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1 Introduction

Let (M, g) be a compact Hermitian surface with an orintation induced by the
complex structure of M, and P a principal bundle over M with structure group
SU(n). Then a canonical representation p of SU(n) induces a smooth complex
vector bundle E=Px, C". A necessary and sufficient condition for a SU(n)-
connection D on E to be an anti-self-dual connection is that the curvature of D is
a differential 2-form of type (1,1), and is orthogonal to the fundamental form ®
of (M, g). Hence, a holomorphic structure is induced on E and hence on End°E
(the subbundle of EndE consisting of endomorphisms with trace 0) by an anti-
self-dual connection D. Itoh ([4]) showed that the moduli space of anti-self-dual
connections over Kihler surfaces is a complex manifold. We will extend this

result over Kéhler surfaces to over Hermitian surfaces, which are not necessarily
Kiéhlerian.

Let K, be a canonical line bundle over M. We define H,=
H})(M;0(End°’E®K,,) as the space of holomorphic sections, where End°E is
endowed with the holomorphic structure induced from the irreducible anti-self-
dual connection D. We denote by .# the moduli space of irreducible anti-self-
dual connections (the quotient space of irreducible anti-self-dual connections by
the gauge transformation group SU(E)), and set .4, as follows: .4 =
{[D]e .4 H, = (0)}. Then we obtain the following

THEOREM 1. Let M be a compact Hermitian surface. If .M, is not empty,
then .M, is a complex manifold.

We can make H, vanish under a certain condition. On a Hermitian manifold
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(M, g), Scal(g) denotes the scalar curvature of the Hermitian connection with
respect to g. Then we have the following vanishing theorem.

PROPOSITION 1. Let (M, g) be a compact Hermitian surface with
fundamental form ® which satisfies dod=0. If IM Scal(g)dv =20, then fID =(0).

With this proposition, implies the following.

THEOREM 2. Let (M, g) be a compact Hermitian surface which satisfies the
same condition as proposition 1. If .# is not empty, then .4# is a complex
manifold.

2. Two moduli spaces

In this section we will recall the moduli spaces of anti-self-dual connections

and holomorphic semi-connections following [1], [4], and [5].
Let (M, g) be a compact oriented Hermitian surface with fundamental form

<I)=x/—12gapdz“/\d2ﬁ. We will denote by A”(resp. A”?) the space of real

valued smooth p-forms (resp. (p,q)-forms) on M. Then we have the decompo-
sition of the space of 2-forms,

A2@C=A DAY @ A2, (2.1)
The fundamental form ® decomposes A'! further:
AM = AL @ (A5, (2.2)
where .
Ag' ={fP: fe C~(M;O)}, (2.3)
and
(A§)* ={y =Xy, 5dz" A28 : T g°Py 5 = 0). 24
(Ag")* is the space of all primitive (1,1)-forms in (M, g). We put
AZ = (A2 + AL + A%2) A A2, 2.5)
and
A? = (AL N A2 (2.6)

Then AZ(resp./A?) is the self-dual part (resp. the anti-self-dual part) of A?
([1]). Then projection from A? onto A? is denoted by p, .
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Let P be a principal bundle over M with structure group SU(n). Then the
canonical representation p of SU(n) induces a smooth complex vector bundle

E=Px,C". We denote by h and @, the Hermitian structure and the n-form on E

defined by the SU(n)-structure of P, respectively. Let GL(E) denote the group of
C= -bundle automorphisms of E (inducing the identity transformations on the base
manifold M). Let SL(E) (resp. SU(E)) denote the subgroup of GL(E) consisting
of bundle automorphisms of E (resp. unitary automorphisms of (E, h)) with
determinant 1. They are called the gauge transformation groups of E. Let End°
(resp. End® (E, h)) the subbundle of the endomorphism bundle EndE consisting -
of endomorphisms (resp. skew-Hermitian endomorphisms) with trace 0. End® (E,
h) is the real subbundle of End°FE and we have

End°E = End°(E, h) ® V—1End°(E, h). 2.7)

For v =y, +\/:Il//1,l//0 ——\/:Ty/,, we denote the complex conjugate by ¥, which
is defined by ¥ =y, — /1y, .

