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ALMOST KAHLER STRUCTURES ON THE
RIEMANNIAN PRODUCT OF A 3-DIMENSIONAL
HYPERBOLIC SPACE AND A REAL LINE

By
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1. Introduction.

An almost Hermitian manifold M =(M,J,g) is called an almost Kihler
manifold if the K#hler form is closed (or equivalently € ¢ V. JY,Z =0 for
X,Y,ZeX(M), where € and X(M) denotes the cyclic sum and the Lie algebra
of all differentiable vector fields on M respectively). A Kihler manifold, which is
defined by VJ =0, is necessarily an almost Kidhler manifold. A non-Kahler
almost Kidhler manifold is called a strictly almost Kéhler manifold. It is well-
known that an almost Kéhler manifold with integrable almost complex structure is
a Kidhler manifold. Concerning the integrability of almost Kédhler manifolds, the
following conjecture by S. I. Goldberg is known ([1]):

CONJECTURE. A compact almost Kdhler Einstein. manifold is a Kdhler
manifold.

The second author has proved that the above conjecture is true for the case
where the scalar curvature is nonnegative ([4]). However, the above conjecture
is still open in the case where the scalar curvature is negative. Recently, the
authors proved that a 2n(=4)-dimensional hyperbolic space H?" cannot admits
(compatible) almost Kéhler structure ([3]).

In the present paper, we consider about (compatible) almost Kéhler
structures on the Riemannian product H’> X R of a 3-dimensional hyperbolic space
H’ and a real line R. We construct an example of strictly almost Kihler
structure (J,g) on the Riemannian product H’xR and determine the
automorphism group of the almost Kihler manifold (H’xR,J,g). To our
knowledge, this is the first example of strictly almost Kdhler symmetric space.
Moreover, we prove that the Riemannian product H’ xR provided with a
(compatible) almost Kihler structure (J,g) cannot be a universal (almost
Hermitian) covering of any compact almost Kéhler manifold (Theorem 2 in
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section 3).

2. Preliminaries.

Let H’be a 3-dimensional hyperbolic space of constant sectional curvature —1.
Then, the Riemannian product H?® x Rcan be regarded as a Riemanniam manifold
(R!,g) equipped with the Riemannian metric g defined by

3
g=;172:,dxi®dxi+dx4®dx4,
1 =

where R} ={(x,,x,,x;,x,)€ R*|x, >0}.
We put X, =x,(d/dx;),i= 1, 2, 3, and X,=J/ox,. Then {X,X,,X,,X,)}
forms a global orthonormal frame field on H> x R . Direct calculation implies

(2.1) (X, X, ]=-[X,,X,]1= X,

for i =2, 3, and are otherwise zero. We set
4
VX,»Xj = Erijkxk’

for1<i,j<4, where V denotes the Levi-Civita connection on H’> xR . Then, by

(2.T), we have
(2.2) I =-I;,,=1

for i = 2, 3, and are otherwise zero.
Let (J,g) be an almost Hermitian structure on H’> x R. We put

4
(2.3) JX,=2J,X,,
j=1

for 1<i<4.Then we may easily observe that the 4x4 matrix (J;) is a skew-
symmetric orthogonal matrix, i.e. the equalities

4
z‘]ik‘]jk = 5;’/

J,=—J

if Ji*

holds for 1<1i,j<4,, and, furthermore, that the matrix (Jij) is of the form
0 ‘Il2 ‘,13 JI4

J|4 _J|3

_‘114 J13 —le 0

or
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0 J, Ji Jyu
_le 0 —‘114 113
"-113 J14 0 -

(ID) 7
_J|4 "J13 le 0

12

with J, +J5 +J., =1.

3. An example of strictly almost Kihler structure on H’xR.

The aim of this section is to construct an example of a strictly almost Kdhler
structure on the Riemannian product (H ’% R, g) and to show Theorem 2.

We assume that (J,g) is an almost Kihler structure on the Riemannian
product (H’ xR, g). Then, the almost Kahler condition €, ((Vx.J)X;. X,)=0
and yields the following system of first order partial differential equations:

X\ Jys = XpJ i3+ X3J), =203 =0,
X\ Ty = Xy 1y + Xy J\y =I5 =0,
X\ J3y = X3J\y + X J i3 = 5y =0,
X,y — X J, + X, J,, =0.

