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A METATHEORY OF NONSTANDARD ANALYSIS
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In the previous work [11] of Yasugi, we set up a formal system $IR$ of
infinitary logic, by whose proof-theoretical properties the infinitesimal calculus
can be justified. Such an attempt was started due to the first author’s wish
to single out the essence of the metatheory of nonstandard mathematics as a
“trick of the language”, and was concluded with the “linkage principles” which
support the nonstandard theory.

We have since pushed that thought forward and extended the result to
general nonstandard analysis, with the theory of Loeb measure in mind.

Let $V$ be the universe of analysis with the real numbers as individuals and
let $C$ be the set of constants representing $V$ . Let $A$ be a collection of set

theoretical axioms (those necessary for analysis) and let $B$ be a set of mathe-
matical axioms, which will be expressed in terms of ”elementary” formulas
involving the constants in C. Let $C$ be the collection of specification axioms
on the domains:

$\forall x\in d[c\in d](x=c)$ ,

where $\vee[c\in d]$ expresses the disjunotion over the domain $d$ .
With the axioms in $C$ , the elementary quantifiers and the “restricted” con-

junctions and disjunctions becomes equivalent:

$\forall x\in dF(x)-\wedge[c\in d]F(c)$ .

$C$ specifies the mathematical objects to the ”standard” ones.
Our basic logic is an infinitary logic with “elementary” quantifiers. The

“standard” analysis $SA$ is a consequence of $A$ and $B$ , and $C$ regulates the
meaning of quantifiers. If one lifts the regulation $C$ , then we obtain the sub-
system $GA$ , in which the existence of nonstandard objects will become con-
sistent. The “internality” is characterized by “elementariness”. The bridge

between $SA$ and $GA$ is the first group of “linkage” principles stated in \S 3.

See also \S 3 of [11]. By virtue of these principles, we can define a system

$NA$ , nonstandard analysis, as an enlargement of $GA$ . In order to develop ex-
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ternal theory, such as Loeb measure, one needs to introduce the “external sets”.
This can be realized by adding the external variables and by interpreting the
axioms of comprehension in the direct limit of power set operations.

The “standardization” property is also important. That is, the standard
elements of an external subset of a standard set form another standard set.
This allows one to introduce $\inf/sup$ of a bounded (external) subset of standard
reals, and hence also the “standard parts”. It is based on the “informal” com-
prehension axiom. We owe to N. Motohashi of Tsukuba in this regard.

We are thus able to sum up the basis of the external theory, $EA$ , as con-
sisting of the axioms of the external comprehension and the “comprehension in
the real world”. (The linkage principles between $NA$ and $EA$ will be stated
in \S 6.)

Our work is “another view” of Kawai’s model construction in [5]. He sets
up an axiomatic system of nonstandard set theory WNST, which is sufficient
to develop external analysis, and justifies it by constructing a model of it. We
recommend the reader to look up [5].

For the details of the homogeneous, infinitary logic, one can, for example,

refer to [2] or [10]. Our basic knowledge in nonstandard analysis has been
taken from [1], [6], [7] and [9]. We have referred to [3], [4], [5] and [8]

for the metatheories.
The first author got some ideas here during her visit to H. Sayeki in Mon-

treal, to whose hospitality she is grateful. She is also in debt to S. Szabo for
his interest in this line of work.

\S 1. The universe of analysis.

DEFINITION 1.1. 1) Let $R$ be the set of all reals, which are regarded as
individuals. Then, the universe of discourse, $V$, is defined as follows.

$V_{0}=R$ , $V_{n+1}=V_{n}\cup P(V_{n})$ ,

$V=V(R)=\bigcup_{n}V_{n}$ .

2) $C(=C(V))$ consists of all the constant symbols for the elements of $V$.
If $c$ represents a $v\in V$, then we may write $c_{v}$ for $c$ and $v_{c}$ for $v$ .

