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ON MINIMAL SUBMANIFOLDS IN PRODUCT
MANIFOLDS WITH A CERTAIN

RIEMANNIAN METRIC

By

Masatoshi KOKUBU

Abstract. We generalize Ejiri’s theorem about minimal
submanifolds in warped product manifolds and see that there exist
minimal immersions of the plane and the catenoid into other
Riemannian manifolds.

\S 1. Introduction

Let $(B,g_{B})$ and $(F,g_{F})$ be Riemannian manifolds, and $f$ a positive smooth
function on $B$ . The warped product manifold of $(B,g_{B})$ and $(F,g_{F})$ by the warped

function $f$ is defined to be a product manifold $B\times F$ provided with a Riemannian
metric $g_{B}+f^{2}g_{F}$ , and is denoted by $B\times_{f}F$ . N. Ejiri proved the following
theorem:

THEOREM A ([E]). Let $(B,g_{B}),$ $(F,g_{F})$ and $f$ be as above. Let $M$ be an m-
dimensional submanifold in $B$ and $N$ an n-dimensional submanifold in F. Then the
product submanifold $M\times N$ in $B\times_{f}F$ is minimal if and only if both $ M\leftrightarrow$

$(B,f^{2n/m}g_{B})$ and $N\leftrightarrow(F,g_{F})$ are minimal submamfolds.

For example, the catenoid, which is a minimal surface of revolution in $R^{3}$ ,

can be considered as a product submanifold in a warped product manifold of the

flat upper half-plane $(\{y>0\}\subset R^{2},dr^{2}+dy^{2})$ and the circle $(S^{1},d\theta^{2})$ of radius 1,

whose warped function is $f(x,y)=y$ . So Theorem A implies that the generating
curve of the catenoid is a geodesic in the upper half-plane provided with a
Riemannian metric $y^{2}(dx^{2}+dy^{2})$ . And it gives a reason why the catenoid is
generated by the catenary which is a plane curve formed by a flexible
inextensible cable of uniform density hanging from two support.
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In this paper, we deal with product immersions whose ambient manifold
possesses a Riemannian structure belonging to $\mathscr{K}$ . $\nu\chi$ is a set consisting of a
certain kind of Riemannian structures of the ambient manifold, which contains
warped product structures, and is defined in the following section. We define an
equivalent relation in $J$ and show that the minimality for such immersions is
invariant in equivalent classes in X. Especially when the metric in $\mathscr{K}$ is of
more distinctive form, we give a necessary and sufficient condition for the
minimality. The second result is a generalization of Theorem A. We also give
some applications of the results.

The author would like to express his gratitude to Professor Koichi Ogiue and
Professor Takao Sasai for their suggestions and encouragement.

\S 2. Statement and Proof of Main Theorem

Throughout this paper, manifolds are assumed to be smooth and connected.
At first we prepare some notations.

Let $(N_{1},g_{1}),\cdots,(N_{l},g_{l})$ be Riemannian manifolds and $\dim N_{\alpha}=n_{\alpha}$ . We put
$N:=N_{1}\times\cdots\times N_{l}$ , and denote by $\mathscr{K}^{\prime}$ the set of all Riemannian metrics on $N$ . A
subset $ $ of $\mathscr{K}^{\prime}$ is defined to be

$\mathscr{K}=\{g\in\ovalbox{\tt\small REJECT}^{\prime};g=f_{1}^{2}g_{1}+\cdots+f_{l}^{2}g_{l}\}$ ,

where $f_{1},\cdots,f_{l}$ are positive smooth functions on $N$ and $g_{1},\cdots,g_{l}$ are considered as
tensor fields on $N$ .

$\mathscr{K}$ is bijectively corresponded to $C_{+}^{\infty}(N)\times\cdots\times C_{+}^{\infty}(N)$ (the set of l-tuples of
positive smooth functions on $N$). Hence we often denote an element $g=\sum f_{\alpha}^{2}g_{\alpha}$ by
$(f_{1},\cdots,f_{l})$ .

Let $d_{1},\cdots,d$, be positive integers. We say that elements $g=(f_{1},\cdots,f_{l})$ and
$\tilde{g}=(\tilde{f}_{1},\cdots,\tilde{f}_{l})$ in $\mathscr{K}$ are $(d_{1},\cdots,d,)$ -equivalent if $f_{1}^{d_{1}}\cdots f_{l}^{d}’=\tilde{f}_{1}^{d_{1}}\cdots\tilde{f}_{l}^{d}$ holds, and
denote it by $g\sim_{td_{1},\cdots,d,)}\tilde{g}$ . The relation $\sim_{1d_{1}.\cdots.d,)}$ is an equivalent relation in $\mathscr{K}$ . We
denote by $\mathscr{K}_{(d_{1}.\cdots.d,)}$ the quotient set $\nearrow/\sim_{td_{1},\cdots,d,)}$ .

