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Introduction

On existence of harmonic maps, Guest [2] constructed equivariant harmonic
maps from a flag manifold to a complex Grassmannian manifold, and Ohnita [5]
developed a method of studying equivariant maps from a compact homogeneous .
space to a complex projective space and investigated equivariant harmonic maps
from a compact irreducible Hermitian symmetric space to a complex projective
space, in detail. In particular, Ohnita classified equivariant harmonic maps
relative to a unitary group between complex projective spaces.

In this paper, we study existence and harmonicity of Sp(n)-equivariant maps
between complex projective spaces, by using the fact the symplectic group Sp(n)
acts a (2n — 1)-dimensional complex projective space CP*""' transitively. In
section 4 we determine all complex irreducible representations of Sp(n), which
define Sp(n)-equivariant maps from CP*""' to CP™ (Theorem 4.3), with the aid
of the restriction rule of representations of Sp(n), due to Koike and Terada [3, 4],
Zhelobenko [6]. In section 5 we prove that the associated Sp(n)-equivariant maps
are harmonic for any Sp(n)-invariant Riemannian metric on CP?>""' (Theorem
5.2). In particular, we get Sp(n)-equivariant minimal immersions from CP>"" to
CP" , but not SU(2n)-equivariant.
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§1. Complex line bundles and harmonic maps into a complex
projective space.

In this section, we recall known facts due to Ohnita [5]. Let CP™ be an m-
dimensional complex projective space with the Fubini-Study metric. We denote
by (,) the standard Hermitian inner product on C™*'. Let x:C™"' \ {0} - CP™ be
the canonical projection. Then C™' \ {0} is a principal bundle over CP™ with the
structure group c* =C-{0}. Let E=(C™ \{O})xC. C be the universal bundle
over CP™. The fiber E, over each xeCP" is the complex 1-dimensional
subspace of C™' determined by x. Thus E is a holomorphic subbundle of the
trivial bundle C™' =CP™ xC™' over CP™. Let E* be the subbundle of C™'
whose fiber at x is the orthogonal complement of E_ in C™'. The bundles E, E*
and E* have natural Hermitian connected structures. We give E* ® E* the tensor
product Hermitian connected structure. Then there exists a natural bundle
isomorphism h:T"”CP™ — E* ® E* preserving connections.

Let M = G/K be an n-dimensional compact homogeneous space with a
compact connected Lie group G and ¢: M — CP™ a smooth map. Consider the
exact sequence of pull-back vector bundles over M:

050 (E*®E) S (EX®C™) Lo (E*®EY) >0,

where i is the natural inclusion and j is given by the orthogonal projection along
E. Pulling back h:T"YCP" - E*® E* by ¢, we get a connection-preserving
bundle isomorphism h: ¢~ (T"“CP")— ¢ (E* ® E*).

Let (0,C) be a complex 1-dimensional representation of the structure group
K and L=Px,C a complex line bundle over M associated with a principal
bundle (P,7w, M, K). Then the vector space C (L) of all smooth sections of L can
be identified with the vector space C”(P,C), of all C-valued smooth functions
f on P satisfying the condition f”(uk) =o(k)™ j~"(u) for each ue P and k € K, by the
correspondence C*(L)> f f e C™(P, C)K,f(u) =u"'(f(m(u))) for each ueP.

We consider a system {¢,,...,9,} in C(L) with no common zeros. Let
{?Pp-..,0,} be the corresponding system in C”(P,C),. We define a smooth map
@:P—>C"™ \{0}) by @:{Pp....P,}. Since @ satisfies @uk)=o(k)'@u) for each
ueP and ke K, the map ¢: P — C™' \ {0} becomes a bundle homomorphism
from (P,n,M,K) to (C™" \{O},7r,CP'",C*) with the homomorphism o' : K ->Cc*
of the structure groups. Therefore ¢ induces a smooth map ¢: M — CP™and the

diagram below is commutative:
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P S5 C™\{0}
), Iz
M CP".

Let H = E* be the hyperplane bundle over CP™. Conversely, every smooth map
@ : M — CP™ is obtained in this manner by considering the pull-back complex line
bundle ¢ 'Hover M and a system of m+1 sections of ¢'H given by homogeneous
coordinates on CP™.

We denote by V¥ the Riemannian connection of M and endow the principal
bundle P with a connection I". Then in the associated line bundle L, the covariant
differentiation V% is induced by I'. For XeC"(TM €y, we denote by
X* € C*(TPC) the horizontal life of X to P with respect to I.