3.1)

We may regard the triple (J,,J;;,J,,) as a unit vector in the 3-dimensional
Euclidean space R’. First of all, we may observe that the unit vector
(J12, 4135, J,4) has the following property.

PROPOSITION 1. The vector (J,,J;,J,,) varies with the variable x, on an
open subdt of H xR .

PROOF. We assume that the vector (J,,,J,;,J,,) is independent on the variable
x,. Then, the system of partial differential equations (3.1) reduces to the
following:

X\ Jpy = XpJ 3+ X301, =273 =0,
X\ Jos = XoJ1u = 5 =0,

XS —X3Jy = Iy, =0,

Xy J34 — X35 =0.

(3.2)

Now, we suppose that the matrix (J;) is of the form (I). Then, by [(2.1),
and [(3.2)], we have
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A, =2X,J,,+3J, =0,
(3.3) Ay —2X,J,+3J, =0,
A, =2XJ,, +4J, =0.

From [(3.3), we have

J A + I A+ T AT, +3+J|24 =0,
and hence

g{(xij,2 ) +(X,J3)? + (X)) =3+,
since J, +J} +J}, =1, and we conclude that
(3.4) Z X, J ) =43+ JY).
Next, from the equality above, we have

Z( X.J, )X XJ, =4J,XJ,,

i.j.k=1

for each X,. Thus, by a direct calculation, we obtain

4
(35) 2 (XXJ,)

1i,j k=1

- 4;()(,1,4 )2 +4J, 21‘, X,X,J,, - IZk(X,ij )X, X, X,
sty ] o

= 4;()(11,4 )2 +4J|4(AJ|4 + 2X1J|4)

{ 2 X TOX XX, 2Z(x L)X X,

+2 Z(X, JOX X, 22( XJ,)}

22 j

= 421:(X,J,4)2 +16J,,(X,J,, - J,,)—{32J,,X,J,,
~32(3+J%)— 4Z(x 5 —122(X,0,)°}
=82(X,J,,)} +12 2.(X,J,,)* —16J,,X,J,, +16J% +96.

From and (3.5), we find that zi'j'k(X,ij )* and 2 (X, X,J,)? are both

1

bounded. By applying the similar argument in [3] along xl-curve, we can deduce
a contradiction. More precisely, let 7, be any integral curve of X,. Then, we
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obtain

(3.6) lim X,J, =0 (1<i,j<4).

Xy —>o0

along the geodesic ¥, (see [3]). We denote by @,(a =2,3) isometries of H’ such
that (¢,), X, is orthogonal to X, and, (9,), X, and (¢,), X, are orthogonal to each
other along y,. Let @, (x,,x,,x;,x,)=(9,(x,,x,,%,;),x,)(a=2,3) be the naturally
induced isometries of H’XxR, and we define almost complex structures
J(@=2,3)on H> xRbyJ,,, =(¢,);' cJo(¢,),. Because J is independent on x,,
so are J,,. We may easily check that (J,,,g) are almost Kihler structures on
H?® xR . Thus, by similar argument as above, we obtain

3.7) lim X,J,,; =0 (1<i,j<4,a=2,3).

X —yoo

along the geodesic 7y,. Moreover, by semi-Kéhler condition X, V,J,. =0

(j=1,2,3,4), we have
4
TA(V,J)* + (Vd ) +(Vd,))

= DX J1)? + (X +(X )P+ 14 T2,

+2(J 3 X0 3 + I X0 J 4 + I3, X5 J ), + 03, X301,)

=44+2J% = 2(J 5 Xy d s + T Xy Ty + T, X0 sy + J,, X3 5y)
=2-2(J,,V,dps + I Vodoy + 1,V 305 + 1,V T5,)
=24+2(J,VJ,+J,,(V I, +V, )+ I,V I, +J,(V ], +V,J,))

=2,
and hence, we have

(3.8) 2 (V)" =8,

ij.k=1

where V.J, =g((VyJ)X;,X,). From 3.6}, and [(3.8), we can derive a

contradiction (see [3]).
In the case where (J;;) is of the form (II), we also arrive at a contradiction.

Now, we write down an example of strictly almost Kéhler structure (J,g) on
H’xR.

EXAMPLE. We define an almost complex structure J by
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0 cosx, sinx, 0
—Ccos x, 0 0 —sinx,
=]
—sinx, 0 0 COS X,
0 sinx, —cosx, 0

with respect to the orthonormal frame field {X,}_,,;, defined in the preceding
section. Then, it is easy to verify that (J,g) is a strictly almost Kihler structure
on H*xR.