Let $\varphi_{\alpha}$ : $M_{\alpha}\rightarrow N_{\alpha}$ be an immersion of a $d_{\alpha}$ -dimensional manifold $M_{\alpha}$ into
$N_{\alpha}\alpha=(1,\cdots,l)$ . We denote by $\Phi$ the product immersion of $M=M_{1}\times\cdots\times M_{l}$ into
$N=N_{1}\times\cdots\times N,$ . It is an easy observation that if $g\sim_{td_{1},\cdots,d,)}\tilde{g}$ then the volume
elements of $(M,\Phi^{*}g)$ and $(M,\Phi^{*}\tilde{g})$ are coincide.

That the minimality is equivalent to the stationariness of a variational problem
about the volume $(cf.[L])$ gives an implication of the following.

THEOREM 2.1. Assume that $g\sim_{td_{1}.\cdots,d,)}\tilde{g}$ . Then $\Phi:M\rightarrow(N,g)$ is minimal if
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and only $lf\Phi:M\rightarrow(N,\tilde{g})$ is minimal, i.e., the minimality for $\Phi$ depends only on
elements in $\mathscr{K}_{(d_{1}.\cdots,d_{l})}$ .

REMARK 2.2. Theorem 2.1 implies that it does not depend on representative
elements of an equivalent class whether $\Phi$ is stationary with respect to the first
variation of volume or not. However, such assertion does not hold for the second
variation, that is, the stability property is not preserved in the equivalent class.
We can see an example for this in \S 3.

THEOREM 2.3. Let $F_{\alpha}$ be a positive smooth function on $N_{\alpha}(\alpha=1,\cdots,l)$ .
Assume that $g_{(d_{I},\cdots,d,)}^{\sim}(F_{1},\cdots, F_{l})$ where $F_{\alpha}$ is identified with a function on $N$ .
Then $\Phi:M\rightarrow(N,g)$ is minimal if and only if each $\varphi_{\alpha}$ : $M_{\alpha}\rightarrow(N_{\alpha}, F_{\alpha}^{2}g_{\alpha})$ is
minimal.

REMARK 2.4. The assumption of Theorem 2.3 means the separation of
variables of the function $f_{1}^{d_{1}}\cdots f_{1}^{d_{1}}$

PROOF $0F$ THEOREM 2.1 AND 2.3. We shall prove Theorem 2.1 and 2.3 by the
moving frame method.

Let the convention on the ranges of indices be the following:

$1\leq\alpha,\beta\leq l$ , $1\leq i_{\alpha},j_{\alpha}\leq n_{a}$ .

Let $e_{(\alpha)1},\cdots,e_{(\alpha)d_{\alpha}},e_{(\alpha)d_{\alpha}+1},\cdots,e_{(\alpha)n_{\alpha}}$ be a local orthonormal frame field of
$(N_{a},g_{\alpha})$ adapted to $\varphi_{\alpha}$ , i.e., the restrictions of $e_{(a)1},\cdots,e_{(\alpha)d_{\alpha}}$ to $M_{\alpha}$ are tangent to
$M_{\alpha}$ , and $\theta_{(\alpha)^{1}},\cdots,\theta_{(\alpha)}^{n_{\alpha}}$ be the dual coframe field. We denote by $(\theta_{(\alpha)_{j_{\alpha}^{\alpha}}}^{i})$ the

connection form of $(N_{\alpha},g_{\alpha})$ with respect to $\theta_{(\alpha)^{1}},\cdots,\theta_{(\alpha)^{n_{\alpha}}}$ , i.e., $(n_{\alpha}\times n_{\alpha})$ matrix-

valued l-form uniquely determined by the structure equations

$d\theta_{(\alpha)^{i_{a}}}=-\sum_{j_{\alpha}}\theta_{(a)_{j_{\alpha}^{\alpha}}^{i}}\wedge\theta_{(\alpha)}^{j_{\alpha}}$
,

$\theta_{(\alpha)_{j^{\alpha_{\alpha}}}}^{i}+\theta_{(\alpha)_{i_{\alpha}}}^{j_{a}}=0$ .

