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A NOTE ON THE TITS SYSTEMS OF
KAC-MOODY STEINBERG GROUPS

By
Richard MARCUSON

Abstract. Let G(H) be the Chevalley (Steinberg) Kac-Moody
group of the Kac-Moody Lie algebra L. If O is the canonical
homomorphism of H onto G, and {B;,N} is the Tits system inG,
then {o7'(B;),07'(Ng)}is a Tits system in the Weyl-simple subgroup
of H.

More than twenty years have passed since the sthdy of Kac-Moody groups
was begun by Moody and Teo [M—T] and Marcuson [Mar]. During this period,
interest in the subject has swelled ([A —M],[Mat],[Mor,],[Mor,], [Mor,].[M-R]
and[T,]) along with that for the general theory of Kac-Moody Lie algebras [K].
One focus of this research has been to describe the Tits systems, or B-N pairs,
within the groups.

For both the Chevalley (adjoint) and Steinberg (nonadjoint) Kac-Moody
groups, the methods for constructing Tits systems have closely resembled those
used in the classical finite dimensional case. We note here that, for the Steinberg
Kac-Moody groups, it is possible to construct a second Tits system within a
naturally arising subgroup by elementary means.

For ¢ a field of characteristic 0, let L be a Kac-Moody ¢-Lie algebra

with Weyl group W. Let A,Il, and P denote the set of roots, the set of simple
- roots, and the set of positive roots respectively. We have AW =A,IIW c A, and
PWcCA.If aellW, we say that ¢ is Weyl-simple[Mar]. Denote by L,the root

space corresponding to the root O .

Let G be the Kac-Moody Chevalley group of L, i.e. the group generated
by all exp (ad te,),

G=<exp(ad te,):a€llW,e, €L, t€9).
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Assume that we have a representation of L on the e-extreme module N
with dominant highest weight. In particular, e, acts on M. The Kac-Moody

Steinberg group of L associated with Y is then
H = (exp(te,):0c€ PW,e, € L,,t € ¢).

Let O be given by exp(te,) — exp(ad te,).

Let H, be the Weyl-simple subgroup of H, i.e. the subgroup generated
by all exp(te,) where @ is Weyl-simple. Define B, to be B, "H, and Nj to
be N,.

THEOREM 1. O is a canonical group map of H, onto G.
PROOF. See Marcuson [Mar].

The notion of a Tits system, or B— N pair [T,], plays an important role
in the simplicity proofs for the classical Chevalley groups [C].

DEFINITION. A group G, subgroups B and N, and a subset § of
N /(BN N)is a Tits system if

i. (BUN)=G,
ii. BAN isnormalin G,

iii. § is a set of involutions which generate W=N/(BNN),
iv. forall se€8$ and all we W, wBsc BwB U BwsB , and

v. forall seSsBsgB .

In the sequel, we will say that {B,N} forms a Tits system when the
nature of G and S are clear.

In 1972, Moody and Teo showed by construction that a Tits system
{B;,Ng;} exists in G . Soon afterward, Marcuson (1975) constructed the Tits

system {B,,N,} generalizing that of Steinberg [S] for the representation of L on
M. In 1983, Peterson and Kac [P— K] studied the theory of B-— N pairs
{Boi,N,i} in Kac-Moody groups for general integral representations. It follows
from their work that {B;,N;} coincides with {B,,,N,,} for adjoint
representations and that {Bj,N;} coincides with {B,,,N,.} for highest weight
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representations. To see this, note first that B, c B, and B,, c Bj,. Then
B,y =B;, and B, =Bj. Now, because Bj "N} contains the kernel of
o [P—-K], it follows that {c7'(B;),07"(Ng)} coincides with {B,,,N,.}.

In the finite dimensional case, H, = H, and the Tits system in H is the

inverse image under ¢ of the Tits system in G. It is therefore natural to ask

whether B,, and N, form a Tits system simply as the inverse images of B; and
Ng; under o.

THEOREM 2. B}, =¢7'(B;) and NJ; =c"'(Ng) form a Tits system in Hj

PROOF. Let K, =kernel 0.
i. Hy=(BjUNy).

Let heH,, and write o(h)=g,:---g, where g, €eB; UN,; for i=1,...,n. Let
hie H; be such that o(h)=g;. Then h0=h|---h,,e<B;;uN;;), and

ho'h=keK, c B;; UN};. Hence h=h0ke<B;;uN;;> so that Hn;(B;;uN;;>.
Thus H;, =(Bj; UN}).

11 ” ” 3 1 ”
ii. B N Nyis normal in Ny.

This follows from B}, "N} ="' (B; "Ng).

iti. Njj /(B nN};)=W is generated by a set of involutions.

This is a consequence of the fact that o induces an isomorphism of
Ny (Bj nNg) onto Ng /(Bg N Ng).

iv.Forall se€eS,and all we W,
wBys € BysBy; O BywsBy; .

Let w/” and n” be representatives of § and w respectively in Ny /(B "Np),

and let b” € Bj;. Assume that 0 maps w/,n, and b”to w,,n and b respectively.
Thus

o :n”b”"w!— nbw, e wBgs € BgsB; U BowsBy.

Hence n”b”w/’e o~ (BgsBg; U BywsBy;)
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=0 (BysB;)U o' (BywsBy).

To finish, we need only show that for any we W, o™ (B,wB;)= BjjwBj;. Now,
BywB;, c o7 (BgwBy;) is clear. Let x” € o '(BswB;). Then o(x”) = bnc where
n is a representative of w in N /(B; " Ng). Choose b”and ¢” in Bj; and n” a
representative of w in Ny /(Bj N"Ny) such that 0 maps xJ=b"n”c” to bnc.
Thenx! "' =k e K, c B};, and we see

that x” = k x € K, Bj;wB}; = Bj;wBj}; Therefore ™' (B;wB;)  Bj,wBj; .

v.For all se S, sBjjsc By;.

We know sB;s ¢ B; so we have w,,b,w,, € B; for some representative w,,of s
and some b, € B;. Choose b” € B;; and w/’e Nj; such that 0 takes b” to b, and
w/ to w,,. Then

. 7 ”n
o:w/'b"w!’—> w,b,w,, & B,
and so w/’b”w/¢ Bj};.
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