In the rest of this section, we shall prove the following Theorem 2. First of
all, we recall an integral formula on a 4-dimensional compact almost Kihler
manifold. Let M =(M,J,g)be a 4-dimensional compact almost Kihler manifold.
Then, we see that the square of the first Chern class ¢, (M) is given by the
following formula (cf. [2], [5]):

L Ay 205

+20|p™ | -5 (7 + DI VI P +(5.D))dM.

(3.9) c, (M)’ =

where E*,’E*,f,v,dﬁ denote the Ricci *-tensor, *-scalar curvature, scalar
curvature, Levi-Civita connection on M and the volume element of M
respectively, and p™®™ (resp. p~*") the symmetric (resp. skew-symmetric) part
of p*,and (p,D)=2.3,, . Pu(V,J;)V,J;. Here we put V,J, =g((Vg )X, X))
and p,, =p(X,,X,) for a local orthonormal frame field {X.X,,.X,,X,} on M.

THEOREM 2. Let (g, J) be a (compatible) almost Kdhler structure on the
Riemannian product H’ xR . Then, the almost Kdhler manifold (H>%R,J,g)
cannot be a universal (almost Hermitian) covering of any compact almost Kdhler
manifold.

PROOF. Let (g,J) be a (compatible) almost Kéhler structure on the

Riemannian product_Ifo. We assume that there exists a compact almost
Kihler manifold (M, J,g) whose universal (almost Hermitian) covering is the
almost Kihler manifold (H* xR, J,g). We denote by p the covering map from
H’ xR onto M . For any point p € M, we may choose a local orthonormal frame
field {X,,X,.X,,X,} near p in such a way that p.(X,)=X,(i=1,2,3,4). We set
JX, =24,7J.X,(i=1,2,3,4). for the proof, without loss of essentially, it is

[/
sufficient to consider the case where (J;) (and hence (7,j)) is of the form (I).

We may easily observe that Zijz,(j(_4.7,j )? gives rise to a differentiable function
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on M. Since M is a locally product Riemannian manifold of 3-dimensional
hyperbolic space and a real line, it follows that the Euler class x(M) of M

vanishes. Further, since M is conformally flat, it follows that the first Pontrjagin
class p;(M) of M also vanishes. Thus, by the Wu’s theorem ([6]), we have

c (M) =0. On one hand, by direct calculation, from (3.9), we see that

(M) = I (IVJ 2 - ZE(VaJ,,) )

i,j=1a=1

4
w 2 (V)

Thus, it must follows that V4ju =0(1<i,j<4) everywhere on M, and hence,
V,J; =X,J;=0(1<1i,j<4) everywhere on M. But this contradicts Proposition 1,
which completes the proof of theorem.

34. Automorphisms of the example of almost Kihler manifold
(H xR, J,g).

A differentiable transformation ¢ on an almost hermitian manifold (M, J,g)
is called an automorphism if ¢ is a isometry and pseudo-holomorphic
transformation, that is, ¢ satisfies

(P*g=gand(p*o_]=]o(p*,

where @- denotes the. differential map of ¢ and ¢" its dual map. We denote by
Aut, (J,g) the set of all automorphisms on (M, J,g). It is obvious that the set
Aut, (J,g) is a group under the composition of maps, and we call it the
automorphism group on (M,J,g). In this section, we shall determine the
automorphism group Aut,. .(J,g) of the example of strictly almost Kihler

manifold (H’ X R,J,g) constructed in the preceding section.

LetpeAut,, (J.g). We set ¢-(X,)= D', 9,X, for i=12,3,4. Then, we
see that 4 x4 matrix (@;) is of the following form

O P @3 O
0

4.1) ‘52: ‘(gz ﬁii o | With @), € SO3),
0

0 0 0
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Oy @ 03 O
© @ k .

(4.2) o o z_j: o | With=(@,)1zs € SOG3),
0 0 0 -1

since ¢ is an orientation-preserving isometry. We notice that @,;(1<i,j<3) are

independent on the variable x,. Since ¢ satisfies @' ocJo@.=J, we have, in
particular,

(@' o Jo@u)X, = JX,.