$f_{1}\theta_{(1)}^{1},\cdots,f_{1}\theta_{(1)^{n_{1}}},\cdots\cdots,f_{l}\theta_{(l)}^{1},\cdots,f_{l}\theta_{(l)}^{n_{l}}$ form an orthonormal coframe field of
$(N, g)$ . Making use of the stmcture equations, we can compute that

$ d(f_{\alpha}\theta_{(\alpha)^{i_{\alpha}}})=-\sum\underline{1}\{(e_{(\alpha)j_{\alpha}}f_{a})\theta_{(\alpha)^{i_{\alpha}}}+f_{\alpha}\theta_{(a)_{j^{\alpha_{\alpha}}}}^{i}\}\wedge f_{\alpha}\theta_{(a)}^{\prime}\alpha$

$j_{\alpha}$
$f_{\alpha}$

$-\sum_{\beta\neq\alpha}\sum_{j_{\beta}}\frac{1}{f_{\beta}}(e_{(\beta)j_{\beta}}f_{\alpha})\theta_{(\alpha)^{i_{\alpha}}}\wedge f_{\beta}\theta_{(\beta)}^{j_{\beta}}$
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Therefore if we put

$\Theta_{j^{\alpha_{\alpha}}}^{j}=\frac{1}{f_{\alpha}}\{(e_{(aj_{\alpha}}f_{\alpha})\theta_{(\alpha)}^{i_{\alpha}}-(e_{(\alpha)i_{a}}f_{\alpha})\theta_{(\alpha)}^{j_{a}}+f_{\alpha}\theta_{(\alpha)_{j^{\alpha_{\alpha}}}}^{i}\}$ ,

$\Theta_{j_{\beta}^{\alpha}}^{i}=\frac{1}{f_{\beta}}\{(e_{(\beta)j_{\beta}}f_{\alpha})\theta_{(\alpha)}^{i_{a}}-\frac{1}{f_{\alpha}}\}(e_{(\alpha)j_{\alpha}}f_{\beta})\theta_{(\beta)^{i_{\beta}}}$ , if $ a\neq\beta$ ,

then the following equations hold:

$d(f_{\alpha}\theta_{(\alpha)^{i_{\alpha}}})=-\sum_{\beta}\sum_{\dot{J}_{\beta}}\Theta_{\dot{J}\rho}^{i_{a}}\wedge f_{\beta}\theta_{(\beta)}^{j_{\beta}}$
,

$\Theta_{\dot{J}\rho}^{i_{a}}+\Theta_{i_{\alpha}}^{j_{\beta}}=0$ .

So $(\Theta_{j_{\beta}^{\alpha}}^{l})$ is the connection form of $(N, g)$ .
From now on we shall use the same notations of tensor fields on an ambient

space and the restrictions of them to a submanifold, and use the following
convention on ranges of indices:

$1\leq a,\beta\leq l$ ,

$1\leq i_{\alpha},j_{\alpha}\leq d_{\alpha},$ $d_{\alpha+1}\leq\tilde{i}_{\alpha},\tilde{j}_{\alpha}\leq n_{\alpha}$ .

The mean curvature normal is the trace of the second fundamental form $h$ divided
by the dimension of the submanifold. The minimality is equivalent to that trh is
identically zero.

The second fundamental form $h$ of $\Phi$ can be written locally as

$h=\sum_{\alpha}\sum_{\overline{i}_{\alpha}}\frac{1}{f_{\alpha}}e_{(\alpha)\overline{i}_{a}}\otimes\sum_{\beta}\sum_{\overline{j}_{\beta}}f_{\beta}\theta_{(\beta)}^{j_{\beta}}\Theta_{j}^{\overline{i}_{a_{\beta}}}$

by definition. Hence,

trh $=\sum_{\alpha}\sum_{\overline{i}_{a}}\frac{1}{f_{\alpha}}e_{(\alpha)\overline{i}_{\alpha}}\otimes\sum_{\beta}\sum_{j_{\beta}}\frac{1}{f_{\beta}}\Theta_{j_{\beta}^{\alpha}}^{\overline{i}}(e_{(\beta)j_{\beta}})$ .

