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1. Introduction.

B. Y. Chen and T. Nagano [2] investigated the totally geodesic submanifolds
in Riemannian symmetric spaces, and as one of their results, the following holds.

FACT 1.1. Spheres and hyperbolic spaces are the only simply connected,
irreducible symmetric spaces admitting a totally geodesic hypersurface.

In this paper we shall study totally geodesic submanifolds in the naturally
reductive homogeneous spaces which are known as a natural generalization of
Riemannian symmetric spaces.

At first, in a naturally reductive space $(M, g)$ , we express a necessary and
sufficient condition of the existence of a totally geodesic submanifolds in the
language of the Lie algebra of a Lie group of isometries of $M$ (Theorem 3.2),

which generalizes the notion of the Lie triple system due to E. Cartan.
Next, as an application of that, by making use of the results in Kowalski and

Vanhecke $[5, 6]$ , we shall prove that simply connected, irreducible naturally
reductive spaces of dimension $n(n=3,4,5)$ admitting a totally geodesic
hypersurface are spheres and hyperbolic spaces (Theorem 4.1).

The author would like to thank R. Takagi and K. Tsukada for their kind
suggestions.

2. Totally geodesic submanifolds of Riemannian spaces.
Let $(M, g)$ be a Riemannian manifold and $\nabla$ the Levi-Civita connection of

$(M, g)$ . Let $p$ be a point of $M$ and $u$ a vector in the tangent space $T_{p}M$ to $M$ at $p$ .
$P_{u}$ denotes the parallel transport with respect to $\nabla$ along the geodesic
$\gamma_{u}(r)=Exp_{p}$ (tu) from $p$ to $\gamma_{u}(1)$ , where $Exp$ denotes the Riemannian exponential
map. Let $R$ be the curvature tensor defined by

$R(X,Y)=\nabla_{[X,Y]}-[\nabla_{X},\nabla_{Y}]$ ,
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where $X$ and $Y$ are vector fields on $M$ .
Then the following formulas are well-known.

(2.1) $R(X, Y,Z,W)=-R(X, Y,W,Z)=R(Z, W,X, Y)$

(2.2) $R(X, Y)Z+R(Y,Z)X+R(Z,X)Y=0$ ,

for vector fields $X,$ $Y,$ $Z$ and $W$ . Here $R(X, Y,Z,W)=g(R(X, Y)Z,W)$ .
Define a $(1,3)$ -tensor $R_{u}(t)$ on $T_{\rho}M$ as follows:

$R_{u}(t)(x,y)z=P_{\iota u}\circ R_{\mu(t)}(P_{\iota u}(x), P_{tu}(y))P_{tu}(z)(x,y,z\in T_{\rho}M)$ .

Then the following theorem is known with respect to the existence of a totally
geodesic submanifold. (see Cartan [1] and Hermann [3].)

THEOREM 2.1. Let $V$ be a subspace of $T_{\rho}M$ . Then the following conditions
are equivalent.

$(a)$ There exists a totally geodesic submanifold tangent to $V$ at $p\in M$ .
(b) There is a positive number $\mathcal{E}$ such that for each $t\in(-\epsilon,\epsilon)$ and each

$u\in V(|u|=1)$ , the following is satisfied:
(2.3) $R_{u}(t)(V, V)V\subset V$

(c) There is a positive number $\mathcal{E}$ such that for each $t\in(-\epsilon,\epsilon)$ and each
$u\in V(|u|=1)$ , the following is satisfied;

(2.4) $r_{u}(t)(V, V)\subset V$ ,

where $r_{u}(t)(x,y)=R_{u}(t)(u,x)y$ .

In particular, if condition $(a)$ is satisfied, the following holds.
(2.5) $R(V, V)V\subset V$ .