3) We shall employ the notations $\omega$ and $Q$ for the actual set of natural
numbers and that of rationals respectively; $N,$ $Q$ and $R$ for the constants repre-
senting $\omega,$ $Q$ , and $R$ respectively.

4) The well-ordering property for each set in $V$ will be assumed.



A Metatheory of Nonstandard Analysis 253

Note. 1) $V$ is adequate for developing ordinary analysis. In particular,
$V$ is closed with respect to the basic set theoretical operations. That is,

$a,$ $b\in V_{n}$ implies $\{a, b\}\in V_{n+1},$ $a\cup b,$ $a\cap b,$ $a\backslash b\in V_{n}$ ,

$\cup a\in V_{n-1},$ $P(a)\in V_{n+1}$ and $a\times b\in V_{n+1}$ .
2) Throughout the subsequent context, we shall abuse some notations.

That is, for the “real” conditions such as $v_{c}\in v_{d}$ we may write $c\in d$ .

\S 2. Formalization of analysis.

DEFINITION 2.1. 1) LA $(\equiv LA(C))$ , the language of analysis over $C$ , con-
sists of the following.

1.1) The symbols in $C$ , the predicates $=$ and $\in$ , and the language of first
order predicate calculus over these.

1.2) Other constants (function and predicate symbols) necessary for analysis.
We do not list them, and appeal to the common sense of mathematicians.

2) LA-terms are defined as usual.
3) LA-elementary formulas are defined as the usual formulas, except that

quantifiers are bounded: if $\phi$ is an elementary formula and $s$ is a term, then
$\forall x\in s\phi$ and $\exists x\in s\phi$ are elementary formulas.

4) $LS$ , the language of ‘standard’ analysis, is $LA$ plus some infinitary $\wedge$

and $\vee$ .
The introduction of infinitary connectives require many more variables.

(See [2] or [10], for instance.)

5) LS-formulas are defined similarly to LA-elementary formulas by allow-
ing infinitary conjunctions and disjunctions such as $\hat{\lambda<}rA_{\lambda}$

and
$\check{\lambda<}rA_{\lambda}$

, which

may also be expressed as $\wedge[\lambda<\gamma]A_{\lambda}$ and $\vee[\lambda<\gamma]A_{\lambda}$ , where $\gamma$ is an ordinal
below the cardinality of V. (We may write $\wedge[c\in d]A(c)$ for $\wedge[v_{c}\in v_{d}]A(c).$ )

A variable-free LS-formula will be called a standard formula.
6) Our statements will be expressed in the sequential forms:

$\{A_{\alpha}\}_{\alpha<\gamma}-\rightarrow\{B_{\beta}\}_{\beta<\delta}$ ,

$A_{\alpha}$ and $B_{\beta}$ being LS-formulas. (See also Definition 1.1 of [11].)

Note. $x\in c$
’ may be read as $x$ is of sort $c’$ .

DEFINITION 2.2. The logical system $IL$ of the LS-sequential calculus is
defined similarly to $EIL$ in Definition 1.2 of [11]. The initial sequents are of
the form $D\rightarrow D$ . Let us list some of the rules of inference.
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$\wedge$ left
$\frac{\{A_{\lambda.\mu};}{\{\wedge[\mu<\beta}\frac{\mu<\beta_{\lambda},\lambda<\gamma\},\Gamma\rightarrow\Delta}{\lambda]A_{\lambda.\mu};\lambda<\gamma\},\Gamma\rightarrow\Delta}$ ;

$\wedge$ right
$\frac{\Gamma\rightarrow\Delta,\{A_{\lambda.\mu\lambda};\lambda<\gamma\}}{\Gamma\rightarrow\Delta,\{\wedge[\mu<\beta_{\lambda}]A_{\lambda.\mu};\lambda<\gamma\}}$ for all $\{\mu_{\lambda}\}_{\lambda<\gamma}$ , $(\mu\lambda<\beta_{\lambda} ; \lambda<\gamma)$ ,

where $(\mu_{\lambda}<\beta_{\lambda} ; \lambda<\gamma)$ means “for all possibilities of $\langle\mu\lambda ; \lambda<\gamma\rangle\in\Pi[\lambda<\gamma]\beta_{\lambda}$ ;
$\forall$ left

