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GEOMETRICAL THEORY OF GRAVITATIONAL AND
ELECTROMAGNETIC
FIELDS IN HIGHER ORDER LAGRANGE SPACES

By

Radu MiroN and Gheorghe ATANASIU

Abstract. In this paper we shall give an introduction to the
geometry of higher order Lagrange spaces. The gravitational field,
Einstein equations, as well as the electromagnetic fields and
generalized Maxwell equations, are pointed out, too.

Introduction.

Recently, we studied the higher order Lagrange spaces L*" =(M,L), [10-
14], founded on the notions of k-osculator bundle (Osc*M,7, M), regular
Lagrangian L:Osc*M — R, Euler-Lagrange equations ‘IjE,'(L) = 0 and the
geometrical model (Osc"M, G,F), where G is the Sasaki lift of the fundamental
tensor field g, of the space L" and F is the natural F(3,1) structure on

Osc‘M . .

But, g; can be considered as the gravitational potentials. Therefore, the
Einstein equations of G with respect to the canonical metrical connection of
L*" give us the Einstein equations of the higher order Lagrange space L*".
The law of conservation is established, too.

We define the electromagnetic potentials as being the covariant components
of the Liouville d-vector fields and we obtain the electromagnetic tensors given
by [(6.2). The generalized Maxwell equations are established, too.

1. Preliminaries. The k-osculator bundle.

In this section, we need the results established in the previous papers [10—
14].

Let M be a real n-dimensional C~-manifold and (Osc*M,rm, M) its k-
osculator bundle, where k is a natural number. The canonical local coordinates
on the total space E=0sc‘M are denoted by (x/,y",...,y®"). A coordinate
transformation (x‘,y®Mi ... y®iy — (xf, yMi ... $®)7) on F is given by
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~i ~i 1

X=x(x,....x"), rank||§x—j—|l=n,
i =%—y"”,
25 =0-g’x_(:)iy(l)j +2%y(2",
(1.1)
k5 = %wu _,_2%),(2)1 +
i

If N is a nonlinear connection on E and J is the k-tangent structure [10],
then N, =N,N, =J(N,),--~,N,,,=J(N,_,) are k distributions geometrically
defined on E, everyone of local dimension n. Let us consider the distribution V,

on E locally generated by the vector fields { } Consequently, the tangent

d
ay(k)i
space to E at a point u € E is given by the direct sum of the vector spaces:

(12) T(E)y=N,(w)®N,u)®---®N,_ (0)®V,(u),VuekE.

An adapted basis to the direct decomposition (1.2) is given by

6 o 1) Jd .
(1.3) {g’ S 2T Sy gy }’ (i=1-n),

[ d , _0d , _d
(1.4) W:g—N“)iw—-.._ (k)iW
where
6 d , d , J
6y(l)i = KM = Ny ay(Z)r _"'N(k—l)iay_(k),"
(1.4) TP
6 0 , d
k=1)i — 5 (k=D)i = Ny, kyr *
dy dy oy
The systems of functions N/, ,,---, N, are called the coefficients of the

nonlinear connection N.
The dual basis of the basis can be given in the form

(1.5) {dx', &M -, 8y, (i=1-n),
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where

(hi _ (i i
SN = dy "+ M, dx

2)i _ 2)i i Hr i r
(1.6) <5y( = dy¥ + M, dy ) + M, dx",

.......................................

(k)i _ (k)i i (k=1) i
Oy =y M, Ay 4+ M, dx]

The systems of functions M,,...,

M{k)j are called the dual coefficients of the
nonlinear connection N. There are some relations between the coefficients and
the dual coefficients of N, [10].

Let 'MW, ..., I'® be the Liouville vector fields on E. These vector fields are
linearly independent on E and have the property I'*™)=gr®), |
r=jyro).

In the adapted basis [(1.3)], the vectorial field I'®’ can be put in the form
(1.7) r =Z(l)i§y%)7+2z(2)i Sy?;)" +...+kZ(k)ix(?6‘lr.