We denote by 7" e C= (¢ 'T"”CP™) the (1, 0)-component of the tension
field 7 for the map ¢. Then we have

W) g =3 (V, (do)*")e))p

i=1

=& @ e~ (Ve) D - 25 CLICWXINPIN
i=] <(P,¢>
= ity -23 GOVP grg)-,
(@, 9)

where {e} denotes a local orthonormal frame field on M and
A =37, (VEVE-VE, ).

PROPOSITION 1.1 (Ohnita [5]). ¢ is a harmonic map if and only if the
system {Q,,...,Q,} satisfies

Vi +28 GO gr gy~ i
(6.0)

for some function u on P.

§2. Construction and harmonicity of equivariant maps.

~We are concerned with G-equivariant maps from an n-dimensional compact

homogeneous manifold M = G/K with a compact connected semisimple Lie group
G to CP™ with the Fubini-Study metric.

Let Aut (CP™) be the group of all holomorphic isometries of CP™. Aut(CP™)

is identified with a projective unitary group PU(m+1). A map ¢:M — CP" is
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called G-equivariant if there exists a Lie group homomorphism p:G—
Aut (CP™) satisfying p(a)o@=¢@oy, for each ae G, where ¥y, denotes the
natural action of G on M.

We endow M with a G-invariant metric g. Let (G,mn,M,K) be the standard
principal bundle on M and (0,C) a complex 1-dimensional unitary representation
of K. Then the associated complex line bundle L=Gx,C becomes a G-
homogeneous vector bundle with a Hermitian fiber metric (,).

Let V be a complex (m+1)-dimensional irreducible G-submodule of C7(L).
Choose a unitary basis {@,,...,¢,} of V with respect to the [’-inner product. Let
{Py--..P,} be the corresponding system in C”(G,C),. By using this system, we
obtain maps ¢, ={@,,...,0,}:G— C™ \ {0} and ¢, =(¢,,...,p,): M — CP™.

We define a unitary representation py:GoUm+1 by
L(@y---®,)=(@p----P,)P(@) for ae G, where L, is the left action of G on
C”(G,C),. Then the map ¢, is G-equivariant with respect to p,. Hence we

have
o, (a) = (py(a)v, , ,(a-0) = n((p,(a))v,) foreachaeG,

where o=eK €M and v, =@, (e) e C™" \ {0}.

On the other hand, let ¢ : M — CP™ be a G-equivariant map relative to a Lie
group homomorphism p:G — Aut(CP™). There exists a unitary representation
p: G — SU (m+1) of the finite covering group G of G such that the diagram

G 5 suum+n
X d
G 5 PUm+)

is commutative. Take v, € S*"' with ¢@(0)=Cv,. T~hen we have ¢(a-o)

=p(a)p(o)=p(a)m(v,)=n(p(a)v,) for each aeG with m@=aeG. In
particular, we have [)(IE')Cv0 c Cv,. Hence there is a real-valued linear form A,
on f such that p(X)v, =+v—-14, (X)v, for each X e f, where f is the Lie
algebra of K. Put W =Cv,. Then W is a complex 1-dimensional K -submodule of
C™'. Consider the associated homogeneous line bundle L=C~;xa, W* over
M=G/K, where (0'*,W*) is the dual K-module of W. We define a map
¢ =@y B): G (W)™ =C™ by (@,(@)W)=(p(a)w,&)(i=0,...,m) for
each aeG and we W, where [g,....€,} denotes the standard basis of C™'.
Each @, satisfies @(ak)= o (k)'@(a) for each ae G and ke K, therefore we
have that ¢, e€C” G, W*)I.(. Let {®,....9,} be the corresponding system of
{@y....®,) on C (L) and V the G-submodule of C*(L) spanned by @,,...,¢, . If p
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is irreducible, then V is an irreducible G-module and ¢ 1is equivalent to
Oy =@y P,) -
Now we recall the following.

PROPOSITION 2.1 (Ohnita [5]). Suppose that a homogeneous space M = G/K
with a G-invariant metric g satisfies the condition [f,m]=m. Then a G-
equivariant map @:M — CP"™ is a harmonic map if and only if
L ﬁ(Xi)z)voeRvo, where {X,...,X,} is an orthonormal basis of Wl with
respect to g.

