$.
We now show a lemma which is actually the key step in the proof of Lemma 2.4.

Lemma 2.3. In the above situation, $\hat{\lambda}\left(f_{i}\right)$ is a characteristic class function on $H_{o},(i=1, \cdots, r)$.

Proof. Since $\bar{Q} B R(G) f_{i}=\bar{Q} f_{i} \cong \bar{Q}, \bar{Q} B R(G) f_{i}$ is a minimal ideal of $\bar{Q} B R(G)$ and so f_{i} is a (central) primitive idempotent, $(i=1, \cdots, r)$. Since $\hat{\lambda}\left(f_{i}\right) \in \bar{Q} B R(H)$, we can write

$$
\begin{equation*}
\hat{\lambda}\left(f_{i}\right)=\sum_{j=1}^{r} a_{j} f_{j}^{\prime}, \quad a_{j} \in \bar{Q} \tag{2.3}
\end{equation*}
$$

Since $f_{i}^{2}=f_{i}$ and $f_{i}^{\prime} f_{j}^{\prime}=0(i \neq j)$, by the formula (2.3) we have

$$
\hat{\lambda}\left(f_{i}\right)=\sum_{j=1}^{r} a_{j}^{2} f_{j}^{\prime} .
$$

Thus $a_{j}^{2}=a_{j},(j=1 \cdots, r)$. Hence $a_{j}=0$ or $a_{j}=1,(j=1 \cdots, r)$. It follows that $\hat{\lambda}\left(f_{i}\right)=f_{j}^{\prime}$ for some $j \in\{1, \cdots, r\}$, because f_{i} is a primitive idempotent, hence the result.
Q.E.D.

Now we define a bijection from $\operatorname{Cl}\left(G_{o}\right)$ to $\operatorname{Cl}\left(H_{o}\right)$ through the isomorphism λ as follows. For a p-regular conjugate class \mathfrak{C}_{i} of G, \mathfrak{C}_{i} corresponds to a characteristic class function f_{i} on G_{o}. Since by Lemma 2.3 $\hat{\lambda}\left(f_{i}\right)$ is also a characteristic class function $f_{i^{\prime \prime}}^{\prime \prime}$ on $H_{o}, \hat{\lambda}\left(f_{i}\right)=f_{i^{\prime \prime}}^{\prime \prime}$ corresponds to a p-regular conjugate class $\mathfrak{F}_{i^{\prime \prime}}^{\prime}$ of H. Here we assign $\mathfrak{F}_{i^{\prime \prime}}^{\prime}$ to $\mathfrak{C}_{i}(i=1, \cdots, r)$. Thus we get a one-to-one correspondence between $\mathrm{Cl}\left(G_{o}\right)$ and $\mathrm{Cl}\left(H_{o}\right)$:

$$
c_{i} \in \mathfrak{C}_{i} \rightarrow f_{i} \rightarrow \hat{\lambda}\left(f_{i}\right)=f_{i^{\prime \prime}}^{\prime} \rightarrow \mathfrak{C}_{i^{\prime \prime}}^{\prime} \ni c_{i^{\prime \prime}}^{\prime}
$$

where $i \rightarrow i^{\prime \prime}(i=1 \cdots, r)$ is a permutation. In this case we write $\mathfrak{C}_{i} \xrightarrow{\lambda} \mathfrak{C}_{i^{\prime \prime}}^{\prime}$ or $c_{i} \xrightarrow{\lambda} c_{i^{\prime \prime}}^{\prime \prime}(i=1 \cdots, r)$.

Keeping the above notation, we give the following lemma concerning the Brauer character table of G. This lemma plays a fundamental role in the proof of Theorem 3.1. The proof is the same as that of Theorem 2.2 in [5] and so we omit its proof.

LEMMA 2.4. $\quad\left(\varphi_{i}\left(c_{j}\right)\right)=\left(\lambda\left(\varphi_{i}\right)\left(c_{j^{\prime \prime}}^{\prime}\right)\right) \quad(r \times r$ matrices $) \quad$ where $\quad c_{j} \xrightarrow{\lambda} c_{j^{\prime \prime}}^{\prime}$, $(j=1, \cdots, r)$.