3. Naturally reductive spaces.

Let $(M, g)=G/H$ be a naturally reductive homogeneous space. Then there
exists an $Ad(H)$ -invariant decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{p}$ of the Lie algebra $\mathfrak{g}$ of Lie
groupG ( $b$ is the Lie algebra of $H.$ ) such that

(3.1) $\langle[x,y]_{\downarrow)},z\rangle+\langle y,[x,z]_{\mathfrak{p}}\rangle=0(x,y,z\in \mathfrak{p})$

where $\langle, \rangle denotes$ the induced scalar product on $\mathfrak{p}$ from the metric $g$ by using the
canonical identification $\mathfrak{p}\equiv T_{p_{r}}M(p_{0}=\{H\})$ . Since $g$ is G-invariant, $\langle, \rangle isAd(H)-$

invariant.
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As is well-known, the geodesic $\gamma_{X}(x\in \mathfrak{p})$ with $\gamma_{X}(0)=p_{0},\gamma_{X}^{\prime}(0)=x$ and the
curvature tensor R. at $p_{0}$ are given by

(3.2) $\gamma_{x}(t)=\tau(\exp tx)(p_{0})$

$R_{o}(y,z)\omega=[[y,z]_{\mathfrak{h}},\omega]+\frac{1}{2}[[y,z]_{\mathfrak{p}},\omega]_{\mathfrak{p}}$

(3.3)
$-\frac{1}{4}[y,[z,\omega]_{\mathfrak{p}}]_{\mathfrak{p}}+\frac{1}{4}[z,[y,\omega]_{\mathfrak{p}}]_{\mathfrak{p}}(y,z,\omega\in \mathfrak{p})$

where $\exp$ and $\tau(h)$ denote the Lie exponential map of $G$ and the left
transformation of $G/H$ induced by $h\in G$ , respectively.

According to Nomizu [7], the connection function $\Lambda:\mathfrak{p}\times \mathfrak{p}\rightarrow \mathfrak{p}$ which is
associated to $\nabla$ is given by

(3.4) $\Lambda(x)(y)=\frac{1}{2}[x,y]_{\mathfrak{p}}(x,y\in \mathfrak{p})$ .

From now on, we put $\varphi_{X}=\Lambda(x)$ for simplicity. Moreover, we put

$e^{-\varphi_{X}}=\sum_{\iota=0}^{\infty}\frac{(-1)^{l}}{l!}\varphi_{X}^{l}$ .

By (3.1), a linear map $\varphi_{x}$ is skew-symmetric. Therefore a mapping
$e^{-\varphi_{X}}$ : $(\mathfrak{p},\langle, \rangle)\rightarrow(\mathfrak{p},\langle, \rangle)$ is an isometry.

By using (3.4), we shall prove the following lemma.

LEMMA 3.1. The parallel vector field $Y(t)$ along $\gamma_{x}$ such that $Y(O)=y(\in \mathfrak{p})$

is given by
$Y(t)=\tau(\exp tx)_{*}(e^{-\varphi_{\mathfrak{l}X}}(y))$ .

PROOF. From (3.4), we have

$\nabla_{\gamma_{x}(t)}’\tau(\exp tx)_{*}(z)=\tau(\exp tx)_{*}(\varphi_{X}(z))$
$(z\in \mathfrak{p})$

Then we have

$\nabla_{\gamma_{X}\prime(t)}Y(t)=\tau(\exp tx)_{*}(\frac{d}{dt}e^{-\varphi_{tX}}(y))+\tau(\exp tx)_{*}(\varphi_{X}\circ e^{-\varphi_{tx}}(y))$

$=\tau(\exp tx)_{*}(\sum_{l=1}^{\infty}\frac{(-1)^{\prime}}{(l-1)!}t^{l-1}\varphi_{X}^{l}(y)+\varphi_{X}\circ\sum_{/=0}^{\infty}\frac{(-1)^{\prime}}{l!}t^{l}\varphi_{X}^{l}(y))$

$=0$

This prove the lemma. $\square $
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Now, from (3.3) and lemma 3.1, theorem 2.1 can be written in terms of the
bracket operation.