An SU(n)-connection D in (E, h) is a connection in £ preserVing hand @,
i.e., a homomorphism D:A°(E)— A'(E) over C such that

D(fo)=odf + f.Do for f € A,0 € A2(E),
Dh =0,
Dw =0. 2.8)

The set of SU(n)-connections has an affine structure. Namely, it is given by
{D+v:ve A'(End®(E,h))} for a fixed SU(n)-connection D. We can extend an
SU(n)-connection D to a connection in End® (E, h). We call D irreducible when
the kernel of D: A°(End®(E,h)) — A'(End°(E,h)) is trivial. An SU(n)-connection
D is called anti-self-dual, if the curvature form R(D) belongs to A2(End°(E,h),
namely p,R(D)=0.Let Asd be the set of all anti-self-dual SU(n)-connections in
(E, h). The gauge transformation group SU(E) acts on the space of SU(n)-
connections and leaves Asd invariant. Thus we obtain the moduli space
Asd/SU(E) of anti-self-dual SU(n)-connection in (E, h).

A semi-connection D” in E is a linear map D”: A°(E) — A% (E) satisfying
D”(fo)= D"fo + f D”c for o € A°(E), f € C~(M;C). Moreover we assume that
D” preserves the n-form @, i.e.; D”@w=0. The set of semi-connections has an
(complex) affine space. Namely, it is given by {D”+v:ve A% (End°E)} for a
fixed semi-connection D”. We can extend D” to a semi-connection in End°E.
We call D” simple when the kernel of D”:A°(End°E) —» A*'(End°E) is trivial.
A semi-connection D” which satisfies D” o D” =0 defines a unique holomorphic
structure on E. We call such a semi-connection holomorphic. Let Hol be the set
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of all holomorphic semi-connections in E. The gauge transformation group SL(E)
acts on the space of semi-connections and leaves Hol invariant. Thus we obtain

the moduli space Hol/SL(E) of holomorphic semi-connections in E.

Let D be an SU(n)-connection in (E, h). Set D=D’+D” where
D’ : A°(E) > A (E). Then D” is a semi-connection in E. This natural map
D~ D” is a bijective map of the set of SU(n)-connections onto the set of semi-
connections. If D is anti-self-dual, D” is holomorphic. In fact the (0,2)-
component of R(D)= D”oD”. Thus we obtain a natural map f:Asd/SU(E)
— Hol/SL(E). It is known that f is an injective map (cf. [S, p.243]). Moreover
we have

LEMMA 1. If an anti-self-dual connection D is irreducible, then D" is
simple.

Proof) Suppose ¢ € A°(End°E) be a holomorphic section of End°E. Then
D”¢ =0. By the vanishing theorem of the holomorphic sections ([5]), we obtain
D¢ =0. By the assumption that D is an irreducible connection, we conclude
0=0.

In order to consider infinitesimal deformations, we introduce two complexes
(2.9),(2.10), and their cohomology groups. For D e Asd set

0 — A%(End®(E, h))2> A'(End®(E, h))%> A2(End°® (E, h)) — 0 (2.9)

where D, = p, o D. Their cohomology groups are denoted by H}(p=0,1,2). For
D” € Hol , we consider the Dolbeault complex

0 — A% (End°E)2 A% (End°E)2> A%2 (End°E) — 0 (2.10)

and their cohomology groups are denoted by H}?(p=0,1,2).. We set
A, ={[D] e Asd/SU(E): D is irreducible and H}, vanishes} (2.11)

Then it is known that .4 is a smooth manifold, and its tangent space at [D] is
naturally isomorphic to H}. We set

Ay ={[D”]1€Hol/SU(E): D” is simple and H}? vanishes} (2.12)

Similarly it is known that .#, is a complex manifold and its tangent space at [D”]
is naturally isomorphic to HJ!.

Now we consider the following natural homomorphism between two
complexes [(2.9), for an irreducible anti-self-dual SU(n)-connection D and
its corresponding holomorphic semi-connection D:
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0 — A°End°(E,h)) > A'End°(E,h)) 2 A2(End°(E,h)) — 0
Ly Lh Lh,
0 — A% (End°E) 25 A% (End°E) 2 A%2End’E) —> 0

(2.13)

where
h, : inclusion
h :a— o’
h, o — a?

and o°” represents the (0, p)-component of . Itoh showed that h, induces an
isomorphism of H} onto HY’(p = 0,1,2) when (M, g) is a Kéhler surface. We

can extend this result to the case of a Hermitian surface. Its proof will be given
in section 3. Therefore we have f(.#4,)c #, for the natural map f. Moreover it

is known that f is a differentiable map. Since we can regard the differential f,
of fat [D] as h,, fis a diffeomorphisms of .4 into .#,. Thus it has been shown
that .4 is a complex manifold. We note that HJ? is isomorphic to
H,=H°(M,0(End°E®K,,)) by the Serre duality. Hence our has

been proved.