3. Main theorems

Let G and H be two finite groups with Cartan matrices C and C^{\prime} respectively. Let λ be an isomorphism of $\bar{Z} B R(G)$ onto $\bar{Z} B R(H)$ and $A=\left(a_{i j}\right)$ be the matrix afforded by λ with respect to $\operatorname{IBr}(G)=\left\{\varphi_{1}, \cdots, \varphi_{r}\right\}$ and $\operatorname{IBr}(H)=$ $\left\{\varphi_{1}^{\prime}, \cdots, \varphi_{r}^{\prime}\right\}$. We set $\operatorname{Cl}\left(G_{o}\right)=\left\{\mathfrak{C}_{1}, \cdots, \mathfrak{S}_{r}\right\}$ and $\operatorname{Cl}\left(\boldsymbol{H}_{o}\right)=\left\{\mathfrak{S}_{1}^{\prime}, \cdots, \mathfrak{S}_{r}^{\prime}\right\}$ and assume that $c_{i} \in \mathfrak{C}_{i}, c_{i}^{\prime} \in \mathfrak{V}_{i}^{\prime}$ and $c_{i} \xrightarrow{\lambda} c_{i^{\prime \prime}}^{\prime \prime}$ where $i \rightarrow i^{\prime \prime}(i=1, \cdots, r)$ is a permutation. We write \boldsymbol{m} to denote the vector with i-th entry equal to $\left|C_{G}\left(c_{i}\right)\right|$ and \boldsymbol{m}^{\prime} to denote the vector with i-th entry equal to $\left|C_{H}\left(c_{i^{\prime \prime}}^{\prime}\right)\right|,(i=1, \cdots, r)$. Then we have the following two theorems.

THEOREM 3.1. With the above notation, $m=m^{\prime}$ iff $A^{*} C A=C^{\prime}$. This necessarily happens if $C A=A C^{\prime}$, in which case A is clearly unitary.

Proof. To prove this theorem, we introduce some simplifying notation: Write P to denote the $r \times r$ matrix with (i, j)-entry equal to $\varphi_{i}\left(c_{j}\right)$ and similarly write P^{\prime} for the matrix with (i, j)-entry equal to $\varphi_{i}^{\prime}\left(c_{j^{\prime \prime}}^{\prime}\right)$.

Since $\lambda\left(\varphi_{i}\right)=\sum_{k=1}^{r} a_{i k} \varphi_{k}^{\prime}$ where $A=\left(a_{i j}\right)$, by Lemma 2.4 we have

$$
\varphi_{i}\left(c_{j}\right)=\lambda\left(\varphi_{i}\right)\left(c_{j^{\prime \prime}}^{\prime}\right)=\sum_{k=1}^{r} a_{i k} \varphi_{k}^{\prime}\left(c_{j^{\prime \prime}}^{\prime}\right)
$$

This implies that $P=A P^{\prime}$. Also, if B is the diagonal matrix with (i, i)-entry equal to $\left|C_{G}\left(c_{i}\right)\right|$, it follows that $P^{*} C P=B$ by Theorem 60.5 in [2]. Similarly $\left(P^{\prime}\right)^{*} C^{\prime} P^{\prime}=B^{\prime}$, where B^{\prime} is the diagonal matrix with (i, i)-entry equal to $\left|C_{H}\left(c_{i^{\prime \prime}}^{\prime}\right)\right|$. Here we note that $B=B^{\prime}$ iff $\boldsymbol{m}=\boldsymbol{m}^{\prime}$. Since $P^{*}=\left(P^{\prime}\right)^{*} A^{*}$, we have the two equations

$$
\left(P^{\prime}\right)^{*} A^{*} C A P^{\prime}=B \quad \text { and } \quad\left(P^{\prime}\right)^{*} C^{\prime} P^{\prime}=B^{\prime}
$$

It is now obvious that $B=B^{\prime}$ iff $A^{*} C A=C^{\prime}$.
Now suppose $C A=A C^{\prime}$. Then we show that A is unitary. If we write $J=A^{*} A$, then we have $\left(P^{\prime}\right)^{*} J C^{\prime} P^{\prime}=B$. Thus $\left(B^{\prime}\right)^{-1} B=\left(P^{\prime}\right)^{-1}\left(C^{\prime}\right)^{-1} J C^{\prime} P^{\prime}$. This is a diagonal matrix with rational entries and this shows that J has rational eigenvalues. But J has algebraic integer entries, and so must have integer eigenvalues. Thus $\left(B^{\prime}\right)^{-1} B$ is a diagonal matrix with positive integer diagonal entries. Also, A is invertible over \bar{Z} and thus A^{*} is too. It follows that $\operatorname{det}(J)=\operatorname{det}\left(\left(B^{\prime}\right)^{-1} B\right)=1$ and so $\left(B^{\prime}\right)^{-1} B$ is the identity matrix I. It follows that $J=A^{*} A=I$ and so A is unitary, as required.
Q.E.D.

Theorem 3.2. If $C A=A C^{\prime}$, then we have
(i) $\lambda\left(\varphi_{i}\right)=\varepsilon_{i} \varphi_{i^{\prime}}^{\prime}$ where the ε_{i} are roots of 1 and $i \rightarrow i^{\prime}(i=1, \cdots, r)$ is a permutation.
(ii) The Brauer character tables of G and H are the same.