PROPOSITION 2.2 (Ohnita [5]). Suppose that M = G/K with the G-invariant
Riemannian metric g, induced by an Ad(G)-invariant inner product of @ satisfies
the condition [f,m]l=m. Then a G-equivariant map @ =¢,: M — CP" is a
harmonic map.

§3. Representations of symplectic group.

We consider the case G = Sp(n) (n 22). Let g be the Lie algebra of G and t
a maximal abelian subalgebra of g . We denote by g€ and t¢ the complexification
of g and t, respectively. t€ is a Cartan subalgebra of a®. Let (,) be an Ad(G)-
invariant inner product on g defined by -1 times the Killing form of g. Let
Y (ct) be the root system of g° relative to t. We have a root space
decomposition of g¢: "

gC =tC+ 2 ga’
oel

where g, ={Xe€g®;(adH)X =~/-1(o, H)X for He t}. Let [I={a,...,a,} be a
fundamental root system of Y. Choose a lexicographic order > on X such that the
set of simple roots with respect to > coincides with []. Note that the Dynkin
diagram corresponding to g€ is given by the following:

o) @ Gn.l o
0—0—-+-—0&=0.

Put Y*={deX;ax>0}. Let {A,} be the fundamental weights of (g¢,t%)
corresponding to []: '

2(A; ;) ={1 i=j)
(o;,0)) 0 (i+)).

A, is given by

. . 1
A =a+o,+-+(-Da_ +i(e; +-+a,_ +—2—a,,).
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We put 1, ={a,,...,e,} and T,=3XN{II,},, where {[I,}, denotes the subgroup
of t generated by [], over Z.
We note that G = Sp(n) acts CP>""' transitively. The isotropy subgroup K of
G at [1,0,...,0]e CP*"" is given by
e’ 00 0 00

0 A 0

B O eR,
K= : 0 0.0 eMz,,(C);(A -B

0...()@
0 B 0 A

JGSU(Zn—2) )
B A

Let ¥ be the Lie algebra of K and m the orthogonal complement of ¥ in g with
respect to ( , ). Then the complexifications ¢ and m€ of t and m are given by

€=t°+ ¥gq,, m°= I g,,
ael, aeX -3,

respectively. Set ¥ =3*-Y, and ¥, =-3 . We define subspaces m* of g by

We choose E, € g, for a € 2 with the following properties and fix them once and
for all:

(E,.E  ]=+-la, (E, ,E_,)=1, E,=E_, foraeX,

where we denote by X+> X the complex conjugation of g with respect to the
real form g. We see that [f,m]=m.Put Z ={kA,;keZ}.For kA, € Z , we can

define a complex I1-dimensional unitary representation o,, of K by
0',‘Al(a)=exp(«/—_1(kAl ,X)) for each ae K, where a = exp X and Xef. Using
this representation (o,, ,C) of K, we construct a homogeneous complex line
[E,.E_,1=~-la, (E, ,E,)=1, E,=E_, foraeX,bundle L, =Sp(n)x,, C

over CP*"' =Sp (n)/ K . Conversely, for each homogeneous complex line bundle
L over CP*""' =Sp (n)/ K , there exists an element kA, € Z. such that L=1, .

LEMMA 3.1. Let p:Sp(n)—> GL (V) be a complex irreducible representation
of Sp(n) with E€t as its highest weight and (,) an Sp(n)-invariant Hermitian
inner product of V. Choose a nonzero weight vector V€V for the highest weight
E. Suppose that there exists a nonzero vector weV and an element A€t such
that p(X)w = N=1(A, X)w for each X €t. Then we have (w,vg)#:O .

PROOF. We define a complex valued linear function F by F(X)= (p(X)vg W)
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for X eq®. For each X €€, we have

F(X) = {p (X) v;,w) =~V p (X) w) = V=1(A, X)W V).

For each Y e m*, we have F(Y) = 0 because p(Y)v, =0.
For each Zem™, we have

F(Z2)={p (D) v;,w)=~0,,p(Z)w)=0
because p(Z)w is a linear combination of non-highest weight vectors. Thus we
have F(gc)cC(vg,w). If (vg,w)=0, then we get F=0. But we have
V=zj."=0 p@©) VU, for a sufficiently large integer N by the irreducibility of p,
thus we obtain w=0. Hence (vé wy+0. q.e.d.

LEMMA 3.2. Let p:Sp(n) - GI(V) be a complex irreducible representation of
Sp(n). For every A€f, put

W, ={we V;p(X)w=+/-1(4, X)w for each X € f}

Then we have dimo W, =0 or 1.