3. Isomorphisms between cohomology groups H) and HJ?

In this section, we prove that for an irreducible anti-self-dual connection the
cohomology groups H} are isomorphic to Hy?(p=0,1,2) in the diagram (2.13).

We first begin with the preparation for the proof. On a Hermitian surface
(M, g), we define differential 1-forms 6 =—d*<1>11 =0oJ, and (1,0)-form
Q= n+«/—_19. Here J is the complex structure of (M, g). Then we obtain
following formulas by direct calculation.

LEMMA 2. For the operators acting on AP(End°E), the following formulas
hold:

D* =—J——I(D"A—AD”)+-é—(p-2)i(¢)—-J;——1€(¢)A G.1)
D" =+-1 (D’A——AD’)+%(P"2)1'(‘P)—%€(‘P)A (3.2)

It is known that there is a unique Hermitian metric up to the homothetry such that
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d*n =0 in the conformal class of the given Hermitian metric ([3]). Moreover the
anti-self-duality is preserved by a conformal change of the metric. Therefore we

may assume that d*n=0 on the given Hermitian surface. Define a mapping

7 : A°(End°E) —» A°(End°E) by ¥ = —~—1AD’D”. Then we have
LEMMA 3. On A°(End°E)
1 .
¢ = E(AD +i(n)D),
where A, = D*D.
PROOF) In fact
AD — D*D=(D;* +D”*)(D'+ D”)

=D"*D’+D"*D".

Using equations [(3.1) and [(3.2), we see that

DI*D[+ D”*D” — \/_—_I_AD”D' —%l(a)D’— '\/:TAD'D”—%I'((/))D”

=~1A(D’D” - D"D’) - i(n)D.
Since D is an anti-self-dual connection, for y € A°(End°E), we have
A(D’D” + D”D’)y = AR(D)(y)

=A(R(D)ey —y o R(D))

=(AR(D))y -y (AR(D))

=0.
It follows that

A, = -2N-1AD’D” - i(n)D.

Then we obtain (3.3).

3.3)

(34)

3.5)

(3.6)

3.7

From we see that 7(A°(End°E, h)) c A°(End°E,h)). Let 7 be the

formal adjoint operator of . For ¢,y € A°(End°(E,h)),

(4.9 =(3 808+ 3iMDOY )
HOS U
_(¢, > Apy + > D e(n)y/)M.

Consequently we have

(3.8)
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7 = %(AD + D*e(n)). (3.9)

By the direct calculation on A°(End°(E,h)), we have
D*e(n) = e(d*n) ~i(mD
=-i(n)D. (3.10)
Consequently, we obtain

* =%(AD—i(n)D). (3.11)

LEMMA 4. On A°(End°(E,h)), we have
ker? = ker?™* = kerD (3.12)

Proof) It is clear that ker D cker ¢, and ker D cker ¢* by (3.3), [(B.11).
Conversely suppose that ¢ =0, for ¢ € A°(End®(E,k)). Then

0=(%0.0),
(1 1.
- (5A0¢+51(n>0¢,¢)M

= 5(D9.D9),, +5 (MDY ), (3.13)

Using [(3.10), we see that

(i(MD¢,9),, = (¢, D*e(M)9),,
=—(¢,i(MD¢),,
=—=(i(MDe,9),- (3.14)
Then
(i(mD¢,9), =0, (3.15)

From it follows that D@¢=0. Noting that Z(A°(End°(E,h)))
< A°(End°(E,h)), we obtain

ker? < kerD (3.16)
Owing to [(3.11)], we obtain ker?* c kerD similarly.

THEOREM 3. Let D be an irreducible anti-self-dual SU(n)-connection. Then
the homomorphisms of the cohomology groups h,:Hp — H)?(p=0,1,2) induced
from the diagram (2.13) are isomorphisms.
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PROOF)

hy

By Lemma 1, we have H® — H®° =0. Therefore it is trivial that h, is
isomorphic.

h,:

First we show the injectivity of h,. Suppose [a]e H' and A ([])=0. That is
o€ A'(End°(E,h)) satisfies D,a =0 and there exists ¢ € A°(End°E) such that
h(a)=a’ =D"¢. Since D,a=0,A(D’D’'¢+D'D"¢)=0. We set ¢=
¢, +V—1¢, and ¢ = ¢,/—1¢, for ¢,,¢, € A°(End°(E, h)). Then

0=A(D"D’'¢y—-1D"D’'¢, + D'D"§, +N-1D'D"§,)

