A NOTE ON THE TITS SYSTEMS OF KAC-MOODY STEINBERG GROUPS

By

Richard MARCUSON

Abstract. Let G(H) be the Chevalley (Steinberg) Kac-Moody group of the Kac-Moody Lie algebra L. If σ is the canonical homomorphism of H onto G, and $\{B_G, N_G\}$ is the Tits system in G, then $\{\sigma^{-1}(B_G), \sigma^{-1}(N_G)\}$ is a Tits system in the Weyl-simple subgroup of H.

More than twenty years have passed since the study of Kac-Moody groups was begun by Moody and Teo [M-T] and Marcuson [Mar]. During this period, interest in the subject has swelled $([A-M],[Mat],[Mor_1],[Mor_2],[Mor_3],[M-R]$ and $[T_2]$) along with that for the general theory of Kac-Moody Lie algebras [K]. One focus of this research has been to describe the Tits systems, or B-N pairs, within the groups.

For both the Chevalley (adjoint) and Steinberg (nonadjoint) Kac-Moody groups, the methods for constructing Tits systems have closely resembled those used in the classical finite dimensional case. We note here that, for the Steinberg Kac-Moody groups, it is possible to construct a second Tits system within a naturally arising subgroup by elementary means.

For ϕ a field of characteristic 0, let L be a Kac-Moody ϕ -Lie algebra with Weyl group W. Let Δ,Π , and P denote the set of roots, the set of simple roots, and the set of positive roots respectively. We have $\Delta W = \Delta,\Pi W \subseteq \Delta$, and $PW \subseteq \Delta$. If $\alpha \in \Pi W$, we say that α is Weyl-simple [Mar]. Denote by L_{α} the root space corresponding to the root α .

Let G be the Kac-Moody Chevalley group of L, i.e. the group generated by all $\exp(ad te_{\alpha})$,

$$G = \langle \exp(ad \ te_{\alpha}) : \alpha \in \Pi W, e_{\alpha} \in L_{\alpha}, t \in \phi \rangle.$$

Assume that we have a representation of L on the e-extreme module \mathfrak{M} with dominant highest weight. In particular, e_{α} acts on \mathfrak{M} . The Kac-Moody Steinberg group of L associated with \mathfrak{M} is then

$$H = \langle \exp(te_{\alpha}) : \alpha \in PW, e_{\alpha} \in L_{\alpha}, t \in \phi \rangle.$$

Let σ be given by $\exp(te_{\alpha}) \rightarrow \exp(ad \ te_{\alpha})$.

Let H_Π be the Weyl-simple subgroup of H, i.e. the subgroup generated by all $\exp(te_\alpha)$ where α is Weyl-simple. Define B_H' to be $B_H \cap H_\Pi$ and N_H' to be N_H .

THEOREM 1. σ is a canonical group map of H_{Π} onto G.

PROOF. See Marcuson [Mar].

The notion of a Tits system, or B - N pair $[T_1]$, plays an important role in the simplicity proofs for the classical Chevalley groups [C].

DEFINITION. A group G, subgroups B and N, and a subset S of $N/(B \cap N)$ is a Tits system if

- i. $\langle \boldsymbol{B} \cup \boldsymbol{N} \rangle = \boldsymbol{G}$,
- ii. $B \cap N$ is normal in G,
- iii. S is a set of involutions which generate $W \equiv N/(B \cap N)$,
- iv. for all $s \in S$ and all $w \in W$, $wBs \subseteq BwB \cup BwsB$, and
- v. for all $s \in S \ sBs \not\subseteq B$.

In the sequel, we will say that $\{B, N\}$ forms a Tits system when the nature of G and S are clear.

In 1972, Moody and Teo showed by construction that a Tits system $\{B_G, N_G\}$ exists in G. Soon afterward, Marcuson (1975) constructed the Tits system $\{B_H, N_H\}$ generalizing that of Steinberg [S] for the representation of L on \mathfrak{M} . In 1983, Peterson and Kac [P-K] studied the theory of B-N pairs $\{B_{PK}, N_{PK}\}$ in Kac-Moody groups for general integral representations. It follows from their work that $\{B_G, N_G\}$ coincides with $\{B_{PK}, N_{PK}\}$ for adjoint representations and that $\{B'_H, N'_H\}$ coincides with $\{B_{PK}, N_{PK}\}$ for highest weight

representations. To see this, note first that $B_{PK} \subseteq B_G$ and $B_{PK} \subseteq B'_H$. Then $B_{PK} = B_G$, and $B_{PK} = B'_H$. Now, because $B'_H \cap N'_H$ contains the kernel of σ [P-K], it follows that $\{\sigma^{-1}(B_G), \sigma^{-1}(N_G)\}$ coincides with $\{B_{PK}, N_{PK}\}$.

In the finite dimensional case, $H_{\Pi} = H$, and the Tits system in H is the inverse image under σ of the Tits system in G. It is therefore natural to ask whether B_{PK} and N_{PK} form a Tits system simply as the inverse images of B_G and N_G under σ .

THEOREM 2. $B_H'' \equiv \sigma^{-1}(B_G)$ and $N_H'' \equiv \sigma^{-1}(N_G)$ form a Tits system in H_{Π}

PROOF. Let $K_H = \text{kernel } \sigma$.

i.
$$H_{\Pi} = \langle B_H'' \cup N_H'' \rangle$$
.

