ON ISOMORPHISMS OF A BRAUER CHARACTER RING ONTO ANOTHER

Dedicated to Professor Hiroyuki Tachikawa

By

Kenichi YAMAUCHI

1. Introduction

Throughout this paper G, Z and Q denote a finite group, the ring of rational integers and the rational field respectively. Moreover we write \overline{Z} to denote the ring of all algebraic integers in the complex numbers and \overline{Q} to denote the algebraic closure of Q in the field of complex numbers. For a finite set S, we denote by |S| the number of elements in S.

Let $Irr(G) = \{\chi_1, \dots, \chi_h\}$ be the complete set of absolutely irreducible complex characters of G. Then we can view χ_1, \dots, χ_h as functions from G into the complex numbers. We write $\overline{Z}R(G)$ to denote the \overline{Z} -algebra spanned by χ_1, \dots, χ_h . For two finite groups G and H, let λ be a \overline{Z} -algebra isomorphism of $\overline{Z}R(G)$ onto $\overline{Z}R(H)$. Then we can write

$$\lambda(\boldsymbol{\chi}_i) = \sum_{i=1}^h a_{ii} \boldsymbol{\chi}'_i, \quad (i = 1, \cdots, h)$$

where $a_{ij} \in \overline{Z}$ and $Irr(H) = \{\chi'_1, \dots, \chi'_h\}$. In this case we write A to denote the $h \times h$ matrix with (i, j)-entry equal to a_{ij} and say that A is afforded by λ with respect to Irr(G) and Irr(H).

As is well known, concerning the isomorphism λ , we have the following two results, which seem to be most important. (For example see Theorem 1.3 (ii) and Lemma 3.1 in [5])

(i) $|c_G(c_i)| = |c_H(c'_{i'})|$, $(i = 1, \dots, h)$ where $\{c_1, \dots, c_h\}$ and $\{c'_{1'}, \dots, c'_{h'}\}$ are complete sets of representatives of the conjugate classes in G and H respectively and $c_i \xrightarrow{\lambda} c'_{i'}$ $(i = 1, \dots, h)$. (Concerning a symbol " $c_i \xrightarrow{\lambda} c'_{i'}$ ", see the definition in [5] and also the definition in section 2 in this paper)

(ii) A is unitary where A is the matrix afforded by λ with respect to Irr(G) and Irr(H).

In this paper our main objective is to give a necessary and sufficient condition

Received May 23, 1994. Revised September 19, 1994.

under which the above statements (i) and (ii) hold, concerning an isomorphism λ of a Brauer character ring onto another, and to state a generalization of theorems of Saksonov and Weidman about character tables of finite groups. (See Theorem 2, Corollary 2.1 in [3] and Theorem 3 in [4])

From now on, when we consider homomorphisms from an algebra to another, unless otherwise specified, we shall only deal with algebra homomorphisms.

2. Preliminaries

We fix a rational prime number p and use the following notation with respect to a finite group G.

 G_o : the set of all *p*-regular elements of G

 $Cl(G_o) = \{ \mathfrak{G}_1 = \{1\}, \dots, \mathfrak{G}_r \}$: the complete set of *p*-regular conjugate classes in G

 $\{c_1 = 1, \dots, c_r\}$: a complete set of representatives of $\mathfrak{G}_1, \dots, \mathfrak{G}_r$ respectively $IBr(G) = \{\varphi_1 = 1, \dots, \varphi_r\}$: the complete set of irreducible Brauer characters of G, which can be viewed as functions from G_a into the complex numbers

For any subring R of the field of complex numbers such that $1 \in R$, we write RBR(G) to denote the ring of linear combinations of $\varphi_1, \dots, \varphi_r$ over R. That is, RBR(G) is the R-algebra spanned by $\varphi_1, \dots, \varphi_r$. In particular we use the notation BR(G) instead of ZBR(G) and say that BR(G) is the Brauer character ring of G. Moreover we add the following notation.

 $G(\overline{Q}/Q)$: the Galois group of \overline{Q} over Q

If $A = (a_{ij})$ is a matrix over \overline{Q} , then for $\sigma \in G(\overline{Q}/Q)$ we write A^{σ} to denote the matrix (a_{ij}^{σ}) . We use the common notation X^* for the conjugate transpose of a matrix X.

Now we define characteristic class functions on G_0 .