$\frac{\{t_{\lambda}\subset-s_{\lambda}\vdash A_{\lambda}(t_{\lambda});\lambda<\gamma\},\Gamma\rightarrow\Delta}{\{\forall x_{\lambda}\in s_{\lambda}A_{\lambda}(x_{\lambda});\lambda<\gamma\},\Gamma\rightarrow\Delta}$ ;

$\forall$ right
$\frac{\Gamma\rightarrow\Delta,\{x_{\lambda}\in s_{\lambda}\vdash A_{\lambda}(x_{\lambda});\lambda<\gamma\}}{\Gamma\rightarrow\Delta,\{\forall x_{\lambda}\in s_{\lambda}A_{\lambda}(x_{\lambda});\lambda<\gamma\}}$

where $\{x_{\lambda}\}_{\lambda}$ are eigenvariables;
Cut $\underline{\{\Gamma\rightarrow\Delta,A_{\lambda}}$;

$\Gamma,$

$\Pi^{\lambda<\gamma}\rightarrow\Delta^{\lambda},\Lambda$

$\{A;\lambda<\gamma\},$ $\Pi\rightarrow\Lambda$

.

$IL$ is a portion of the general infinitary logic with homogeneous quantifiers,

and so the following hold. (See [2] and [10]; see also Proposition 1.1 and
Theorem 1 in [11].) These are the crucial facts for determining the metatheory
of nonstandard analysis.

MAIN PROPOSITION. 1) The conslstency and completeness together with the
cut elimination theorem hold for IL.

2) The compactness theorem holds for IL. That is, if $\Gamma\rightarrow\Delta$ is IL-provable,

zuhere $\Gamma$ and $\Delta$ consist of elementary formulas, then there exist finite subsets
$\Gamma_{0}\subset\Gamma$ and $\Delta_{0}\subset\Delta$ such that $\Gamma_{0}-’\Delta_{0}$ is finitarily provable.

DEFINITION 2.3. 1) $A$ will denote a collection of axioms on sets, sufficient
for the development of analysis and expressed in elementary sentences, In
particular, it includes the comprehension axiom:

$\forall x\in c\exists z\in e\forall y\in d(y\in z\equiv y\in x\wedge\phi(y, x))$ ,

where $\phi$ is elementary, $v_{d}=\cup v_{c}$ and $v_{e}=P(v_{d})$ . $B$ will denote a collection of
mathematical, elementary axioms as needed. It includes the attributes of reals
and the defining formulas of various constants. (See also Definition 2.3 in [11].)

2) $C$ will denote the collection of specification-axioms on the domains:

$\forall x\in d\vee[c\in d](x=c)$ , for each $d$ in $C$ .
3) $\Gamma\rightarrow\Delta$ , a sequent of $LS$ , is said to be a theorem of SA (standard analysis)

if $IL$ proves $A,$ $B,$ $C,$ $\Gamma\rightarrow\Delta$ .
4) $eSA$ will denote the elementary part of $SA$ , and $sSA$ will denote the

standard (variable-free) part of $SA$ .
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NOTE. $A,$ $B,$ $C$ are true in $V$ with the natural interpretation of the con-
stants and connectives, and hence the consistency of the axiom set can be as-
sumed.

The facts below, though easily proved, characterize the ”standard” analysis.

THEOREM 1. (See Theorems 2 and 3 in [11].) 1) The following is a theo-
rem of SA for every $F$ and $c$ .

$\forall x\in cF(x)-\wedge[d\in c]F(d)$ .
Similarly for $(\exists, \vee)$ .

2) The completeness of SA holds. That is, for any LS-sentence A. exactly
one of $A$ and $\urcorner A$ is a theorem of SA.