On the other hand, it is computed that

$\sum_{j_{\beta}}\Theta_{j^{\alpha_{\beta}}}^{\overline{i}}(e_{(\beta)j_{\beta}})=\left\{\begin{array}{l}-d_{\alpha}\frac{(e_{t\alpha)\tilde{i}_{\alpha}}f_{\alpha})}{f_{\alpha}}+\sum_{j_{\alpha}}\theta_{(\alpha)_{j_{\beta}^{\alpha}}}^{\tilde{i}}(e_{(\alpha)j_{\alpha}})\\-d_{\beta}\frac{(e_{(\alpha)\tilde{i}_{\alpha}}f_{\beta})}{f_{\alpha}},\end{array}\right.$
$i_{i}f_{f\beta\neq}\beta=\alpha_{\alpha},$

.

Therefore
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trh $=\sum_{\alpha}\sum_{\overline{i}_{\alpha}}\frac{1}{f_{\alpha}}e_{(\alpha)\overline{i}_{\alpha}}\otimes\{\frac{1}{f_{a}}(-d_{\alpha}\frac{(e_{(a)\tilde{i}_{\alpha}}f_{\alpha})}{f_{a}}+\sum_{;_{\alpha}}\theta_{(\alpha)_{j^{\alpha_{\alpha}}}}^{\overline{i}}(e_{(a)j_{\alpha}}))$

$+\sum_{\beta\neq\alpha}\frac{1}{f_{\beta}}(-d_{\beta}\frac{(e_{(a)\overline{i}_{\alpha}}f_{\beta})}{f_{\alpha}})\}$

$=\sum_{a}\sum_{\overline{i}_{\alpha}}\frac{1}{f_{\alpha}}e_{(a)\overline{i}_{a}}\otimes\frac{1}{f_{\alpha}}\{-\sum_{\beta}d_{\beta}\frac{(e_{(a)\overline{i}_{\alpha}}f_{\beta})}{f_{\beta}}+\sum_{j_{\alpha}}\theta_{(\alpha)_{/\alpha}}^{\overline{i}_{\alpha}}.(e_{(a)j_{\alpha}})\}$

$=\sum_{\alpha}\sum_{\overline{i}_{\alpha}}\frac{1}{f_{a}}e_{(\alpha)\overline{i}_{\alpha}}\otimes\frac{1}{f_{\alpha}}\{-e_{(a)\overline{i}_{\alpha}}(\log f_{1}^{d_{1}}\cdots f_{1}^{d_{1}})+\sum_{j_{\alpha}}\theta_{(\alpha)_{j^{\alpha_{\alpha}}}}^{\overline{i}}(e_{(\alpha)j_{a}})\}$ .

So Theorem 2.1 is proved.
Next we assume that $f_{1}^{d_{1}}\cdots f_{l}^{d}’=F_{1}^{d_{1}}\cdots F_{l}^{d}$’ holds for some positive functions

$F_{1}$ : $M_{1}\rightarrow R^{+},\cdots,F_{l}:M_{l}\rightarrow R^{+}$ . Then

trh $=\sum_{a}\sum_{\overline{i}_{\alpha}}\frac{1}{f_{\alpha}}e_{\overline{i}_{a}}\otimes\frac{1}{f_{a}}\{-e_{(\alpha)\overline{i}_{\alpha}}(\log F_{a}^{d_{\alpha}})+\sum_{j_{\alpha}}\theta_{(\alpha)_{j^{\alpha_{\alpha}}}}^{\overline{i}}(e_{(a)j_{\alpha}})\}$ .

Thus $\Phi$ is minimal if and only if

$-e_{(a)\overline{i}_{a}}(\log F_{\alpha}^{d_{\alpha}})+\sum_{j_{\alpha}}\theta_{(\alpha)_{j^{a_{\alpha}}}}^{\overline{i}}(e_{(\alpha)j_{\alpha}})=0$

holds for all $\tilde{i}_{\alpha}=d_{\alpha}+1,\cdots,n_{a}$ and for all $\alpha=1,\cdots,l$ .
Finally, we have only to prove that the above equation for $\tilde{i}_{\alpha}=d_{a}+1,\cdots,n_{\alpha}$ is

the minimality condition for the immersion $\varphi_{a}$ : $M_{a}\rightarrow(N_{\alpha},F_{\alpha}^{2}g_{\alpha})$ . However, the
proof is of similar computations as above, hence we omit it.

\S 3. Applications

Theorem 2.1 implies that if there is a product minimal submanifold $M$ in a
product manifold $N$ provided with a Riemannian metric $g\in l$ then it is also a
minimal submanifold in $M$ with any metric which is $(d_{1},\ldots,d_{l})$ -equivalent to $g$ . So
we can obtain examples of minimal submanifolds from known examples.