= A(D"D’ ¢, + D’D”¢,) —N-1A(D”"D’¢, - D’'D"$,) 3.17)
Since D is an anti-self-dual connection,
A(D”D’ + D”D’)¢, = (AR(D))¢, =0, | (3.18)
and
—=1A(D’D” - D"D")$, =24, . (3.19)

Therefore we have 279, =0. Together with Lemma 4, the irreducibility of D
implies ¢, =0. Consequently
a=a"+a =D'¢,+D"¢, = D¢, (3.20)
and then [@]=0 in H},. It is shown that A, is injective.
Next, in order to prove the surjectivity of h,, given 8 € A® (End°E) satisfying
D”B =0, we will find [ax] € H}, such that A ([a])=[B] in H}:. To do so, we put
a=p+D'y+P+D"ye A (End°(E,h)). The equation D, =0 means

D”a® =D”(B+D"y)=0 (3.21)
and
AD”a" + D’'a® )= A(D"B+D"D’'§ + D'B+ D’'D”"y)
= A(D”B + D'B+2-1AD'D"y, =0, (3.22)
where Yy =y, + «f;_ly/,. Therefore we have
2%y, = A(D”B + D’'B) (3.23)

By and the irreducibility of D, the kernel of 7 is trivial. Then we can
find y, which satisfies the equation (3.23). Taking W, suitably, we obtain
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o € A'(End°E, h)) satisfying A ([a])=[S].

1_12_:

It is clear that A, is surjective. So we show the injectivity. Let ¥ be an element
of A2(End®(E,h)). We decompose y as follows: ¢y =w20 +(1/2)® A ¢+ y?? for
¢ € A°(End°(E,h)). Suppose h,([y])=0. That is, there exists a € A* (End°E,)
such that h,(y)=y°?=D"B. We will find aeA'(End°(E,h)) such that
w=D,a. To do so, we put a=B+D'7+p+D"y for some ye A°(End°E).
Then we have

v=D,«

=DB+ D’7)+%d) AA(D"(B + D'7)+ DB+ D"y)} + D"(B+ D"y)

(3.24)
We set y =y, ++/-1v, for ¥,,7, € A°(End°E, h)). Then
¢=A(D"B+D"D’y+D’'B+D'D"y)
=A(D”"B+D’'B)+2AD’D"y,. (3.25)
Therefore we have
29y, =N(D"B+D'B)-¢. (3.26)

The solution y, of (3.26) exists since D is irreducible and ker * = {0}. We have
found @ satisfying y =D, cx.

4. Vanishing of H,

In this section, we will prove Proposition 1 in the introduction. First we recall
the results obtained by Gauduchon in [2]. Let (M, g) be an m-dimensional
compact Hermitian manifold with do®™' =0. Let L be a holomorphic line
bundle over (M, g), and & be its Hermitian structure. We denote by k the mean
curvature of (L, k). We use the notation “mean curvature” following Kobayashi
[5,p.51] and it is called the Ricci-scalar in Gauduchon [2]. Then the following
holds ([2]):

1. JM kdv is independent of the Hermitian structure A.

2. There exists a unique Hermitian structure A, on L (up to the homothety)
such that its mean curvature k, is constant.

In particular, applying the above results to the canonical line bundle X,,, we
obtain the Hermitian structure with constant mean curvature k,. We note that
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kOVol(M,g)=—J.M Scal(g)dv, where Scal(g) denotes the scalar curvature of the

Hermitian connection with respect to g.
Now we return to the proof of Proposition 1. The C>-Hermitian vector

bundle (E, h) has a holomorphic structure defined by the anti-self-dual SU(n)-
connection D. D is the Hermitian connection of (E, h) with respect to this
holomorphic structure and it has mean curvature O and so for End°E. Together"
with the former, it implies that the tensor product F=End’E® K,, admits a
Hermitian structure with mean curvature k,/,. If k, <0, by the vanishing
theorem of the holomorphic sections ([5, pp. 49-53]), End°E® K,, admits no
nonzero holomorphic sections. Further, if k, =0, then every holomorphic section
is parallel. Let f be a nonzero holomorphic section section of End°E® K,,. For
each point x on M, consider the eigenspace of the homomorphism f,. These
eigenspaces define a parallel subbundle of E. This contracts that D is an
irreducible connection. Consequently, even if k, =0,End°E ® K,, has no nonzero

holomorphic sections.

REMARK: Let (M, g) be a compact anti-self-dual Hemlitian surface (i.e., its
Weyl conformal curvature tensor W belongs to A?) with dd® =0. Then we have

J.M Scal(g)dv =20 and the equality holds if and only if (M, g) is Kidhlerian (cf.
Boyer [6]).
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