PROOF. As in Lemma 3.1, we denote by v; a highest weight vector of p and

by {,) an Sp(n)-invariant inner product of V. We define a linear map f:W, -»C
by f(w)=(w,v;) for weW,. By Lemma 3.1, f is injective. Hence we have
dim . W, =0 or 1. q.ed.

For keZ, we set W, =(0, ,C). let D(Sp(n)) be the set of all dominant
integral forms of t. By Lemma 3.2, we obtain dim Hom, (V,,W,)=0 or 1 for
each A e D(Sp(n)), where V, is a representation space of an irreducible
representation of Sp(n) with highest weight A. We put

D(Sp(n), K; k) = {A € D(Sp(n));dim Hom,, (V,,W,)=1}.

For each A € D(Sp(n),K;k), we obtain the Sp(n)-equivariant map corresponding
to A. We shall determine the elements of D(Sp(n),K;k) for ke Z.

As is well-known, there is a bijective correspondence between the sets of
equivalence classes of irreducible representations of a complex semisimple Lie
group and its compact real form by using the unitarian trick of Weyl. So we
identify the representations of Sp(n,C) and Sp(n).
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§4. Construction of Sp(n)-equivariant maps.

We take a Cartan subalgebra t€ of a¢ =3p(n,C)(n>2) as follows:

i

Then the root system 3. of g is given by

2= {x(g £; )}lSi<an U{izei}ISiSn'

We take a simple root system [] of X as follows:

[I={a, =¢ -¢,,...a,,=¢,,—¢€,,0, =2¢,}.

Then the weight lattice P and the set of dominant integral weights P, are given
by
P=Z¢g +2Z¢,+---+2Z¢,,

P ={fg+f,e,+-+feE eP;fizf,z2--2f 20}

There is a one-to-one correspondence between the equivalence classes of the
irreducible representation of a connected complex semisimple Lie group G and
the elements of P, . We identify each element of P, with the irreducible
representation corresponding to it.

In general any sequence A=(4,,4,,...,4,,..0(4, 24,2---24 >--) of
nonnegative integers and containing only finitely many nonzero terms is called a
partition. We consider each element of P as a partition and identify each
partition with the Young diagram corresponding to it. For a partition A, the length
of A is defined to be the number of nonzero terms in A and is denoted by #4(4),
the size of A is defined to be the sum of all terms in A and is denoted by |4, i.e.,
A|=4,+A,+--+A4,+---. If partitions A=(4,4,,...,4,,...) and pu=
(U, Uys-.s 1,,...) satisfy the condition A, >y, for all i>1, we say that the Young
diagram A contains the Young diagram u and denote it by Ao u. If A > u, put
i on A with the same top-left corner and remove u out of A. Then the resulting
diagram is called a skew diagram and is denoted by A —u. A skew diagram each
column of which consists of either zero or one square is called a horizontal strip.
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We recall the following.

THEOREM 4.1 (Koike and Terada [4], Zhelobenko [6]). Let A be a partition

of length at most n and ASp(n,C) the irreducible character of Sp(n,C)
corresponding to A . Then we have

Sp(n.C) — ~[A—p+Hu-vi
ls;:(n.C) GL(1.C)xSp(n-1,C) (E) L, XV p(n-1,0) »

Sp(n,C) T .
where | LU Sp(n-L.C) denotes the restriction of the representation of Sp(n,C) to

GL(1,C)xSp(n—-1,C) and the summation is taken over all pairs of partitions
(u,v) satisfying the following conditions:

(1) Ao uand A—u is a horizontal strip,
(2) uoDv and u—v is a horizontal strip,
(3) L(v)<n-1.

GL(1,C)x Sp(n—1,C) is the Levi part of

t. *

Y . YeSp(n-1,C),t, e C*

THEOREM 4.2.

D(Sp(n),K;k) ={m A, + myA,;m, € Z,m —|k|20is even, m, 2 0}.