THEOREM 3.2. Let $(M, g)=G/H$ be a $na$turally reductive homogeneous
space and $V$ a subspace of $\mathfrak{p}$ . Then there exists a totally geodesic submamfold
tangent to $V$ at $p_{0}$ if and only iffor any $x\in V$ , the following is satisfied.
(3.5) $R_{o}(x,e^{-\varphi_{X}}(V))e^{-\varphi_{X}}(V)\subset e^{-\varphi_{X}}(V)$

PROOF. For $x,y,z\in V(|x|=1),\xi\in V^{\perp}$ and $t\in(-\epsilon,\epsilon)$ , we have from lemma
3.1,

(3.6) $\langle r_{X}(t)(y,z),\xi\rangle=\langle P_{tX}^{-I}\circ R(P_{tx}(x),P(y))P_{tx}(z),\xi\rangle$

$=g(\tau(\exp tx)_{*}R_{o}(x,e^{-\varphi_{X}}’(y))e^{-\varphi_{X}}’(z),\tau(\exp tx)_{*}(e^{-\varphi_{\alpha}}(\xi)))$

$=\langle R_{0}(x,e^{-\varphi_{X}}’(y))e^{-\varphi_{tx}}(z),e^{-\varphi_{lX}}(\xi)\rangle$

Put $ f(t)=\langle R_{o}(x,e^{-\varphi,x}(y))e^{-\varphi_{tX}}(z),e^{-\varphi_{fX}}(\xi)\rangle$ .
If condition $(c)$ in theorem 2.1 is satisfied, then $f(t)=0$ on $(-\epsilon,\epsilon)$ from (3.6),

and obviously $tf(t)\equiv 0$ . Since $e^{-\varphi_{a}}$ is isometry, (3.5) is derived from the real
analyticity of $f$.

Conversely, we suppose that (3.5) is satisfied. Then we have $tf(t)=0$ for all
$t\in R$ .

Therefore if $t\neq 0$ , then we get $f(t)=0$ . By continuity of $f$ at $t=0$ , we obtain
$f(t)=0$ for all $t\in R$ . Hence from (3.6), condition $(c)$ holds.
We have thus proved the theorem. $\square $

REMARK 3.3. Using the same method as in the above proof, from (2.3) we
have

(3.7) $R_{0}(e^{-\varphi_{X}}(V),e^{-\varphi_{X}}(V))e^{-\varphi_{X}}(V)\subset e^{-\varphi_{X}}(V)$

for any $x\in V$ . Then (3.7) is equivalent to (3.5) since condition (b) is equivalent to
condition (c).

REMARK 3.4. If $[\mathfrak{p}, \mathfrak{p}]\subset \mathfrak{h}$ (then $G/H$ is a locally symmetric space), then (3.5)

(or (3.7)) tums into the relation

[V, [V, $V]$ ] $\subset V$ ,

i.e. $V$ is a Lie triple system. In this sense it can be said that (3.5) is a
generalization of the notion of the Lie triple system in Riemannian symmetric
spaces due to E. Cartan.

We say that $V^{\perp}$ satisfies condition $(T-G)$ if there exists a totally geodesic
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submanifold tangent to $V$ at $p_{0}$ .

PROPOSITION 3.5. Suppose $V^{\perp}$ satisfies condition $(T-G)$ . Then $Ad(H)(V^{\perp})$

satisfy condition ($T-$ G). Moreover, for each $x\in V$ , a subspace $e^{-\varphi_{r}}’(V^{\perp})$

satisfies condition (T–G).

PROOF. Considering the isotropy representation, the first part of the
proposition is obvious.

Now, we shall prove the second part. Let $S$ be a totally geodesic submanifold
tangent to $V$ at $p_{0}$ . According to Hermann [3], any totally geodesic submanifold
of a real analytic complete Riemannian manifold can be extended to complete
one. Then we assume $S$ is complete.

For each $x\in V$ , a vector space $\tau(\exp x)_{*}(e^{-\psi_{X}}(V))$ coincides with the tangent
space to $S$ at $\tau(\exp x)(p_{0})$ . Hence $\tau(\exp-x)(S)$ is a totally geodesic submanifold
tangent to $e^{-\varphi_{tX}}(V)$ . This proves the second part and completes the proof of the

proposition. $\square $

4. Totally geodesic hypersurfaces.

$\ln$ this section we shall prove the following theorem.