The coefficients zV*,---,z* from are given by

(i _ (i

T =Yy,
(2)i _ (2)i i (hHr
227 =2y M),y

1.7y

........................................

kz'' = ky(k)[ +(k— 1)M(i|)ry(k-l)r et M(ik-my(l)r-

‘With respect to (1.1) we have Z(® =g}%z‘“’1,(a=1,---,k). Consequently,

D ... 7z are d-vector fields. They will be called the Liouville d-vector fields.

*)
A k-spray on E is a vector field S € X(E) which has the property JS=T1. It
can be written in the form

(1.8) S=ymi%+”'+ky(k)iﬁgﬁ_
—(k+1)G (x,y"%---,y"");m-
With respect to (1.1) its coefficients G’ transform as follows:
- i C Foki
(1.8) (k+1)G' =(k+l)%j—.G’ -yt ngj +

(k)i (k)i
(2)j zy_l+...+ky(k)f 85) l

+2y oy Sy D

).
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A k-spray S, with the coefficients G', is equivalent to the k-paths of the
equations

1 dk+lxi
(k+1)! dt*!

dx

1
(1.9) dt’ k!

i d"x
G (x, d7)=0

Clearly, (1.9) give us the integral curves of the vector field S.
We repeat an important result, proved in the paper [10]:

THEOREM 1.1. If S is a k-spray, having the coefficients G', then the

systems of functions M/ M;,,; from the following equalities:

s
M,; = oy ®7”
i 1 i i r
(1.10) M(2)j =5(SM““. +M(,),M(,,j),

..................................................

i 1 i i
My, = ']:(SM(k—l)j +M

r
M)

are the dual coefficients of a nonlinear connection determined only by the k-
spray S.

2. Higher order Lagrange spaces.
We consider the manifold:

E={(x,y",---,y®) € Osc*M | rank | y" | = 1}

and we give the following:

DEFINITION 2.1. A differentiable Lagrangian of order k on a C”-manifold
M is a function L:E — R, differentiable on E and continuous in the points of E
where y'"" are nuls.

It follows that
1 d*L
(2.1) gi,-(x,y(')s--"y(k))z‘2’3y(k>i3y<ku‘

is a symmetric d-tensor field of type (0, 2) on E.
We say that the differentiable Lagrangian L is a regular if

(2.2) rank || g; (x,y",...,y*)|=n, on E.
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DEFINITION 2.2. We call a Lagrange space of order k a pair L*" =(M, L),
where L is a regular Lagrangian of order k and the d-tensor field g, from
has a constant signature on E.

In the case k = 1 this definition reduces to that of the Lagrange space
L'"=(M,L), [15].

The function L of the space L*" is called the fundamental function and the
d-tensor field g; from [2.1) the fundamental (or metric) tensor field of L*".

We denote by g¥(x,y®,..-,y®), the contravariant tensor field of the
fundamental tensor g, (x,y",---,y¥), ie. g,8”7 =4;.

EXAMPLE. Let R" =(M,y,;(x)) be a Riemannian space and Prol*R" its
prolongation of order k, given in our paper [11]. We consider the Liouville d-
vector field z*” constructed by means of the canonical nonlinear connection of
the space Prol*R". Then '

2.3) L(x,y‘ ,y(k)) Yy (x)z P70

is a regular Lagrangian of order k on E, having g, =y, as the fundamental
tensor field. Thus L'*" = (M, L) with the Lagrangian [2.3) is a Lagrange space of
order k. |

Therefore we have:

THEOREM 2.1. If the base manifold M is paracompact, then there exist
Lagrange spaces of order k, ['¥" = (M, L).

3. Variational problem for the Lagrangians of order k.

Let L:E—>R be a differentiable Lagrangian of order k and
c:tel0,1]— (x'(1)) e M a smooth parametrized curve, such that Imcc U,U
being the domain of a local chart of the differentiable manifold M.