NOTE. $\rightarrow in1$ ) above is called the “standardization” of a bounded quantifier,
$and\leftarrow the$ “internalization” of a bounded conjunction.

\S 3. Generalized theory of analysis and the linkage principles.

DEFINITION 3.1. 1) The language we work with here is $LS$ .
2) $D$ will denote the collection of elementary, closed theorems of $SA$ .
3) $\Gamma\rightarrow\Delta$ is said to be a theorem of $GA$ (general analysis) if $IL$ proves

$D,$ $\Gamma\rightarrow\Delta$ .
4) $eGA$ will denote the elementary part of $GA$ , and $sGA$ will denote the

standard (variable-free) part of $GA$ .

The facts below are nearly the restatements of the results in the corollary
of Definition 3.1 and Theorems 4 and 5 in [11].

THEOREM 2. 1) The compactness of $GA$ holds. That is, if $\Gamma\rightarrow\Delta$ is a
theorem of $eGA$ , then there are finite $D_{0}\subset D$ , $\Gamma_{0}\subset\Gamma$ and $\Delta_{0}\subset\Delta$ such that
$D_{0},$ $\Gamma_{0}\rightarrow\Delta_{0}$ is finitarily provable.

2) The subtheory property $GA\subset SA$ holds.
3) SA is consistent with $GA$ .
4) The axioms in $C$ are not provable in $GA$ .
5) The completeness of $eGA$ as well as that of $sGA$ holds.
6) The transfer principle holds. That is, $eGA=eSA$ and $sGA=sSA$ .

The first group of linkage principles (of $GA$ with SA) can now be stated.
(See \S 3 of [11].)



256 Mariko YASUGI, Yoshiki TSUJII and Takakazu MORI

Linkage Principles I
[SPC: specification principle] 1) of Theorem 1
[CML: completeness of SA] 2) of Theorem 1
[SBT: subtheory property] 2) of Theorem 2
[CMP: compactness of $GA$] 1) of Theorem 2
[TRF: transfer principle] 6) of Theorem 2

These are fundamental principles in the foundations of nonstandard analysis
and will be freely used. Let us emphasize that the cut-elimination theorem
for $IL$ lies at the basis of all. The roles of these principles are outlined in
\S 3 of [11]. Some typical applications of these are seen throughout [11].

DEFINITION 3.2. Various notions and notations concerning nonstandard ob-
jects can be defined as in Definition 3.2 of [11]. The following are some ex-
amples.

st $(x, d)$ ( $x$ is a standard element of sort $d.$ ) $:\vee[c\in d](x=c)$

nst $(x, d)$ ( $x$ is a nonstandard object of sort $d.$ ) $:x\in d\wedge\urcorner\vee[c\in d](x=c)$

$\inf(x, R)$ ( $x$ is an infinite real.): xci $R\wedge\wedge[c\in R]|x|>c$

$infl(x, R)$ ( $x$ is an infinitesimal real.): $x\in R\wedge\wedge[c\in R](c>0\vdash|x|<c)$

$x\approx y$ ( $x$ and $y$ are infinitely close reals.): $infl(x-y, R)$ .

\S 4. Internality and Saturation.

In [11], the internality (as well as saturation) did not play much role ex-
plicitly, but here it does.

DEFINITION 4.1. itl $(t, c)$ ( $t$ is internal of sort $c$ ) $:t\in c$ , where $t$ is any term
of $LA$ .

This explains that the internality means being sorted.

PROPOSITION 4.1. The following are theorems of $GA$ with $c$ and $d$ constants.
1) $y\in x,$ $itl(x, c)\rightarrow y\in d$ , where $v_{d}=\cup v_{c}$ .
2) $itl(x, c),$ $itl(y, d)\rightarrow itl(x\cap y, e)$ , where $v_{e}=P(\cup v_{c}\cap\cup v_{d})$ .
3) $itl(x, c),$ $\urcorner x\in d\rightarrow itl(x, e)$ , where $v_{e}=v_{C}\backslash V_{(l}$ .
4) $itl(c, d)$ where $v_{d}=\{v_{c}\}$ .
5) Suppose $\phi(x_{1}, \cdots, x_{n}, x)$ is elementary with at most $x_{1},$ $\cdots,$ $x_{n},$ $x$ free.

