## MINIMAL MODELS OF MINIMAL THEORIES By #### Koichiro IKEDA #### 1. Introduction The algebraic closure $\overline{\mathbf{Q}}$ of the rationals $\mathbf{Q}$ in the complex number field $\mathbf{C}$ is small in the following two senses: (i) There is no proper elementary subfield K of $\overline{\mathbf{Q}}$ , and (ii) every field which is elementarily equivalent to $\overline{\mathbf{Q}}$ has a copy of $\overline{\mathbf{Q}}$ in it. In general model theory we have to distinguish these two notions. The notion expressing the first property is called *minimal*, and the other for the the second *prime* (see Definition 1). The following is an example of a theory having a minimal non-prime model: EXAMPLE (Fuhrken [2]). The theory $T_0$ is defined as follows: For each $\nu \in <^\omega 2$ we define a function $F_\nu : {}^\omega 2 \to {}^\omega 2$ by $(F_\nu(\eta))(\imath) = \nu(i) + \eta(i) \mod 2$ for $\eta \in {}^\omega 2$ , $i < \omega$ . And for $\eta \in <^\omega 2$ , $P_\eta = \{\tau \in {}^\omega 2 : \eta < \tau\}$ . Let $M = ({}^\omega 2, \{F_\nu\}_{\nu \in <\omega_2}, \{P_\eta\}_{\eta \in <\omega_2})$ and $T_0 = Th(M)$ . Then each model generated by only one element $(\in M)$ is minimal and non-prime. Our concern is the number of minimal models of a theory with no prime model (In fact if a theory has a prime model then it has at most one minimal model). In [3] Marcus showed that if T is a theory of one unary function symbol and T has a minimal non-prime model then T has $2^{\aleph_0}$ such models. On the other hand, Shelah proved that for every $\kappa$ , $1 \le \kappa \le \aleph_0$ , there is a theory with exactly $\kappa$ minimal non-prime models (see [4]). Here we extent Marcus' result: Theories of one unary function symbol may have the Lascar rank greater than 1 (U(T)>1), however if such a theory T has a minimal model then any element a of the model has the minimum Lascar rank (i. e. $U(a) \le 1$ ). Moreover a theory of one unary function symbol is trivial (see Definition 3). In this paper we show that if a trivial theory T has a minimal non-prime model and every element of the model has the minimum Lascar rank then T has $2^{\aleph_0}$ minimal models. Our result does not depend on the language. The author wishes to thank Professor Akito Tsuboi for helpful suggestions concerning the results and proofs of this paper. He also thanks Professor John Received June 16, 1992, Revised November 25, 1992. T. Baldwin for valuable comments and catching some errors. ### 2. Definitions and Preliminary results Our notations and conventions are standard. We fix a complete theory T formulated in a countable language L. We work in a big model C of T. A, B, $\cdots$ are used to denote small subsets of C. $\bar{a}$ , $\bar{b}$ , $\cdots$ are used to denote finite sequences of elements in C. $\varphi$ , $\psi$ , $\cdots$ are used to denote formulas (with parameters). p, q, $\cdots$ are used to denote types (with parameter). The types of a over A is denoted by $\operatorname{tp}(a/A)$ . $\varphi^B$ denotes the set of realizations of $\varphi$ in a set B. The Lascar rank of p is denoted by U(p). We simply write U(a/A) instead of $U(\operatorname{tp}(a/A))$ . U(a) means U(a/Q). DEFINITION 1. Let M be a model of the theory T. - (1) M is said to be *minimal* if there is no proper elementary submodel of M. - (2) M is said to be *prime* if M can be elementarily embedded in any model of T. DEFINITION 2. (1) Let A be a set. Then an L(A)-type $\Gamma(x)$ (not necessarily complete) is said to be *principal over* A if it is generated by one L(A)-formula $\varphi(x)$ ( $\varphi$ need not be a formula in $\Gamma$ ). - (2) A formular $\varphi(x) \in L$ is said to be atomless if there is no formula $\psi(x)$ with the following properties: - (i) $T \vdash \forall x(\phi(x) \rightarrow \phi(x))$ ; - (ii) $\psi(x)$ is complete i.e. $\psi(x)$ determines a complete type p(x). If $S(\emptyset) = \bigcup_{n < \omega} S^n(\emptyset)$ is countable, then there is a prime (and atomic) model. On the other hand, if $S(\emptyset)$ is uncountable then there is an atomless formula. We prove a version of Lemma 1.3 of [3]. LEMMA. Let $\Gamma(\bar{x})$ be a non-pirncipal (possibly incomplete) type over a countable set A. Suppose that there is an atomless formula $\psi(y)$ over $\emptyset$ such that any realization d of $\psi$ independent from A. Then there are $2^{\aleph_0}$ countable models $(\supseteq A)$ omitting $\Gamma$ . PROOF. First we show the following claim: CLAIM 1. Let $\theta(\bar{x}, y)$ and $\varphi(y)$ be L(A)-formulas. If $\theta(\bar{x}, y) \wedge \varphi(y)$ is consistent then there is an L(A)-formula $\varphi^*(y)$ with $\varphi^{*c} \subset \varphi^c$ such that $\theta(\bar{x}, d)$ does not generate $\Gamma$ for any realization d of $\varphi^*$ . PROOF. Since $\Gamma$ is non-principal over A there is a realization d of $\varphi$ such that $\theta(\bar{x},d)$ does not generate $\Gamma$ . So we can pick $\gamma \in \Gamma$ such that $\theta(\bar{x},d) \land \neg \gamma(\bar{x})$ is consistent. Define $\varphi^*(y) = (\exists \bar{x})(\varphi(y) \land \theta(\bar{x},y) \land \neg \gamma(\bar{x}))$ . Then $\varphi^*$ is a consistent L(A)-formula. It is clear that $\Gamma$ is not generated by $\theta(x,d)$ for any $d \in \varphi^{*C}$ . Let $\Gamma(\bar{x})$ have k-variables. Let $\theta_n(\bar{x}, y)$ $(n < \omega)$ be an enumeration of all L(A)-formula with (k+1)-variables. CLAIM 2. We can define inductively L(A)-formulas $\psi_{\eta}(y)$ and L-formula $\alpha_{\eta}(y)$ ( $\eta \in {}^{<\omega}2$ ) satisfying the following conditions: for each $\eta \in {}^{<\omega}2$ , - (1) $\psi(y) = \psi(y)$ ; - (2) $\models (\forall y)(\phi_{\eta \smallfrown i}(y) \rightarrow \phi_{\eta}(y)) \ (i=0, 1);$ - (3) there is an L-formula $\alpha_{\eta}(y)$ such that $\models (\forall y)(\phi_{\eta \frown 0}(y) \rightarrow \alpha_{\eta}(y))$ and $\models (\forall y)$ $(\phi_{\eta \frown 1}(y) \rightarrow \neg \alpha_{\eta}(y))$ ; - (4) If $\psi_{\eta}(y) \wedge \theta_{n}(\bar{x}, y)$ is consistent then $\theta_{n}(\bar{x}, a)$ does not generate $\Gamma$ for any realization a of $\psi_{\eta}$ (the length of $\eta$ is n+1). PROOF. Suppose that $\psi_{\eta}$ 's (the length of $\eta$ is $\leq n+1$ ) have been defined. Fix any $\eta$ with length n+1. First we see that there is an L-formula $\alpha(y)$ such that both $\alpha(y) \wedge \psi_{\eta}(y)$ and $\neg \alpha(y) \wedge \psi_{\eta}(y)$ are consistent. If not, $\psi_{\eta}$ generates some complete L-type q. Since $\psi$ is atomless q is non-principal. On the other hand, by the assumption, $\psi_{\eta}$ does not fork over $\emptyset$ . So $\psi_{\eta}$ is realized by every model. This means that q is principal, which is a contradiction. Therefore we get such an $\alpha(y)$ . Put $\alpha_{\eta}(y) = \alpha(y)$ . Let $\psi_{0}(y) = \alpha_{\eta}(y) \wedge \psi_{\eta}(y)$ and $\psi_{1}(y) = \neg \alpha_{\eta}(y) \wedge \psi_{\eta}(y)$ . Suppose that $\psi_{0}(y) \wedge \theta_{n+1}(x, y)$ is consistent. By claim 1 we obtain an L(A)-formula $\psi_{0}^{*}(\psi)$ with $\psi_{0}^{*c} \subset \theta_{0}^{c}$ such that $\theta_{n+1}(\bar{x}, d)$ does not generate $\Gamma(\bar{x})$ for any realization d of $\psi_{0}^{*}$ . Put $\psi_{\eta \sim 0} = \psi_{0}^{*}$ . Similarly we can get $\psi_{\eta \sim 1}$ . Then