The extension c* to E of the curve c is given by the mapping:

k l
@3.1) * e @02 0, L I @y e @)
The integral of action of the Lagrangian L along the curve c is given by:
k
3.2 = dx . 1d'x i
(3.2) I(c) =], L(x, 7 a

The variational problem regarding the integral of action /(c) leads to the
0
Euler-Lagrange equations E;(L)=0, [12, 13]:
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L d{ dL v d“ oL o
o arl g )Y g GE =0
(3.3) _ k
y(i _ax yoi _1d x'
dt’ k! dt*

The curves ¢ which verify the equations (3.3) are called the extremal curves
of the integral action I(c).
Now we remark that

e ] oL d oL
(3.4) E(L)y=(-1) (k—l)!{ },

G=Di 3. 3.k
oy dt dy

along the curve c*, (3.1), is a d-covector field on E, which depends only on the
Lagrangian L.
Then we can prove:

THEOREM 3.1 In the Lagrange space of order k,[*" =(M,L), the
differential equations

(3.5) | g E (L)=0

are of the form (1.9), where

(3.6) (k+1)G' = 1 "{ (3;9(%), )_ @iﬂy }
and
(3.7) rzy(l)i %_*_2))(2)1 aya(l), +- +ky(k)l ay((l?—”" .

They determine k paths, which depend only on the fundamental function L.
Consequently, shows us that there is a k-spray S with the

coefficients G’ in [(3.6) and [(3.7). It will be called canonical for the space L'*".
Now, applying Theorem 1.1, we get:

THEOREM 3.2. For every Lagrange space of order k,L'“" =(M, L), there
exist nonlinear connections determined only by the fundamental function L.
One of them has the dual coefficients (1.10), where § is the canonical k-spray
and G' are its coefficients (3.6), (3.7).

The nonlinear connection N from the last theorem is called canonical for the
space L%,

From now, we shall consider, for L*", only the canonical nonlinear
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connection N.

4. The geometrical model H*'"" = (Osc*M, G, F).

For the study of the most important geometrical properties of the Lagrange
space of order k,L*", we will introduce the so-called geometrical model. In
this respect, let us consider the adapted basis and its dual basis
constructed with the canonical nonlinear connection N.

Hence, the Sasaki N-lift, [12], of the fundamental tensor field 8 of the
space L'“" is

(4.1) G = g,dx' ® dx) + g, &y @ FyMJ +-.-+ g Sy @ Gy

We can formulate:

THEOREM 4.1. The space (E,G) is a pseudo-Riemannian one and it is
determined only by the fundamental function L of the Lagrange space of order
k, L.

Now, let F be the F(3,1) structure induced by the canonical nonlinear

connection N:

é 0
4.2) F(§)=—&y—(k’7

o o

Ex—i, F(gy‘m'—)lf)=0,(a=1,...,k—l).

0
E) F( 3y(k),‘ ) =
We can prove, without difficulties:

THEOREM 4.2. The structure F has the properties:

1. F is globally defined on E.

2. Im F=N,®V,Ker F=N,®---®N,_,.

3°. rank F = 2n.

4 F’+F=0, (ie. F is an F(3,1)-structure).

5°. F depends only on the Lagrangian L.

6°. The pair (G, F) is a metrical F(3,1) structure.

Consequently, the pair (Osc*M, (G, F)) is a metrical F(3,1) space determined
only by the fundamental function L of L*" and is denoted by
H**™Y" = (0sc*M, G, F).. It will be called the geometrical model of the Lagrange
space of order k. Therefore, the geometry of L*” is the geometry of the
geometrical model H**"". It can be studied by means of the methods used in
the study of the total space of the k-osculator bundle, [11, 13].

For instance, the N-linear connection D on E with the properties
D,G=DyF=D,J=0,VX € X(E), is characterized by the conditions:
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a) The coefficients of D are given by DI'(N) = (LZ,", Cliyjms- - (,()jm) only.
b) The h- and v,-covariant derivatives of the metric tensor g; of the space
L'*", with respect to D, satisfy

4.3) 8ijim =0, gul =0, (ax=1,...,k),
where
6gi‘ 5 s 6gl s s
8im = 5o = 8Lin = 8Lro8y ay‘“jm 8,Conim = 85Comy-
We have

THEOREM 4.3. The following properties hold:

I°. If N is the canonical nonlinear connection of the Lagrange space of
order k, "= (M, L), then there exist metrical N-linear connections D on
Osc“M which depend only on the fundamental function L.