Then
$\{itl(x_{i}, c_{i})\}_{i=1\ldots..n}\rightarrow\exists z\in d\forall x\in c(x\in z\equiv x\in x_{1}\wedge\phi(x_{1}, \cdots, x_{n}, x))$ ,



A Metatheory of Nonstandard Analysis 257

where $v_{d}=P(v_{c})$ and $v_{C}=\cup v_{c_{1}}$ .
The succeedent formula will be denoted as $itl(\{x\in x_{1}/\phi(x_{1}, \cdots, x_{n}, x)\}, d)$ .

NOTE. By virtue of 5) and the obvious fact $itl(x, c)\rightarrow x\in c\wedge x=x$ , the
internal sets are characterized by elementary formulas, and hence the definition
below.

DEFINITION 4.2. An LS-formula $A(x_{1}, \cdots, x_{n}, x)$ is said to be internal if,

for an elementary $\phi(x_{1}, \cdots, x_{n}, x)$ , and a constant $c$ ,

$\{x_{i}\in c_{i}\}_{i=1,\ldots,n}\rightarrow\forall x\in c(A(x_{1}, \cdots, x_{n}, x)\equiv x\in x_{1}\wedge\phi(x_{1}, \cdots, x_{n}, x))$

is a theorem of $GA$ , where $v_{C}=\cup v_{c_{1}}$ .
By 5) above, this implies that

$\{x_{i}\in c_{i}\}_{i=1\ldots..n}\rightarrow itl(\{x\in x_{1}/A(x_{1}, \cdots, x_{n}, x)\}, d)$

for some $d$ .

As a consequence of the compactness, we have a simple counterexample.
Let $A(x)$ be $\vee[n\in\omega]x=n$ . $A(x)$ is not internal. (See Proposition 3.3 in

[11].)

DEFINITION 4.3. Consider an elementary formula $B(x, y)$ . ( $B$ may contain
other free variables $x_{1},$ $\cdots,$ $x_{n}$ , in which case $\{x_{i}\in c_{i}\}_{i\approx 1\ldots..n}$ should be placed

in the premise in the subsequent argument.) Suppose $J$ is a constant. { $B(x, i)$ ;
$v_{i}\in v_{J}\}$ (abbreviated to $\{B_{i}$ ; $i\in J\}$ ) will be said to be uniformly internal.

THEOREM 3 Suppose $\{B_{i} ; i\in J\}$ is uniformly internal. If, for every finite
$v_{i_{1}},$ $\cdots,$ $v_{\iota_{m}}\in v_{J}$ ,

$\exists x\in s_{\hat{k}1}^{m_{=}}B(x, i_{k})$

is consistent with $D$ (in IL), then so is

$\exists x\in c\wedge[i\in J]B(x, i)$ .

PROOF. Suppose otherwise:

$D,$ $\exists x\subset-c\wedge[i\in J]B(x, i)\rightarrow$

is IL-provable. Then
$D,$ $x\in c,$ $\{B(x, i)\}_{i\in J}\rightarrow$

is also. By the compactness,

$D_{0},$ $x\in c,$ $\{B(x, i_{k})\}_{k=1,\ldots,m}\rightarrow$
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for some finite $D_{0}\subset D,$ $i_{1},$
$\cdots,$ $i_{k}\in J$ , or

$D_{0},$ $\exists x\in c\bigwedge_{k=1}^{m}B(x, i_{k})\rightarrow$ ,

contradicting the hypothesis.

\S 5. Nonstandard analysis.