PROOF. Assume that A =(m,,...,m,) € D(Sp(n),K;k). Let A be the partition
corresponding to A, ie., A=(A,A,,....,4)=(m+...+m,,m,+...+m,,....m,).
We may identify A with A. By virtue of [Theorem 4.1, there exists a pair of
partitions (i,v) such that (a)v=(0,...,0),(b)(u,v) satisfies the conditions (1),
(2), and (3) in [Theorem 4.1, and (c¢) k = —-A — u|+|u—V|. From (a) and (b), u and
A —u are horizontal strips, i.e., yu=(u,,0,...,0)(4, 2y, 2 4,), and A, =0 for all

i23. Moreover, from (c), we have k=-A,—-A1,+2u,. Thus we see the
following:

m = |2 k20
VU2 -4y (k<0),
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i.e., m —|k| 20 is even.
Conversely, consider an irreducible representation of Sp(n) with highest
weight A =mA, + myA,(m, —|k| 20 is even, m, = 0). Put
m, —kl=A4, —A, —|k|=2m (m=0),

and

_{l,—m (k=0)
M=, +m k<o)

We take partitions u =(y,,0,...,0) and v=(0,...,0). Then we see the pair (4,V)
satisfies the conditions (1), (2), and (3) in and -A—-pyl+ju-vi=«k.
Hence we conclude that A € D(Sp(n),K;k). q.e.d.

§5. Harmonicity and isometricity of Sp(n)-equivariant maps.

Let (,) be an Ad(Sp(n))-invariant inner product on 8p(n) defined by -1 times
the Killing form of gpn). If we endow CP**"' with an Sp(n)-invariant
Riemannian metric g, induced by (,), then an Sp(n)-equivariant map
corresponding to an element of D(Sp(n),K;k) is a harmonic map because of
IProposition 2.2l However, CP>""' admits other Sp(n)-invariant Riemannian
metrics.

We put

E,+E E,-E
X,=—"24—2 X =—%2—2 foreachael, .

V2 N2
Let m, and m, be subspaces of M spanned by {X_ ;oxeX,,a#+2Y ., %t
)} and {X ;o=%(2% .., o, +a,)}, respectively. Then the subspaces m,, m,
are irreducible K-submodules and not equivalent each other. Thus every Sp(n)-
invariant Riemannian metric on CP>"™ can be described as g, =&l m,+ X8 | m,

(x > 0), up to a positive constant factor.

LEMMA 5.1. Consider an irreducible representation of Sp(n). Let v be a
nonzero weight vector of a weight kA, such that it gives an Sp(n)-equivariant

map. Then the vector E,,s .., U is a weight vector of the weight (k+2)A,

such that it gives an Sp(n)-equivariant map or zerovector.

PROOF. We put a, =23, Q, +«, for convenience. From the condition, we
have E,,v=0 for each €Y ,. We assume that E,, v#0. Since [E,, E,, ]=
O(xe¥,), we have E,E, v=E,,E,v=0 for each aeX¥,. Hence we
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observe that E,, v is a weight vector such that it gives an Sp(n)-equivariant map.
q.e.d.

THEOREM 5.2. For any Sp(n)-invariant Riemannian metric on CP*"™, the
Sp(n)-equivariant map corresponding to an element of D(Sp(n),K;k) is a
harmonic map.

PROOF. In case we endow CP*"' with a metric g,, from Proposition 2.1 and
2.2, we obtain

(*) ( )X p(X‘,,)zjv0 =cv, forsomec, €R.

Q€LY

While we give CP*""' a metric g_, a necessary and sufficient condition for a map
to be a harmonic map is

(T pX,)+ ¥ Lp(X,))v,=c,v, forsomec,eR,
Qe ), a=ta,
a*tag

where «,=2Y.., @, +a,. From (*¥), we claim that the condition above is
equivalent to

( ) p(Xa)zj U, =( Y p(EE )]vo =c,v, forsomec,€R.

a=ta, a=ta,

But this holds by Lemma 5.1. q.e.d.
We shall study the isometricity of harmonic maps constructed in Theorem 5.2.

Lemma 5.3. Consider that an irreducible representation of Sp(n) with highest
weight m/A,+m,A,. Let w be a weight vector of a weight mA, such that it
determines an Sp(n)-equivariant map. Then we have

(a) E_, E, (E!, w)=—(m —j+1)jE,, w forj=0,...m,=0
(b) E(,,(]E_(,,O(Efmow)=—(ml —j)(j+1)Efaow for j=0,...,m,,

where Oy =2Y,cn O T,

PROOF. (a) We shall use induction on j. For j = 0, the claim holds because of
E, w=0. Assume it is true for j - 1. For j,
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(Elyw)=E_, (E_, E, +~—la,)(E/;lw)
=E {(ml—/+2)u—1>—<m]—2j+2>}<E1‘;:,w>

-y

—D(” a()

=—(m, = j+Dj(E], w).