DEFINITION 2.1. We define class functions f_i on G_o $(i = 1, \dots, r)$ as follows

$$f_i(c_i) = 1, \quad f_i(c_i) = 0 \quad (i \neq j).$$

In this case we say that these class functions are the characteristic class functions on G_0 and that f_i corresponds to \mathfrak{C}_i or \mathfrak{C}_i corresponds to f_i $(i=1,\cdots,r)$.

Now we prove an easy lemma concerning characteristic class functions on G_0 .

LEMMA 2.2. Let $\{f_1, \dots, f_r\}$ be the complete set of characteristic class functions on G_0 . Then we have

208

$$f_i \in \overline{Q}BR(G), \quad (i=1,\cdots,r).$$

PROOF. Let \hat{f}_i be a characteristic class function of G such that $\hat{f}_i|_{G_o} = f_i$ where $\hat{f}_i|_{G_o}$ indicates the restriction of f_i to G_o . Then each \hat{f}_i is written as a \overline{Q} -linear combination of χ_1, \dots, χ_h . That is,

(2.1)
$$\hat{f}_i = \sum_{j=1}^h \left(\mathfrak{G}_i | / |G| \right) \overline{\chi_j(c_i)} \chi_j, \quad (i = 1, \cdots, r)$$

For each absolutely irreducible complex character χ_i of G, $\chi_i|_{G_o}$ is written as a Z-linear combination of $\varphi_1, \dots, \varphi_r$. That is,

(2.2)
$$\chi_i|_{G_o} = \sum_{j=1}^r d_{ij}\varphi_j, \quad (i = 1, \cdots, h)$$

where (d_{ij}) is the decomposition matrix of G.

By virtue of the formulas (2.1) and (2.2), we can conclude that $f_i \in \overline{QBR}(G)$, $(i = 1, \dots, r)$ as required. Q.E.D.

We are given two finite groups G and H. For G and H we assume that there exists an isomorphism λ of $\overline{ZBR}(G)$ onto $\overline{ZBR}(H)$. Then it follows that the rank of BR(G)= the rank of BR(H) and $|Cl(G_o)| = |Cl(H_o)|$. We also can extend λ to an isomorphism $\hat{\lambda}$ of $\overline{QBR}(G)$ onto $\overline{QBR}(H)$ by linearity. By Lemma 2.2 we have $f_i \in \overline{QBR}(G)$. Here we use the following additional notation.

$$Cl(H_o) = \{ \mathfrak{G}'_1 = \{1\}, \cdots, \mathfrak{G}'_r \}$$

 $\{c'_1 = 1', \dots, c'_r\}$: a complete set of representatives of $\mathfrak{G}'_1, \dots, \mathfrak{G}'_r$ respectively

 $\{f'_1, \dots, f'_r\}$: the complete set of characteristic class functions on H_o where f'_i corresponds to \mathfrak{G}'_i , $(i = 1, \dots, r)$.

 $IBr(H) = \{\varphi_1' = 1, \cdots, \varphi_r'\}.$

We now show a lemma which is actually the key step in the proof of Lemma 2.4.

LEMMA 2.3. In the above situation, $\hat{\lambda}(f_i)$ is a characteristic class function on H_a , $(i = 1, \dots, r)$.

PROOF. Since $\overline{Q}BR(G)f_i = \overline{Q}f_i \cong \overline{Q}$, $\overline{Q}BR(G)f_i$ is a minimal ideal of $\overline{Q}BR(G)$ and so f_i is a (central) primitive idempotent, $(i = 1, \dots, r)$. Since $\hat{\lambda}(f_i) \in \overline{Q}BR(H)$, we can write

(2.3)
$$\hat{\lambda}(f_i) = \sum_{j=1}^r a_j f'_j, \quad a_j \in \overline{Q}$$

Since $f_i^2 = f_i$ and $f_i'f_j' = 0$ $(i \neq j)$, by the formula (2.3) we have

$$\lambda(f_i) = \sum_{j=1}^r a_j^2 f_j'.$$

Kenichi YAMAUCHI

Thus $a_j^2 = a_j$, $(j = 1 \dots, r)$. Hence $a_j = 0$ or $a_j = 1$, $(j = 1 \dots, r)$. It follows that $\hat{\lambda}(f_i) = f'_j$ for some $j \in \{1, \dots, r\}$, because f_i is a primitive idempotent, hence the result. Q.E.D.