2°. There exists only one metrical N-linear connection D in L' whose h-
torsion T7; and v, -torsion S7 .(e=1,---,k) vanish. The coefficients
CT'(N)= (L' “”m, (k)m) of D are given by the generalized Christoffel
symbols

1o 98, %y 8y
L:n — m«( is L — , ),
@4) 128 T ) i 66x
m 1 gls g.\' gl
C(a)l_l = (5y(a)1 + 6y(aj): ay(aj)s) ( k)

3°. The N-linear connection with the coefficients (4.4) depends only on the
fundamental function L of the space L*".

The proof of this important theorem was given in the paper [12]. CT'(N). is
the canonical metrical connection of the considered Lagrange space.

Now, we remark that the whole geometrical theory of the Lagrange space of
order k,I'¥" =(M,L), can be based on the canonical metrical connection
CT(N).

5. The gravitational field.

Let us consider the canonical metrical connection CI'(N), with the
coefficients (L, C/, ;> **»C{;);n) 8iven in the formula (4.4). The fundamental
tensor field g, (x,y",---,y "") of the Lagrange space of order k,L*" =(M,L), is
compatible to CT(N). The conditions of compatibility are in [(4.3).

Let H*"" = (E,G,F) be the geometrical model of the space L[*".
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Now, in a fixed local coordinates on E we consider every component of g,

as a gravitational potential. Hence we can take the equations of the
gravitational field as follows:

DEFINITION 5.1. The Einstein equations of the geometrical model
H*+Dn =(E,G,F), endowed with the canonical connection D, are the Einstein
equations of the Lagrange space of order k, L*".

Let R be the curvature tensor of the canonical connection D, Ric R its
Ricci tensor and R the scalar curvature of R.Then the Einstein equation of the

space H**"" are expressed by
1
(5.1) RicR~—~RG =K.

where K is a constant and .7 is the energy-momentum tensor field.

With respect to the direct decomposition (1.2), determined by the canonical
nonlinear connection N, the curvature tensor has the following essential
components:

Rx",y"z" =1D{,D;"1z" - D!\, ., Z" =3 D%, W Z",

[xt y¥

k
(5.2) RX",Y*)Z" =[Dy,Dy"12" - Df, v, 2" = ) D 2",

B4CH

o
R(X",y*)Z" =[D}*,D}*1Z" - ¥ D" Z" a< Bla,B=1,-,k).

[Xvﬁ Jyle

If we take X" =£T,Xv" =6y_(5ﬁ51—" (B=1,---,k) and we denote the components
of Ric R in this adapted basis:
G3) R, =R’,, Pei = Py’ jos Py = Bai' o
Papys = Papy'jor Py = Papy's» St = St s
and the scalar curvature R:
(5.3) R=g"(R;+ Sy + + Sy )

then we obtain from in the adapted basis:

THEOREM 5.1. The Einstein equations of the Lagrange space of order k
L®", corresponding to the canonical metrical connection CT'(N) are given by
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| _ _ | 2 2
(5.4) Rij _ERgu XTU’P(a)u ’ﬂ;auﬂea)u - xYIa)u’
1 _ I 2
S(a)ij _ERgu xza)u’P(aﬁ)u xzaﬁ)u’eaﬁ)u - xnaﬂ)u

where T},

momentum tensor field in the adapted basis.

=+, T, p); are d-tensor fields. They are the components of the energy-
Also, we can prove:

THEOREM 5.2. The law of conservation, with respect to CT(N) in L%" | is
given by

(R’ - —R6‘ )+ z | (9=,

(fP).l

(5.5
i(B) 2i 2i (@) —
(5 (B)J _"2"R51)|i “P(ﬂm: (Z'l P(aﬁ) |¢ + Z <B¢>/|¢ =0,

where R’ —g"RI,,

6. Electromagnetic fields

Let z!",...,z®" be the Liouville d-vector fields [1.7) constructed by means
of the canonical nonlinear connection N. Then the d-covector fields
(6 l) Z(”‘ =g Z(l)j Z(k" =g Z(k)j
. - ij ’ k] ! U k]
depend only on the fundamental function L of the Lagrange space of order k.
Therefore, in the preferential local coordinates the covariant d-vector fields

ZWi ...,z will be called electromagnetic potentials. The d-tensors
(6 2) F(a) _ _1—(&(&) 6Z(a) f(aﬁ) 1 &(a) &(a)j)
) # 2 S/ 2 ay(ﬂ)/ 5y(l3)i ’

will be called the electromagnetic tensor fields of the space L'*".