—ay

(b) From (a), we have
E_, (E!w)=(E_o E, +~-1ay)(E!, w)
={~(m, = j+1)j = (m, =2 }(E!, W)
=—(m, = j)(J+1(E/, w). qed.

Using this lemma, we obtain the following.

PROPOSITION 5.4. Consider an irreducible representation p of Sp(n) with
highest weight A =mA, +m,A,. Then the energy density e(Q) of the Sp(n)-
equivariant map @ :(CP*""',g.) — (CP",h) corresponding to a weight (m, —=2j)A,
of p is given by

1 1
e(p) =5[m22 +(m, +2n—1)m, +(n—m, +—;{(2j+1)m, =271y,

where h is the Fubini-Study metric of CP™. If (p*h =rg, for some constant r>0,
then ¥ is given by

_ €9
2n-1"

PROOF. We have

2e(p) = 22: (D*h( X)+ %‘Ph(\/— \/_)

= 3 (P(X, )00 P(X )0+~ T (DX, )4, p(X, )0,)

ez, X a=ta
a¥ta,
1
== 3 (P v v+ (11 ) 5 (pX) 00.00)
i, *Ja=tn
) ; 1
= ~(P(Z)0,,0,) — (m, — ZJ)Z(AI’AI )|vo|2 + (1 - _) —21: (p(X, )’ Uy, V)

_ o2
= (A A+28) o - 2D (1 —%]«21 +1m, = 2% v’
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= {m22 +(m, +2n—Dm, +(n—Dm, +%((2j +m, — 2j2)} vyl

where o, =2% 4., ¢, +,,% is the Casimir operator of Sp(n) with respect to an
Ad(Sp(n))-invariant inner product (,) of g, and d=A,+:--+A,. We note that
the elgenvalue of the Casimir operator p(%) is —(A,A+26), by Freudenthal’s
formula. If ¢ *h= rg,,then we have

= h
@)= 2 ¢ "X XD+ 3 9" ( 7 (]

=22n-Dr. g.e.d.

THEOREM 5.5. Consider an irreducible representation of Sp(n) with highest
weight rrrzlA1 +m,A,. Let @: (CPZ"",gX) — (CP",h) be the Sp(n)-equivariant map
corresponding to a weight (m, —2j)A, (m;—=2j+#0). Then ¢ is an isometric
immersion if the following equation holds:

2n—1)
X

(*) (2j+1Dm, —2j*}=m,> +(m, +2n—1Dm, +(n—Dm,.

In case x=2, g, is the Fubini-Study metric. Then the equation above becomes
m,? +(m, +2n—1Dm, —2(n—1)jm, +2(n—1)j* =0.

We may rewrite Theorem 5.5 as follows.

THEOREM 5.6. Consider the Sp(n)-equivariant map ¢ corresponding to
A=mA, +m,A, € D(Sp(n),K;k) (k #0). If the equation

n—1

(m,2 +2m, — k*) = m22 +(m; +2n—1)m, + (n—1m,

holds, then ¢ is an isometric immersion. In case of x = 2, the equation above
becomes

m,> +(m, +2n—1)m, —i;—l—(ml2 -k*)=0

PROOF OF THEOREM 35.5. Assume that (p*h =rg, for some constant r>0, then
by virtue of Lemma 5.3, we have

X, X,
r=¢ h(( J—) <p( o a‘,)vo’vo>—_{(2]+l)m1 2j% ),
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where o, =23, _ «, +c,.From this equation and Proposition 5.4, we have

—{(2j+Dm, —2j°}
X

1 . |

T 202n-1) [m,* +(m, +2n = Dmy +(n ~Dm, +—{(2) +Dm, =27},

Hence we get the equation (*).
Conversely, if the equation (*) holds, then we set

r={Q2j+Dm, —2j*}|v,|* /2x

and get
@ h(X, INx, X, INx)=rg (X, INx,X, IVx),

ie., o*h=rg. qed.

REMARK.
(1) By the condition m, —2j # 0( or k # 0), we see a map ¢ is an immersion.
(2) If the map corresponding to a weight kA, is an isometric immersion, so is
the map corresponding to a weight —kA,. Because the equations in

remains the same by replacing k with —k.
(3) Incaseof n=2,k=4, and A=6A,+A,, we have an Sp(n)-equivariant,
but not SU(2n)-equivariant, minimal immersion from CP* to CP*°.
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