Now we define a bijection from $Cl(G_o)$ to $Cl(H_o)$ through the isomorphism λ as follows. For a *p*-regular conjugate class \mathfrak{C}_i of G, \mathfrak{C}_i corresponds to a characteristic class function f_i on G_o . Since by Lemma 2.3 $\hat{\lambda}(f_i)$ is also a characteristic class function f'_i on H_o , $\hat{\lambda}(f_i) = f'_i$ corresponds to a *p*-regular conjugate class $\mathfrak{C}'_{i''}$ of H. Here we assign $\mathfrak{C}'_{i''}$ to \mathfrak{C}_i $(i = 1, \dots, r)$. Thus we get a one-to-one correspondence between $Cl(G_o)$ and $Cl(H_o)$:

$$c_i \in \mathfrak{G}_i \to f_i \to \hat{\lambda}(f_i) = f_{i''} \to \mathfrak{G}_{i''} \ni c_{i''}$$

where $i \to i''$ $(i = 1 \dots, r)$ is a permutation. In this case we write $\mathfrak{C}_i \xrightarrow{\lambda} \mathfrak{C}'_{i''}$ or $c_i \xrightarrow{\lambda} c'_{i''}$ $(i = 1 \dots, r)$.

Keeping the above notation, we give the following lemma concerning the Brauer character table of G. This lemma plays a fundamental role in the proof of Theorem 3.1. The proof is the same as that of Theorem 2.2 in [5] and so we omit its proof.

LEMMA 2.4. $(\varphi_i(c_j)) = (\lambda(\varphi_i)(c'_{j''}))$ $(r \times r \text{ matrices})$ where $c_j \xrightarrow{\lambda} c'_{j''}$, $(j = 1, \dots, r)$.

3. Main theorems

Let G and H be two finite groups with Cartan matrices C and C' respectively. Let λ be an isomorphism of $\overline{ZBR}(G)$ onto $\overline{ZBR}(H)$ and $A = (a_{ij})$ be the matrix afforded by λ with respect to $IBr(G) = \{\varphi_1, \dots, \varphi_r\}$ and $IBr(H) = \{\varphi'_1, \dots, \varphi'_r\}$. We set $Cl(G_o) = \{\mathfrak{C}_1, \dots, \mathfrak{C}_r\}$ and $Cl(H_o) = \{\mathfrak{C}'_1, \dots, \mathfrak{C}'_r\}$ and assume that $c_i \in \mathfrak{C}_i, c'_i \in \mathfrak{C}'_i$ and $c_i \xrightarrow{\lambda} c'_{i''}$ where $i \to i''$ $(i = 1, \dots, r)$ is a permutation. We write **m** to denote the vector with *i*-th entry equal to $|C_G(c_i)|$ and **m'** to denote the vector with *i*-th entry equal to $|C_H(c'_{i''})|$, $(i = 1, \dots, r)$. Then we have the following two theorems.

THEOREM 3.1. With the above notation, m = m' iff $A^*CA = C'$. This necessarily happens if CA = AC', in which case A is clearly unitary.

PROOF. To prove this theorem, we introduce some simplifying notation: Write P to denote the $r \times r$ matrix with (i, j)-entry equal to $\varphi_i(c_j)$ and similarly write P' for the matrix with (i, j)-entry equal to $\varphi'_i(c'_{i''})$.

Since $\lambda(\varphi_i) = \sum_{k=1}^r a_{ik} \varphi'_k$ where $A = (a_{ij})$, by Lemma 2.4 we have

$$\varphi_i(c_j) = \lambda(\varphi_i)(c'_{j''}) = \sum_{k=1}^r a_{ik}\varphi'_k(c'_{j''}).$$

This implies that P = AP'. Also, if B is the diagonal matrix with (i, i)-entry equal to $|C_G(c_i)|$, it follows that $P^*CP = B$ by Theorem 60.5 in [2]. Similarly $(P')^*C'P' = B'$, where B' is the diagonal matrix with (i, i)-entry equal to $|C_H(c'_{i''})|$. Here we note that B = B' iff m = m'. Since $P^* = (P')^*A^*$, we have the two equations

$$(P')^* A^* CAP' = B$$
 and $(P')^* C'P' = B'$.

It is now obvious that B = B' iff $A^*CA = C'$.

Now suppose CA = AC'. Then we show that A is unitary. If we write $J = A^*A$, then we have $(P')^* JC'P' = B$. Thus $(B')^{-1}B = (P')^{-1}(C')^{-1}JC'P'$. This is a diagonal matrix with rational entries and this shows that J has rational eigenvalues. But J has algebraic integer entries, and so must have integer eigenvalues. Thus $(B')^{-1}B$ is a diagonal matrix with positive integer diagonal entries. Also, A is invertible over \overline{Z} and thus A^* is too. It follows that $det(J) = det((B')^{-1}B) = 1$ and so $(B')^{-1}B$ is the identity matrix I. It follows that $J = A^*A = I$ and so A is unitary, as required. Q.E.D.