Obviously, it is necessary to prove that F'; and f®; are d-tensor fields
on E. In this respect we shall consider the deflection tensors of the canonical
metrical connection CI'(N). These are:

(6.3) D(a)l (a)r d(a[i): (a)ll(ﬂ)

where , " and | B are, respectively, the A - and vg — covariant derivatives
with respect to CT(N). The covariant deflections tensors are given by

(6.3) D@ = g,:‘,D“”",-,d“’ﬂ’i,- = gi“_d‘“ﬂ"‘j.
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Then, we have:

PROPOSITION 6.1. The electromagnetic tensor fields (6.2) have the
following expressions:

(64) F(a)ﬁ = %(D(a)[j _ D(a)ji ),f(aﬂ)ji = %(d(aﬂ)ij _d(aﬁ)ﬁ). .

We shall see that the electromagnetic tensor fields F®; and f?; satisfy
some laws of conservations — called the generalized Maxwell equations. Indeed,
the covariant deflection tensors D'®;,d?; satisfy the Ricci identities with
respect to CT'(N). Using these identities it follows:

THEOREM 6.1. The electromagnetic tensor fields F“;, f®; of the space
LY" satisfy the following generalized Maxwell equations
k

2(F® g + F iy + F @) = 01, (2% Ry = = d“ ROV,

ripq ir-(0)pqg
p=1

( ( ( ( ( (af) -
AF a)pilqﬁ) +F® (pp) +F a)qpliﬂ) + f(aﬁ)piiq +f ap)iqlp +f e apli) =

iql

k
- Zd(a(P) (P((ﬂ)f — plor )}’

- p(i'p’q){z“z)’(Fzﬂ)ripq—EB)riqp) =1 ir (ﬂ) Pq (p) qp
(aB) (r) @f) (7) @f) (¥)y _ (o)r _
2(f Pi|q + f i‘l'l’ + f qpli )= So(i.p,q){z P(ﬂr)ripq
_ (@B or _ qlay) o _
(d i’C(}')P‘l d ir (ﬁ)pq)

k
_ (ap) ple)r
¢§=:l d irP(ﬂY)pq (y # ﬁ)’
aB) (B) (af) ((B) (af) (B~ _ (a)r _
2(f ,n'|q +f iql,, +f qpli )= So(i,p.q){z S(a)ripq

k

_ (off) plo-P)r
Z_d irR('B) p}.
o=1

q

Using the Bianchi identities of CT(N) we can prove:

THEOREM 6.2. If the canonical metrical connection D is torsion less, then
the electromagnetic tensors F'®j, f® ;. verify the following generalized
Maxwell equations:

(o) (o)
F ip|q+ F pqli
(o) ) ( (o) _
F* ip|£]ﬂ + F(a)pqlf-ﬂ) + F(a)qi|(,,ﬁ) + f(aB)iplq + f aﬂ)pqli + f # aip =0,

(af) () (af) (1) @aB) |(v) _
f iplq +fa pqli +fa qi|py _Oa(y:'tﬂ)’

(a) —
+ F qilp — Y
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(offy (B (of) V2 af) (py _
f ip[ + f pq|i + f qi'p - O'

q

A good example is given by the Lagrange space of order k, L'*", with the
fundamental function L from (2.3). Of course it has Y;(x) as gravitational
potentials. Its Einstein equations are those classical and the electromagnetic

tensors vanish.
In the particular case k = 1 all the previous theory reduces to that given for

the Lagrange space L'(M,L). It can be find in the book [15].
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