Proof. (i) Now we pay attention to the fact that if $\alpha \in \bar{Z}$ and $\left|\alpha^{\sigma}\right| \leq 1$ (an absolute value) for all $\sigma \in G(\bar{Q} / Q)$, then $\alpha=0$ or α is a root of 1 .

If we use the same notation as in the proof of Theorem 3.1, then we have $A=P\left(P^{\prime}\right)^{-1}$ and so A has entries that lie in a field with an abelian Galois group. Thus $\left(A^{*}\right)^{\sigma}=\left(A^{\sigma}\right)^{*}$ for all $\sigma \in G(\bar{Q} / Q)$. Since A is unitary by Theorem 3.1, A^{σ} is automatically unitary for all $\sigma \in G(\bar{Q} / Q)$. Hence we have the equation with respect to the i-th row of A^{σ}.

$$
\sum_{j=1}^{r} a_{i j}^{\sigma} \overline{a_{i j}^{\sigma}}=\sum_{j=1}^{r}\left|a_{i j}^{\sigma}\right|^{2}=1, \quad(i=1, \cdots, r)
$$

Hence we have $\left|a_{i j}^{\sigma}\right| \leq 1$ for all $\sigma \in G(\bar{Q} / Q)$. This implies that $a_{i j}=0$ or $a_{i j}$ is a root of 1 because of the above attention. Thus it follows that for each $i \in\{1, \cdots, r\}$, there exists $i^{\prime} \in\{1, \cdots, r\}$ such that $a_{i i^{\prime}}$ is a root of 1 and $a_{i j}=0\left(j \neq i^{\prime}\right)$. Hence $\lambda\left(\varphi_{i}\right)=\varepsilon_{i} \varphi_{i^{\prime}}^{\prime}$, where $\varepsilon_{i}=a_{i i}$, is a root of 1 and $i \rightarrow i^{\prime}(i=1, \cdots, r)$ is a permutation.
(ii) We state a one-to-one correspondence μ between $\operatorname{IBr}(G)$ and $\operatorname{IBr}(H)$
through the isomorphism λ as follows. By (i) of this theorem, we have $\lambda\left(\varphi_{i}\right)=\varepsilon_{i} \varphi_{i}^{\prime}(i=1, \cdots, r)$ where the ε_{i} are roots of 1 . Here we assign $\varphi_{i^{\prime}}^{\prime}$ to $\varphi_{i}: \mu\left(\varphi_{i}\right)=\varphi_{i^{\prime}}^{\prime}(i=1, \cdots, r)$. Then μ can be extended to an isomorphism of $B R(G)$ onto $B R(H)$ by linearity. (See the proof of Lemma 3.2 in [5]) By Lemma 2.4 we have $\left(\varphi_{i}\left(c_{j}\right)\right)=\left(\varphi_{i^{\prime}}^{\prime}\left(c_{j^{\prime \prime}}^{\prime}\right)\right)(r \times r$ matrices $)$ where $c_{j} \xrightarrow{\mu} c_{j^{\prime \prime}}^{\prime \prime} \quad(j=1, \cdots, r)$. That is, G and H have the same Brauer character table. Thus the result follows. Q.E.D.

REMARK. If the condition $\boldsymbol{m}=\boldsymbol{m}^{\prime}$ in Theorem 3.1 holds, then we can easily prove $|G|=|H|$. But we can give examples such that for two finite groups G, H with $|G| \neq|H|$, a matrix A is unitary where A is afforded by an isomorphism of $B R(G)$ onto $B R(H)$. Actually, such an example is given by taking G and H to be any two p-groups of different orders. Another example can be found in [1]. ($p=$ 2, $G=$ the symmetric group S_{4} on 4 symbols and $H=$ the dihedral group D_{6} of order 12. See the examples of section 91 in [1])

Acknowledgement

The author would like to thank the referee for his valuable comments, especially about the greatly simplified proof of Theorem 3.1 of the paper.

References

[1] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
[2] Dornhoff, L., Group Representation Theory, (two volumes), Dekker, New York, 1972.
[3] Saksonov, A. I., The integral ring of characters of a finite group, (Russian), Vesci Akad. Navuk BSSR Ser. Fiz. -Mat. Navuk, 1966, No. 3, 69-76.
[4] Weidman, D. R., The character ring of a finite group, Illinois, J. Math. 9 (1965), 462-467.
[5] Yamauchi, K., On automorphisms of a character ring, preprint.

Department of Mathematics
Faculty of Education
Chiba University
Chiba-city 263
Japan

[^0]: Received May 23, 1994. Revised September 19, 1994.