We now suppose that the matrix (p;) is of the form [(4.1). Then, by a direct
calculation, we have

(¢ o Jopu)X,

= (@192 — 01202015 + (91,02 — 030,013} X,
H (9103 = 01,031, (90,053 — 0,,03,)] 51 X,
HPd, =005 X,

= (@35 cos(x, +¢,) — @y, sin(x, +¢,)) X,

+(=@y; cos(x, +c,) +@,, sin(x, +¢,)) X,

+(@,; cos(x, +¢,)— @, sin(x, + ¢, )X,

for some constant ¢, € R, and hence

O3 —Q3, Py cos(x, +¢,) Cos x,
4.3) -0, @, —@, || sin(x, +c,) |=| sinx, |
D3 27 ? 0 0

Similarly, we see that the condition ((p,,‘l oJog@, )X, =JX,,(i=2,3,4) implies fhe
same equality [(4.3). From [(4.3),, it follows that

1 0 0 0
0 cosc, sin¢c, O
0 -sinc, cosc, O
0 0 0 1

Thus, the automorphism ¢ =(@,,9,,9,,9,) satisfies the following system system
of first order partial differential equations:

Ip _ 1 o, _ dp, _ dp,

et (U S vl o
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I, _ 1 20, 1 . Ip, _do, _
&xz = X, ®,coscy, (2)(,‘3 —-—;'l"(pl sinc,, E_I——E'—O,
2, _1 20, _ 1 9P, _ 9,

>, x @, sinc,, gx?—x—l(pl cosc,, 2 _E_O’
a(p4 =1 a()04 — a(p4 — c9(p4 =0

x, x o, o

Solving this system of differential equations, we find that the automorphism ¢ can
be express as the form

O(x,,x,,%5,x,) = (e1x;, €1 ((cosc, )x, —(sinc, )x;) +c,,
e‘!((sinc,)x, +(cosc,)x;)+¢5,x, +¢,)
for c,;eRi=1,2,3,4.
Next, we suppose that the matrix (¢;) is of the form [(4.2). Then, in the same

way, we have

—Q3; Q3  —@y \[cos(—x, +c,) cos x,
P ‘ Py Py sin(—x, +¢,) |=| sinx, |,
P P Py 0 0
which implies
1 0 0 0

0 cosc sinc¢ 0
(¢U )= 4 4

0 sinc, -cosc, O [
0 0 0 -1

and hence, we have
O(x,,x,,%5,%,) = (e'x,,€' ((cosc, )x, +(sinc,)x;) +c,,

€“1((sinc, )x, — (€08, )X3) + €3y =X, +C,)

for c,;eR,i=1,2,3,4.
We can summarize the above arguments as follows.

PROPOSITION 3. The automorphism group AutH3xR(J,g) of the almost Kdhler
manifold (H?xR,J,g) is isomorphic to a solvable subgroup of affine
transformation group GL(4,R)x R* (embedded in GL(5,R)), which consists of
the elements
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el 0 0 0 0
0 e‘'cosc, —e‘'sinc, O C,
(4.4) 0 e‘isinc, e‘tcosc, O Cy
0 0 0 1 C,
0 0 0 0 1
and
el 0 0 0 0
0 e‘'cosc, etsinc, O C,
4.5) 0 e“'sinc, -—e‘'cosc, O C b
0 0 0 -1 Cy
0 0 0 0 1

where ¢, e R,i=1,2,3,4..

From Proposition 3, we may easily see that the group Aut,, .(J,g) acts
transitively on H®xR and that the identity component Aut H,xR(J,g)O of
Aut_, (J,g) is a subgroup consists of the elements of the form and acts
simply transitively on H’> x R. Taking account of Theorem 2, we see that there
does not exist a discrete uniform subgroup of Aut , (J,g), (i.e. discrete
subgroup I' of Aut, . _(J,g), such that the orbit space I"\ H’ x R is compact).

REMARK 1. We may easily find that the system of differential equations
inJ =0(i=1,2,3,4) has no solution, and thus the Riemannian product (H> xR, g)
can not admit a (compatible) Kahler structure.

REMARK 2. Let y be an isometry on (H’xR,g) and (J,g) be an almost
Kihler structure constructed in the preceding section. Then, almost Hermitian
structure (y(J), g) is also an almost Kéhler structure on (H? % R,g), where y(J)
is defined by w;'oJoy,. The automorphism group Aut , (y(J))g) is
determined by the automorphism group Aut_ . .(J,g). Indeed, the map
Aut,, (J,8)3¢H Yy iopoy€Aut, (y(J)g) isanisomorphism.
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