THEOREM 4.1. Let $(M, g)=G/H$ be a simply connected, irreducible naturally
reductive homogeneous space of dimension $n(n=3,4,5)$ . If $M$ admits a totally
geodesic hypersurface, then $(M, g)$ is either sphere or hyperbolic space.

From fact 1.1 and the following, we only consider the case that $(M, g)$ is not
symmetric and $n=3$ or 5.

FACT 4.2. ( $0$ . Kowalski and L. Vanhecke [5]) Let $(M, g)$ be a simply
connected, irreducible $na$turally reductive space of dimension four. Then $(M, g)$

is symmetric.

Let $G/H$ be a m-dimensional $(m\geq 2)$ naturally reductive space. Let $V$ be a
hyperplane of $\mathfrak{p}$ and $v\in \mathfrak{p}$ a unit vector normal to $V$ .

Throughout this section we assume that $v$ satisfies condition (T-G).

From (2.1) and (2.5), for each $x\in V$ there is a number $\lambda$ such that

$R_{o}(x, v)x=\lambda v$

LEMMA 4.3.
$R_{o}(x,\varphi_{X}^{l}(v))x=\lambda\varphi_{X}^{l}(v)$ $(l=0,1,2,\cdots)$

PROOF. By theorem 3.2, for all $t\in R$ we get

$\langle R_{0}(tx,e^{-\varphi_{tx}}(V))e^{-\varphi_{tx}}(tx),e^{-\varphi_{lX}}(v)\rangle=0$
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Therefore we obtain

$\langle R_{0}(tx,e^{-\varphi_{lt}}(V))tx,e^{-\varphi,}’(v)\rangle=0$

By continuity, we get

$\langle R_{0}(x,e^{-\varphi_{lX}}(v))x,e^{-\varphi_{1X}}(V)\rangle=0$

for all $t\in R$ . Hence we have

$R_{\{}(x,e^{-\varphi_{r}}’(v))x=\lambda(\iota)e^{-\varphi_{X}}’(v)$

$\lambda(t)=\langle R(x,e^{-\varphi_{lX}}(v))x,e^{-\varphi_{;x}}(v)\rangle$ .

On the other hand, the eigenvalues of $R(x,\cdot)x$ do not depend on $t$ . Then we obtain
$\lambda(t)\equiv\lambda(=\lambda(0))$ .

From this, the lemma is easily derived. $\square $

Now we shall prove theorem 4.1.

The case $dimM=3$ .
Let $\{e_{1},e_{2},e_{3}\}$ be an orthonormal basis of $\mathfrak{p}$ such that $V=\{e_{1},e_{2}\}$ . From (3.1),

there is a number $c$ such that the following relation is satisfied.

(4.1) $[e_{1},e_{2}]_{\mathfrak{p}}=ce_{3},$ $[e_{2},e_{3}]_{\mathfrak{p}}=ce_{1},$ $[e_{3},e_{1}]_{\mathfrak{p}}=ce_{2}$ .

By (2.5), we have
$R_{\{}(e_{1},e_{3})e_{1}=\&_{3},$ $R(e_{2},e_{3})e_{2}=\mu e_{3}$

for some $\lambda$ and $\mu$ . By fact 1.1, we suppose $c\neq 0$ . From lemma 4.3 and (4.1), we
get

$R(e_{1},e_{2})e_{1}=\lambda e_{2},$ $R(e_{2},e_{1})e_{2}=\mu e_{1}$ .

Hence we have $\lambda=\mu$ , and then for any $a,b\in R(a^{2}+b^{2}=1)$ , we obtain

$R_{0}(ae_{1}+be_{2},be_{1}-ae_{2})(ae_{1}+be_{2})=\lambda(be_{1}-ae_{2})$ .