THEOREM 3.2. If CA = AC', then we have

- (i) $\lambda(\varphi_i) = \varepsilon_i \varphi'_{i'}$ where the ε_i are roots of 1 and $i \to i'$ $(i = 1, \dots, r)$ is a permutation.
- (ii) The Brauer character tables of G and H are the same.

PROOF. (i) Now we pay attention to the fact that if $\alpha \in \overline{Z}$ and $|\alpha^{\sigma}| \le 1$ (an absolute value) for all $\sigma \in G(\overline{Q}/Q)$, then $\alpha = 0$ or α is a root of 1.

If we use the same notation as in the proof of Theorem 3.1, then we have $A = P(P')^{-1}$ and so A has entries that lie in a field with an abelian Galois group. Thus $(A^*)^{\sigma} = (A^{\sigma})^*$ for all $\sigma \in G(\overline{Q}/Q)$. Since A is unitary by Theorem 3.1, A^{σ} is automatically unitary for all $\sigma \in G(\overline{Q}/Q)$. Hence we have the equation with respect to the *i*-th row of A^{σ} .

$$\sum_{j=1}^{r} a_{ij}^{\sigma} \overline{a_{ij}^{\sigma}} = \sum_{j=1}^{r} \left| a_{ij}^{\sigma} \right|^{2} = 1, \quad (i = 1, \dots, r)$$

Hence we have $|a_{ij}^{\sigma}| \leq 1$ for all $\sigma \in G(\overline{Q}/Q)$. This implies that $a_{ij} = 0$ or a_{ij} is a root of 1 because of the above attention. Thus it follows that for each $i \in \{1, \dots, r\}$, there exists $i' \in \{1, \dots, r\}$ such that $a_{ii'}$ is a root of 1 and $a_{ij} = 0$ $(j \neq i')$. Hence $\lambda(\varphi_i) = \varepsilon_i \varphi'_{i'}$ where $\varepsilon_i = a_{ii'}$ is a root of 1 and $i \to i'$ $(i = 1, \dots, r)$ is a permutation.

(ii) We state a one-to-one correspondence μ between IBr(G) and IBr(H)

Kenichi YAMAUCHI

through the isomorphism λ as follows. By (i) of this theorem, we have $\lambda(\varphi_i) = \varepsilon_i \varphi'_{i'}$ $(i = 1, \dots, r)$ where the ε_i are roots of 1. Here we assign $\varphi'_{i'}$ to $\varphi_i : \mu(\varphi_i) = \varphi'_{i'}$ $(i = 1, \dots, r)$. Then μ can be extended to an isomorphism of BR(G) onto BR(H) by linearity. (See the proof of Lemma 3.2 in [5]) By Lemma 2.4 we have $(\varphi_i(c_j)) = (\varphi'_{i'}(c'_{j''}))$ $(r \times r$ matrices) where $c_j \xrightarrow{\mu} c'_{j''}$ $(j = 1, \dots, r)$. That is, G and H have the same Brauer character table. Thus the result follows. Q.E.D.

REMARK. If the condition m = m' in Theorem 3.1 holds, then we can easily prove |G| = |H|. But we can give examples such that for two finite groups G, Hwith $|G| \neq |H|$, a matrix A is unitary where A is afforded by an isomorphism of BR(G) onto BR(H). Actually, such an example is given by taking G and H to be any two p-groups of different orders. Another example can be found in [1]. (p =2, G = the symmetric group S_4 on 4 symbols and H = the dihedral group D_6 of order 12. See the examples of section 91 in [1])

Acknowledgement

The author would like to thank the referee for his valuable comments, especially about the greatly simplified proof of Theorem 3.1 of the paper.

References

- [1] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [2] Dornhoff, L., Group Representation Theory, (two volumes), Dekker, New York, 1972.
- [3] Saksonov, A. I., The integral ring of characters of a finite group, (Russian), Vesci Akad. Navuk BSSR Ser. Fiz. -Mat. Navuk, 1966, No. 3, 69-76.
- [4] Weidman, D. R., The character ring of a finite group, Illinois, J. Math. 9 (1965), 462–467.
- [5] Yamauchi, K., On automorphisms of a character ring, preprint.

Department of Mathematics Faculty of Education Chiba University Chiba-city 263 Japan