they satisfy our requirement. This completes our construction. For $\tau \in {}^{\omega}2$ , define $\Sigma_{\tau}(y) = \{\phi_{\tau}(y) = \{\phi_{\tau}(y) : n < \omega\}$ . It is easy to see that $\Sigma_{\tau}$ 's are L(A)-types which satisfy that i) $\tau \neq \lambda$ implies $\operatorname{tp}(d_{\tau}) \neq \operatorname{tp}(d_{\lambda})$ for any realization $d_{\tau}$ of $\Sigma_{\tau}$ and $d_{\lambda}$ of $\Sigma_{\lambda}$ , and ii) if $d_{\tau}$ is a realization of $\Sigma_{\tau}$ then $\Gamma$ is non-principal over $A \cup d_{\tau}$ . By ii), for every $\tau \in {}^{\omega}2$ there is a countable model $M_{\tau}(\neg A \cup d_{\tau})$ omitting $\Gamma$ . By i), for any $M_{\tau}$ there are at most countably many $M_{\lambda}$ 's isomorphic to $M_{\tau}$ . Thus there is an $X \subset {}^{\omega}2$ with $|X| = 2^{\aleph_0}$ such that $M_{\tau}(\tau \in X)$ are pairwise non-isomorphic. Hence we obtain $2^{\aleph_0}$ countable models omitting $\Gamma$ . This completes the proof of the lemma. DEFINITION 3 (see, e.g., [1]). T is said to be *trivial* it has the following property: for any three elements a, b, $c \in C$ and any set $A \subset C$ , if a, b and c are pairwise independent over A then they are independent over A. #### 3. Theorem and Proof Theorem. Let T be stable and trivial. Suppose that T has a model M such that - (1) M is minimal and non-prime; - (2) $U(a) \leq 1$ , for all $a \in M$ . Then T has $2^{\aleph_0}$ minimal models. PROOF. First we show the following claim: CLAIM 1. There are an element a of M and a finite subset F of M such that tp(a/F) is non-principal. PROOF. M is a non-prime model. So it is not atomic, hence there is a minimal finite subset E of M such that tp(E) is non-principal. Pick any element a of E. Let $F = E - \{a\}$ . By the minimality of E tp(F) is principal, so tp(a/F) is non-principal. Here we say that a set $D(\subset C)$ is s minimal component if d and d' are interalgebraic for any d, $d' \in D$ . Let $C = \operatorname{acl}(a) - \operatorname{acl}(\emptyset)$ and A = M - C. Then C is a minimal component since U(a) = 1. CLAIM 2. There are a finite subset F' of A and an atomless formula $\psi(y)$ over F' such that any realization d of $\psi$ is independent from A over F'. PROOF. Since M is a minimal model, by the Tarski-Vaught test, we can easily find an L(A)-formula $\psi(y, \bar{a})$ such that $\psi^M \subset C$ . Let $F' = F \cup \bar{a}$ . We notice that under the assumption (2), in M the general notion of independence coincides algebraic independence. So C and A are independent by using the triviality of T. First we will show that $\psi$ is atomless over F'. If not, there is a complete formula $\psi'(y)$ over F' such that $\psi'^c \subset \psi^c$ . Then $\psi'$ is realized by some element e of C. On the other hand, by claim 1, $\operatorname{typ}(e/F)$ is non-principal. Thus using the Open Map Theorem we obtain that $\operatorname{tp}(e/F')$ is non-principal, which contradicts that $\psi'$ is complete. Hence $\psi$ is atomless over F'. Next we show that any realization d of $\psi$ is independent from A over F'. Let d be any realization of $\psi$ . Take any formula $\theta(y) \in \operatorname{tp}(d/A)$ . Then $\psi(y) \wedge \theta(y)$ is consistent. Notice that $\phi^{M} \subset C$ . So we can pick a realization d' of $\theta$ in C. Now $\operatorname{tp}(d'/A)$ does not fork over F' since C and A are independent. Hence $\theta$ does not fork over F'. It follows that $\operatorname{tp}(d/A)$ does not fork over F'. Define $\Gamma(x, y) = \{x \text{ and } y \text{ are not interalgebraic}\} \cup \{x \neq c : c \in A\} \cup \{y \neq c : c \in A\}$ . $\Gamma$ is non-principal over F' because our model $M(\supset F')$ omits it. From claim 2 it follows that $\Gamma$ and $\varphi$ satisfy the assumptions of the lemma. So we get the following claim (Note that F' is finite): CLAIM 3. There are pairwise non-isomorphic countable models $M_{\tau}(\tau < 2^{\aleph_0})$ omitting $\Gamma$ . CLAIM 4. Each $M_{\tau}$ is a minimal model. PROOF. Since $M_{\tau}$ omits $\Gamma$ and contains A, there is a minimal component D such that $M_{\tau} = D \cup A$ . Suppose that $M_{\tau}$ is not minimal. Then there is a proper sucset B of A such that $D \cup B$ is an elementary submodel of $M_{\tau}$ . So we can pick a minimal component $E \subset A - B$ . First, by the minimality of M there is an L(M-E)-formula $\psi(x,\bar{b})$ such that $\psi^M$ is contained in E. Hence $\psi^B = \emptyset$ . By the triviality of T, E and $\bar{b}$ are independent, so $\psi$ does not fork over $\emptyset$ . Thus $\psi$ is realized by the model $D \cup B$ . We have therefore $\psi^D \neq \emptyset$ . Next, by the minimality of M, there is an L(A)-formula $\varphi(x,\bar{a})$ such that $\varphi^M$ is contained in C. So $\varphi^{M_{\tau}}$ is contained in D. Hence $\varphi^D \neq \emptyset$ . Note that any two elements of D are interalgebraic. Hence we can assume that there is an element $d \in C$ which realizes both $\varphi$ and $\varphi$ . In particular we have $M \models (\exists x) (\varphi(x,\bar{a}) \land \psi(x,\bar{b}))$ . This contradicts that C and E are disjoint. Hence $M_{\tau}$ is minimal. By claim 3, 4, we obtain $2^{\aleph_0}$ minimal models. This completes the proof of the theorem. REMARKS. (1) It is known that a theory of one unary function symbol f is stable and trivial (see e.g. [5]). Moreover a minimal model of ouch a theory has minimum Lascar rank. This can be shown as follows: Pick any element a of a minimal model of the theory. Let $\operatorname{tp}(a/B)$ be a forking extension of $\operatorname{tp}(a)$ . Then by Lemma 1 in [5], there is an element b of B which is contained in the connected component C(a) of a, where $C(a) = \{x : \exists n, m < \omega \lceil f^n(a) = f^m(x) \rceil \}$ . On the other hand we see that each connected component in a minimal model is a minimal component in our language (see Lamma 3.1 in [3]). Therefore - C(a) is a minimal component, so a and b are interalgebraic. Thus $\operatorname{tp}(a/B)$ is algebraic. Hence $U(a) \leq 1$ . It follows that our theorem is a generalization of Marcus' one. - (2) The theory $T_0$ (see Introduction) satisfies the assumption of our theorem, i. e. it is stable and trivial, and has a minimal non-prime model with minimum Lascar rank. - (3) In [4] Shelah has shown that any $\kappa$ with $1 \le \kappa \le \aleph_0$ there is a complete theory, with no prime model, and exactly $\kappa$ minimal models. Theories he gave are stable, trivial and have a minimal non-prime model. But all minimal models of them have the Lascar rank 2. This shows that the condition (2) of our theorem is essential. # References - [1] Baldwin, J. and Harrington, L., Trivial pursuit: remarks on main gap, Annals of Pure and Applied Logic 34 (1987), 209-230. - [2] Fuhrken, G., Minimal und Primmodelle, Archiv für mathematische Logik und Gundlagenforchung 9 (1963), 3-11. - [3] Marcus, L., Minimal models of theories of one function symbol, Israel Journal of Mathematics 18 (1974), 117-131. - [4] Shelah, S., On the number of minimal models, The Journal of Symbolic Logic 43 (1978), 475-480. - [5] Toffalori, C., Classification theory for a 1-ary function, Illinois Journal of Mathematics 35 (1991), 1-26. Institute of Mathematics University of Tsukuba