Therefore, also by lemma 4.3, we have

(4.2) $R_{0}(ae_{1}+be_{2},e_{3})(ae_{1}+be_{2})=\&_{3}$ .

From (2.1) and (2.5), we get

$R_{\{}(e_{1},e_{2})e_{3}=0$ .

Therefore by (2.2), we obtain
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(4.3) $R_{0}(e_{1},e_{3})e_{2}=R_{0}(e_{2},e_{3})e_{1}$ .

By (4.3), we have

$R_{0}(ae_{1}+be_{2},e_{3})(ae_{1}+be_{2})=\lambda e_{3}+2abR_{0}(e_{1},e_{3})e_{2}$ .

Therefore it follows from (4.2) and (4.3) that

$R_{0}(e_{1},e_{3})e_{2}=R_{0}(e_{2},e_{3})e_{1}=0$ .

In this case $(M, g)$ has constant sectional curvature $\lambda$ .

The case $dimM=5$ .
Let $\{e_{1},\cdots,e_{5}\}$ be an orthonormal basis of $\mathfrak{p}$ .
Define linear mappings $A_{ij}(i\neq j,i,j=1,\cdots,4)$ associated $to\{e_{1},\cdots,e_{5}\}as$

follows:
$A_{ij}(e_{i})=e_{j},$ $A_{ij}(e_{j})=-e_{j},$ $A_{ij}(e_{k})=0(k\neq i,j)$ .

Let $f$ be the holonomy algebra, i.e. $\mathfrak{f}$ is a Lie algebra generated by
$ad([x,y]_{b})(x,y\in \mathfrak{p})$ .

The following two lemmas are due to Kowalski and Vanhecke (see [6]).

LEMMA 4.4. Let ($M$ , g) be a simply connected, irreducible naturally
reductive space of dimension five which is not symmetric. Then there exists an
orthonormal basis $\{e_{1},\cdots,e_{5}\}$ of $\mathfrak{p}$ such that the following are satisfied:

(4.4) $\left\{\begin{array}{llll}[e_{l},e_{2}]_{\mathfrak{p}} & =-\rho e_{5},[e_{l},e_{5}]_{\mathfrak{p}} & =\rho e_{2},[e_{2},e_{5}]_{\mathfrak{p}} & =-pe_{1},\\[e_{3},e_{4}]_{\mathfrak{p}} & =-\& 5[e_{3},e_{5}]_{\mathfrak{p}4}=\&,[e_{4},e_{5}]_{\mathfrak{p}} & & =-\lambda e_{3},\\ & [e_{l},e_{3}]_{\mathfrak{p}}=[e_{1},e_{4}]_{\mathfrak{p}}=[e_{2},e_{3}]_{\mathfrak{p}}=[e_{2},e_{4}]_{\mathfrak{p}} & & =0\end{array}\right\}$ ,

where $\rho$ and $\lambda$ are non-zero constants.

LEMMA 4.5. Under the same assumption as in the above lemma, there is an
orthonormal basis $\{e_{1},\cdots,e_{5}\}$ satisfying (4.4) such that the algebra $\mathfrak{f}$ has one of
the following four cases:
(1) $\mathfrak{f}=(\alpha 4_{12}+\beta A_{34})with\alpha\cdot\beta\neq 0$ . Moreover

$ad([e_{1},e_{2}]_{b})=uP$

$ad([e_{3},e_{4}]_{b})=vP,(P=\alpha 4_{12}+\beta 4_{34},u\cdot v\neq 0)$

and the others are zero.
(2) $\mathfrak{f}=(A_{12},A_{34})Moreover$

$ad([e_{1},e_{2}]_{b})=\gamma A_{12}-\rho\lambda A_{34}$
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$ad([e_{3},e_{4}]_{b})=-\rho\lambda A_{12}+\delta A_{34}(\gamma,\delta\in R, \gamma\delta\neq p^{2}\lambda^{2})$

and the others are zero.
(3) $\mathfrak{f}=(A_{34}-A_{I2},B,C)$( $in$ this case, $p=\lambda.$ )$Moreover$