EXAMPLE 3.1. A totally geodesic plane in $R^{3}$ is a cylindrical minimal
surface, which is also interpreted as a product minimal surface in
$(R^{2}\times R,(d\kappa^{2}+dy^{2})+dz^{2})$ . Therefore it is also a minimal surface in
$(U,g_{f}=(d\kappa^{2}+dy^{2})/f^{2}+f^{2}dz^{2})$ where $U$ is an open set in $R^{2}\times R$ and $f$ is an
arbitrary positive smooth function on $U$ . In particular, if $U$ and $f$ are the
following (1)$-(3)$ then $(U,g_{f})$ is a Riemannian homogeneous space in each case.

(1) Let $U=\{y>0\}\subset R^{2}\times R$ and $f(x,y,z)=y$ . Then $g_{f}=(d\kappa^{2}+dy^{2})/y^{2}+$

$y^{2}dz^{2}$ . So $(U,g_{f})$ is a warped product manifold of the Poincar\’e upper half-plane
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and $R$ . Moreover it is isometric to the following Lie group $G_{1}$ provided with a
left invariant metric:

$G_{1}=\{\left\{\begin{array}{lllll}y & 0 & 0 & & X\\0 & y & 0 & & 0\\0 & 0 & 1/ & y & z\\0 & 0 & 0 & & 1\end{array}\right\};(x,z)\in R^{2},y\in R^{+}\}$ ,

which is a semi-direct product of $(R^{2},+)$ and $(R^{+},\times)$ .
In fact, for an arbitrary $a_{1}=(x_{1},y_{1},z_{1})\in G_{1}$ , let $L_{a_{1}}$ denote the left translation

by $a_{1}$ , then

$L_{a_{1}}[000y$ $00y0$ $[/0^{y}00$ $0xz1=[\mathcal{Y}00^{y}0^{1}$ $\mathcal{Y}0^{y}0^{1}0$ $1/_{0}^{0}0y_{l\mathcal{Y}}$
$z^{yx_{0}}/^{1}y_{1}1^{+_{+}x_{Z_{1}^{1}}}$

and

$L_{a_{1}}^{*}g_{f}=\frac{\{d(y_{1}x+x)\}^{2}+\{d(y_{1}y)\}^{2}}{(y_{1}y)^{2}}+(y_{1}y)^{2}\{d(z/y_{1}+z_{1})\}^{2}$

$=\frac{y_{1}^{2}d\mathfrak{r}^{2}+y_{1}^{2}dy^{2}}{y_{1}^{2}y^{2}}+y_{1}^{2}y^{2}\frac{1}{y_{1}^{2}}dz^{2}$

$=g_{f}$ .

The obtained minimal surface is totally geodesic if it is defined by the equation $x$

$=constant$ , otherwise it is not totally geodesic.
(2) Let $U=tz>0$} $\subset R^{2}\times R$ and $f(x,y,z)=1/z$ . In the similar way to (1), we

can prove that $(U,g_{f})$ is isometric to the following Lie group $G_{2}$ provided with a
left invariant metric:

$G_{2}=\{\left\{\begin{array}{lllll}z & 0 & & 0 & 0\\0 & 1/ & z & 0 & X\\0 & 0 & & 1/z & y\\0 & 0 & & 0 & l\end{array}\right\};(x,y)\in R^{2},z\in R^{+}\}$ ,

which is a semi-direct product of $R^{2}$ and $R^{+}$ . Moreover it is easily checked that
$(U,g_{f})$ has constant sectional curvature $-1$ , that is, $(U,g_{f})$ is isometric to the
hyperbolic space, and that the obtained minimal surface is totally geodesic.

(3) Let $U=R^{2}\times R-\{x=y=0\}\subset R^{2}\times R$ and $f(x,y,z)=(x^{2}+y^{2})^{1/2}$ Making
use of the polar coordinate $x=r\cos\theta,y=r\sin\theta,$ $(U,g_{f})$ can be written as

$((R^{+}\times S^{1})\times R,(\frac{1}{r^{2}}dr^{2}+d\theta^{2})+r^{2}dz^{2})$ ,
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and is isometric to the following Lie group $G_{3}$ provided with a left invariant
metric, that can be proved similarly to (1):

$G_{3}=\{\left\{\begin{array}{lllll}r & 0 & 0 & & z\\0 & 1 & 0 & & \theta\\ 0 & 0 & 1/ & r & 0\\0 & 0 & 0 & & 1\end{array}\right\};r\in R^{+},z\in R,\theta\in S^{1}\}$ ,

which is a semi-direct product of $R\times S^{1}$ and $R^{+}$

The obtained minimal surface is totally geodesic if it is defined by the
equation $\theta=constant$ , otherwise it is not totally geodesic.