Let $h \in H_{\Pi}$, and write $\sigma(h) = g_1 \cdots g_n$ where $g_i \in B_G \cup N_G$ for i = 1, ..., n. Let $h_i \in H_{\Pi}$ be such that $\sigma(h_i) = g_i$. Then $h_0 = h_1 \cdots h_n \in \langle B_H'' \cup N_H'' \rangle$, and $h_0^{-1} h = k \in K_H \subseteq B_H'' \cup N_H''$. Hence $h = h_0 k \in \langle B_H'' \cup N_H'' \rangle$ so that $H_{\Pi} \subseteq \langle B_H'' \cup N_H'' \rangle$. Thus $H_{\Pi} = \langle B_H'' \cup N_H'' \rangle$.

ii. $B''_H \cap N''_H$ is normal in N''_H .

This follows from $B_H'' \cap N_H'' = \sigma^{-1}(B_G \cap N_G)$.

iii. $N_H''/(B_H'' \cap N_H'') = W$ is generated by a set of involutions.

This is a consequence of the fact that σ induces an isomorphism of $N_H''(B_H'' \cap N_H'')$ onto $N_G/(B_G \cap N_G)$.

iv. For all $s \in S$, and all $w \in W$,

$$wB_H''s \subseteq B_H''sB_H'' \cup B_H''wsB_H''$$
.

Let w_i'' and n'' be representatives of s and w respectively in $N_H''/(B_H'' \cap N_H'')$, and let $b'' \in B_H''$. Assume that σ maps w_i'', n , and b'' to w_i, n and b respectively. Thus

$$\sigma: n''b''w_i'' \rightarrow nbw_i \in wB_G s \subseteq B_G sB_G \cup B_G wsB_G$$
.

Hence $n''b''w_i'' \in \sigma^{-1}(B_G s B_G \cup B_G w s B_G)$

$$= \sigma^{-1}(\mathbf{B}_{G} \mathbf{s} \mathbf{B}_{G}) \cup \sigma^{-1}(\mathbf{B}_{G} \mathbf{w} \mathbf{s} \mathbf{B}_{G}).$$

To finish, we need only show that for any $w \in W$, $\sigma^{-1}(B_G w B_G) = B_H''w B_H''$. Now, $B_H''w B_H'' \subseteq \sigma^{-1}(B_G w B_G)$ is clear. Let $x'' \in \sigma^{-1}(B_G w B_G)$. Then $\sigma(x'') =$ bnc where n is a representative of w in $N_G/(B_G \cap N_G)$. Choose b'' and c'' in B_H'' and n'' a representative of w in $N_H''/(B_H'' \cap N_H'')$ such that σ maps $x_0'' \equiv b'' n'' c''$ to bnc. Then $x_0''^{-1} = k \in K_H \subseteq B_H''$, and we see

that $x'' = k \ x_0'' \in K_H B_H'' w B_H'' = B_H'' w B_H''$. Therefore $\sigma^{-1}(B_G w B_G) \subseteq B_H'' w B_H''$.

v. For all
$$s \in S$$
, $sB''_{H}s \nsubseteq B''_{H}$.

We know $sB_G s \nsubseteq B_G$ so we have $w_{i0}b_0w_{i0} \notin B_G$ for some representative w_{i0} of s and some $b_0 \in B_G$. Choose $b'' \in B''_H$ and $w''_i \in N''_H$ such that σ takes b'' to b_0 and w''_i to w_{i0} . Then

$$\sigma: w_i''b''w_i'' \rightarrow w_{i0}b_0w_{i0} \notin B_G$$
,

and so $w_i''b'''w_i'' \notin B_H''$.

Acknowledgements. We would like to thank E. Abe, R. V. Moody, V. G. Kac, and the referee for helpful suggestions.

References

- [A-M] E. Abe and J. Morita, Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains, J. Algebra 115 (1988), 450–465.
- [C] C. Chevalley, Sur certain groupes simple, Tôhoku Math. J. 7 (1955), 14–66.
- [K] V. G. Kac, Infinite dimensional Lie algebras, Third ed., Cambridge, 1990.
- [Mar] R. Marcuson, Tits' systems in generalized nonadjoint Chevalley groups, J. Algebra 34 (1975), 84-96.
- [Mat] O. Mathieu, Construction d'un groupe de Kac-Moody et applications, Composito Math.69(1989), 37-60.
- [M-T] R. V. Moody and K. L. Teo, Tits' systems with crystallographic Weyl groups, J. Algebra 21 (1972), 178-190.
- [Mor₁] J. Morita, Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math. 3 (1979), 41-51.
- [Mor,] J. Morita, Coverings of generalized Chevalley groups associated with affine Lie algebras, Tsukuba J. Math. 6 (1982), 1-8.
- [Mor₃] J. Morita, Commutator relations in Kac-Moody groups, Proc. Jpn. Acad. Ser. A 63 (1987), 21–22.
- [M-R] J. Morita and U. Rehman, A Matsumoto-type theorem for Kac-Moody groups, Tôhoku Math. J. 42 (1990), 537-560.
- [P-K] D. H. Peterson and V. G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci. USA 80 (1983), 1778-1782.
- [S] R. Steinberg, Lectures on Chevalley Groups, Yale University Lecture Notes, New Haven, CT, 1967.

- [T₁] J. Tits, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. Sci. Paris, Série A, 254 (1962), 2910–2912.
- [T₂] J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), 542-573.

MATHCOMP 3207 Alma Street Palo Alto, California 94306 USA