$ad([e_{1},e_{2}]_{b})=-ad([e_{3},e_{4}]_{b})=\frac{\lambda^{2}}{3}(A_{12}-A_{34})$ ,

$ad([e_{1},e_{3}]_{b})=ad([e_{2},e_{4}]_{b})=\frac{\lambda^{2}}{3}B$,

$ad([e_{1},e_{4}]_{b})=-ad([e_{2},e_{3}]_{b})=\frac{\lambda^{2}}{3}C$

and the others are zero.
(4) $\mathfrak{f}=(A_{12},A_{34},B,C)$( $in$ this case, $p=\lambda.$ )$Moreover$

$ad([e_{1},e_{2}]_{b})=(4_{\in}-\lambda^{2})A_{12}+(2_{\in}-\lambda^{2})A_{34}$ ,

$ad([e_{3},e_{4}]_{b})=(2_{\in}-\lambda^{2})A_{12}+(4_{\in}-\lambda^{2})A_{34}$ ,

$ad([e_{1},e_{3}]_{b})=ad([e_{2},e_{4}]_{b})=\in B$,

$ad([e_{1},e_{4}]_{b})=-ad([e_{2},e_{3}]_{b})=\in C(\in\neq 0)$ ,

and the others are zero.

Here $B=A_{I3}+A_{24},$ $C=A_{14}+A_{32}$ .
In particular, we have $ad([e_{j},e_{5}]_{b})=0(i=1,2,3,4)$ in all cases.

Considering the action of $f$ we can assume that $e_{1}\in V$ and put

$v=ae_{2}+be_{3}+ce_{4}+de_{5}(a^{2}+b^{2}+c^{2}+d^{2}=1)$ .

We suppose that $a\cdot d\neq 0$ (If $a\cdot d=0$ , then take $e^{-\varphi_{lel}}(v)$ or $e^{-\varphi_{lx}}(v)$

$(x=be_{4}-ce_{3})$ instead of $v.$ )

From (4.4), we have
$[e_{1},v]_{p}=\rho(-ae_{5}+de_{2})$

$[e_{1},[e_{1},v]_{\theta}]_{\theta}=\rho^{2}(ae_{2}+de_{5})$

Then we get $R_{0}(e_{1},e_{2})e_{1}=\mu_{2}$ , $R_{0}(e_{1},e_{5})e_{1}=\mu e_{5}$ for some $\mu$ .
On the other hand, from lemma 4.5, we get

$R_{0}(e_{1},e_{5})e_{1}=\frac{\rho^{2}}{4}e_{5}$

$R_{0}(e_{1},e_{2})e_{I}=\frac{p^{2}}{4}e_{2}+[[e_{1},e_{2}]\mathfrak{y},e_{1}]$

Hence $[[e_{1},e_{2}]_{b},e|]=0$ .
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By lemma 4.5, the only possible cases are (2) and (4). In particular, in the
case (4) we can see by a straightforward computation that $(M, g)$ has constant
sectional curvature $\rho^{2}/4$ .

Finally we check the case (2).

By lemma 4.5, we have

$R_{0}(e_{1},e_{3})e_{1}=R_{0}(e_{1},e_{4})e_{1}=0$ .

This implies $b=c=0.(i.e.e_{3},e_{4}\in V.)$ .
But by lemma 4.5, we have

$R_{0}(e_{3}, v)e_{3}=\frac{\lambda^{2}d}{4}e_{5}$ $(v=ae_{2}+de_{5},a\cdot d\neq 0)$

This contradicts (2.5).

Therefore there is no tangent vector satisfying condition (T-G) in the case
(2). We have thus proved the theorem.

REMARK 4.7. It is known that $SL(2,R)$ with a special left invariant metric
admits a totally geodesic hypersurface, (cf. Tsukada [9]) but it is not naturally
reductive.

Also it is known that $SL(2,R)$ admits a naturally reductive (left invariant)

metric. (see Tricerri and Vanhecke [8], for details.)
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