EXAMPLE 3.2. A totally geodesic plane minus one point in $R^{3}$ can be
considered as a minimal cone over a great circle in $S^{2}$ , i.e., a product minimal
surface in $R^{+}\times_{t}S^{2}$ , where $t$ is the canonical coordinate for $R^{+}$ . Therefore it is
also a minimal surface in $(R^{+}\times S^{2},g_{f}=dt^{2}/f^{2}+t^{2}f^{2}g_{s^{2}})$ where $f$ is an arbitrary

positive smooth function on $R^{+}\times S^{2}$ and $g_{s^{2}}$ is the Riemannian metric of $S^{2}$ of

constant Gaussian $curvature+1$ .
In particular, we consider the case of $f=1/t$ . Then $(R^{+}\times S^{2},g_{f})$ is isometric

to the Riemannian product manifold $R^{+}\times S^{2}$ . In this case, it may be considered to

be trivial that the surface is minimal in $(R^{+}\times S^{2},g_{f})$ , more precisely it is totally
geodesic. However this is an easy example for Remark 2.2. In fact, the surface is
a stable minimal surface in $R^{+}\times_{t}S^{2}$ but is an unstable minimal surface in
$(R^{+}\times S^{2},g_{f})$ .

As another special case, we take the function $f$ to be $T^{1}\cos\rho(t)$ , where $p(r)$ is
defined by $\sin\rho(t)=t^{2}/2$ in an appropriate interval. Then $g_{f}$ is a metric of
constant sectional curvature $+1$ defined on some open set in $R^{+}\times S^{2}$ It is
remarked that the minimal surface obtained in this case is totally geodesic.

EXAMPLE 3.3. Let $H^{2}=\{(x,y)\in R^{2};y>0\}$ be the upper half-plane. As
mentioned in \S 1, the catenoid is a product minimal surface in $(H^{2}\times S^{1},(d\kappa^{2}+dy^{2})$

$+y^{2}d\theta^{2})$ , hence is also a minimal surface in $(U,g_{f}=(d\kappa^{2}+dy^{2})/f^{2}+f^{2}y^{2}d\theta^{2})$

where $U$ is an open set in $H^{2}\times S^{1}$ and $f$ is an arbitrary positive smooth function
on $U$ .

In particular, we consider the function $f(x,y,\theta)=y$ and $U=H^{2}\times S^{1}$ . Then

$(U,g_{f})=$ ( $H^{2}$ , the Poincar\’e metric) $\times_{y^{2}}S^{1}$ .

Moreover, in the similar way to Example 3.1, it can be shown that this
Riemannian manifold is isometric to a locally homogeneous space $2\pi Z\backslash G$
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defined as follows:
$G$ is a Lie group of semi-direct product of $R^{2}$ and $R^{+}$ , which is realized as

a subgroup of $GL(4;R)$ as follows:

$G=\{\left\{\begin{array}{llll}y & 0 & 0 & X\\0 & y & 0 & 0\\0 & 0 & 1/y^{2} & \theta\\ 0 & 0 & 0 & 1\end{array}\right\};x\in R,\theta\in R,y\in R^{+}\}$ .

The metric $(d\kappa^{2}+dy^{2})/y^{2}+y^{4}d\theta^{2}$ on $G$ is left invariant. $2\pi Z$ is a discrete
subgroup of $G$ defined by

$2\pi Z=\{\left\{\begin{array}{llll}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 2\prime m\\0 & 0 & 0 & 1\end{array}\right\};n\in Z\}$ .

The obtained minimal surface is not totally geodesic. To see this, we may assume
that the surface is defined by $y=c\cosh(x/c)$ for some non-zero constant $c$ , and
have only to show that the curve defined by the equation $x=0$ is a geodesic on
this surface but is not a geodesic in $2\pi Z\backslash G$ .

As an another application we give the following.

EXAMPLE 3.4. In [L-F], L. Lyusternik and A. I. Fet proved that there exists a
closed geodesic in any compact Riemannian manifold. So by this theorem together
with Theorem 2.1, we immediately have the following:

COROLLARY. In any product manifold of $k$ numbers of compact manifolds
provided with a Riemannian metric which is $(1,\cdots,1)$ -equivalent to any product
metric, there exists a k-dimensional minimal torus.
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