ON A SUFFICIENT CONDITIONS FOR MULTIVALENTLY STARLIKENESS

By
Mamoru Nunokawa

Let $q \in N=\{1,2,3, \cdots\}$ and $A(q)$ denote the class of function

$$
f(z)=z^{q}+\sum_{n=q+1}^{\infty} a_{n} z^{n}
$$

which are analytic in the open disk $E=\{z:|z|<1\}$.
A function $f(z) \in A(q)$ is called q-valently starlike with respect to the origin if and only if

$$
R e \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } \quad E .
$$

There are many papers in which various sufficient conditions for multivalently starlikeness were obtained, but almost these results were got by using real part of some analytic functions.

Recently, Mocanu [3] obtained the following result by using the imaginary part of $z f^{\prime \prime}(z) / f^{\prime}(z)$.

Theorem A. If $f(z) \in A(1)$ and

$$
\left|\operatorname{Im} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\sqrt{3} \quad \text { in } E
$$

then $f(z)$ is univalently starlike in E.
We need the following lemma due to $[1,2]$.
Lemma 1. Let $w(z)$ be analytic in E and suppose that $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point z_{0}, then we can write

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where k is a real number and $k \geqq 1$.

[^0]Applying the same method as the proof of [4, Theorem 1], we can prove the following lemma:

Lemma 2. Let $p(z)$ be analytic in $E, p(0)=q$ and suppose that there exists a point $z_{0} \in E$ such that

$$
\begin{equation*}
\operatorname{Re} p(z)>0 \quad \text { for } \quad|z|<\left|z_{0}\right| \tag{1}
\end{equation*}
$$

Re $p\left(z_{0}\right)=0$ and $p\left(z_{0}\right)=i a$ where a is a real number and not zero.
Then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k
$$

where

$$
k \geqq \frac{1}{2}\left(\frac{q^{2}+a^{2}}{a}\right) \geqq q \quad \text { if } \quad a>0,
$$

and

$$
k \leqq \frac{-1}{2}\left(\frac{q^{2}+a^{2}}{a}\right) \leqq-q \quad \text { if } \quad a<0
$$

Proof. Let us put

$$
\begin{equation*}
\phi(z)=\frac{q-p(z)}{q+p(z)} . \tag{2}
\end{equation*}
$$

Then we have that $\phi(0)=0,|\phi(z)|<1$ for $|z|<\left|z_{0}\right|$ and $\left|\phi\left(z_{0}\right)\right|=1$. From (1), (2) and Lemma 1, we have

$$
\frac{z_{0} \phi^{\prime}\left(z_{0}\right)}{\phi\left(z_{0}\right)}=-\frac{2 z_{0} p^{\prime}\left(z_{0}\right)}{q^{2}-p\left(z_{0}\right)^{2}}=\frac{-2 z_{0} p^{\prime}\left(z_{0}\right)}{q^{2}+\left|p\left(z_{0}\right)\right|^{2}} \geqq 1 .
$$

This shows that

$$
-z_{0} p^{\prime}\left(z_{0}\right) \geqq \frac{1}{2}\left(q^{2}+\left|p\left(z_{0}\right)\right|^{2}\right)
$$

and $z_{0} p^{\prime}\left(z_{0}\right)$ is a negative real number.
Applying the same method as the proof of [4, Theorem 1], for $a>0$, we have

$$
\operatorname{Im} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)} \geqq \frac{1}{2}\left(\frac{q^{2}+a^{2}}{a}\right) \geqq q
$$

and for $a<0$, we have

$$
\operatorname{Im} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)} \leqq-\frac{1}{2}\left(\frac{q^{2}+a^{2}}{|a|}\right) \leqq-q .
$$

This completes our proof.

Applying Lemma 2, we will obtain a generalized result of Theorem A.
Main theorem. Let $f(z) \in A(q)$ and suppose that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \neq i k \quad \text { in } \quad E, \tag{3}
\end{equation*}
$$

where k is a real number and $|k| \geqq \sqrt{3} q$.
Then $f(z)$ is q-valently starlike in E.
Proof. Let us put

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)}
$$

where $p(0)=q$. From the assumption (3), we easily have

$$
p(z) \neq 0 \quad \text { in } \quad E .
$$

In fact, if $p(z)$ has a zero of order n at $z=\alpha \in E$, then we can put

$$
p(z)=(z-\alpha)^{n} p_{1}(z), \quad(n \in N)
$$

where $p_{1}(z)$ is analytic in E and $p_{1}(\alpha) \neq 0$.
Then we have

$$
\begin{align*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & =\frac{z p^{\prime}(z)}{p(z)}+p(z) \tag{4}\\
& =\frac{n z}{z-\alpha}+\frac{z p_{1}{ }^{\prime}(z)}{p_{1}(z)}+(z-\alpha)^{n} p_{1}(z) .
\end{align*}
$$

But, the imaginary part of (4) can take any infinite values when z approaches α.

This contradicts (3). Hence we have

$$
p(z) \neq 0 \quad \text { in } \quad E .
$$

Therefore, if there exists a point $z_{0} \in E$ such that $R e p(z)>0$ for $|z|<\left|z_{0}\right|$,

$$
\operatorname{Re} p\left(z_{0}\right)=0 \quad \text { and } \quad p\left(z_{0}\right)=i a \text {, }
$$

then we have

$$
p\left(z_{0}\right) \neq 0 \quad \text { and } \quad a \neq 0 .
$$

From Lemma 2 and (4), for $a>0$, we have

$$
\begin{aligned}
1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} & =\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+p\left(z_{0}\right) \\
& =i\left(\operatorname{Im} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+\operatorname{Im} p\left(z_{0}\right)\right)
\end{aligned}
$$

and

$$
\operatorname{Im}\left(\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+p\left(z_{0}\right)\right) \geqq \frac{1}{2}\left(\frac{q^{2}+3 a^{2}}{a}\right) \geqq \sqrt{3} q .
$$

For $a<0$, we have

$$
1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}=i\left(\operatorname{lm} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+\operatorname{Im} p\left(z_{0}\right)\right)
$$

and so

$$
\operatorname{Im}\left(\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+p\left(z_{0}\right)\right) \leqq-\frac{1}{2}\left(\frac{q^{2}+3 a^{2}}{|a|}\right) \leqq-\sqrt{3} q .
$$

These contradict (3). Hence we have

$$
\operatorname{Re} p(z)>0 \quad \text { in } E .
$$

This shows that $f(z)$ is q-valently starlike in E.
This completes our proof.
From Main theorem, we easily have the following result.
Corollary. Let $f(z) \in A(q)$ and suppose that there exists a real number R for which

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-R\right|<\sqrt{(R+1)^{2}+3 q^{2}} \quad \text { in } E .
$$

Then $f(z)$ is q-valently starlike in E.
Acknowledgement. The author sincerly appreciates the helpful comments made by the referee.

References

[1] Jack, I:S., Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
[2] Miller, S.S. and Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
[3] Mocanu, P.T., Some integral operators and starlike functions, Rev. Roumaine Math. Pures Appl. 31 (1986), 231-235.
[4] Nunokawa, M., On properties of Non-Carathéodory functions, Proc. Japan Acad. 68, No. 6 (1992), 152-153.

Department of Mathematics
University of Gunma
Aramaki, Maebashi 371
Japan
e-mail, nunokawa@la. gunma-u.ac.jp

[^0]: This reseach is partially supported by Grant-in-Aid for Scientific Reseach (C) (No. 04640127), Japanese Ministry of Education, Science and Culture.

 Received July 6, 1992. Revised January 13, 1993.