DEFINITION 5.1. 1) Let $J$ be a constant denoting a nonempty set, and let
$V_{K}$ be the collection of the finite subsets of $v_{J}$ . Then $\wedge[v_{k}\in v_{K}]A_{k}$ may be
symbolically expressed as

A $[\{i_{1}, \cdots, i_{m}\}\subset J]A_{(i_{1}\ldots..t_{m})}$ .
With this notation, gst will denote the collection of the following formulas for
any uniformly internal $\{B(x, i)\}$ :

A $[\{i_{1}, \cdots, i_{m}\}\subset J]\exists x\in c\bigwedge_{k=1}^{m}B(x, i_{k})\vdash\exists x\in c\wedge[i\in J]B(x, i)$ .

gst stands for the ”general saturation” axioms.
2) An LS-sequent $\Gamma\rightarrow\Delta$ is said to be a theory of $NA$ (nonstandard analysis)

if
$D$ , gst, $\Gamma\rightarrow\Delta$

is IL-provable.

By the compactness and a generalization of Theorem 3, we obtain the

THEOREM 4. $NA$ is consistent.

PROPOSITION 5.1. The following are some examples of the theorems of $NA$ .
1) $\exists x\in N\wedge[n\in\omega](x>n)$

2) $\exists x\in R$ ( $ x\neq 0\wedge$ A $[n\in\omega]|x|<1/n$ )

3) $\vee[c\in R]x\approx c\rightarrow\vee[r\subset Q](r>0\wedge|x|<r)$

4) $\{c_{i}\in c\}_{i\in\omega},$ $\{c_{i}\neq c_{j}\}_{i.j\in\omega.i\neq j}\rightarrow\exists x\in c\wedge[d\in c]x\neq d$ .

These claim successively the existence of an infinite natural number, that
of a nontrivial infinitesimal real, the boundedness of a near-standard real and
the existence of a nonstandard element in any infinite set.

The instruments which are crucial for nonstandard analysis, such as the
extension property, the least number principle and the preservation theorem,
are straightforward consequences of $NA$ . We take up the first one as an ex-
ample.
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PROPOSITION 5.2 (Extension). Let $J$ and $c$ be constants, $v_{d}=P(v_{J}\times\cup v_{c})$ ,

and suppose $a$ and $f$ are variable parameters. Then

$itl(b, c),$ $\{fi\in b;i\in J\}\rightarrow\exists F\in d\forall x\in J(Fx\in b\wedge\wedge[i\in J](Fi=fi))$

is a theorem of $NA$ , where $fi$ means the application of $f$ to $i$ .

PROOF. Let $B(y, F)(\equiv B(b, f, y, F))$ be the elementary formula

$\forall x\in J(Fx\in b\wedge Fy=fy)$ .
For each $q\equiv\{i_{1}, \cdots , i_{n}\}\subset J$ , define $g_{q}$ to be a term satisfying

$g_{q}i_{k}=fi_{k}$ , $k=1,$ $\cdots,$
$n$ ,

$g_{q}u=fi_{1}$ , $u\neq i_{1},$
$\cdots,$

$i_{n}$ .
Then

$itl(b, c),$ $\{fi\in b;i\in J\}\rightarrow g_{q}\in d\wedge\bigwedge_{i=1}^{n}B(i_{k}, g_{q})$ .

So, writing the premise as $\Gamma$,

$\Gamma\rightarrow\exists g\in d\bigwedge_{k=1}^{n}B(i_{k}, g)$ .

By gst, we then obtain

$\Gamma\rightarrow\exists F\in d\wedge[i\in J]B(i, F)$ ,

from which follow the proposition.

The well-known theorems of nonstandard analysis can be proved in $NA$ ,

and also the interrelations between the standard and the nonstandard formula-
tions of various properties can be established by virtue of the linkage principles
I similarly to the case of the elementary calculus in [11].

\S 6. External theory.

DEFINITION 6.1. 1) The external language $exL$ is $LS$ plus $X,$ $Y,$ $\cdots$ , ex-
ternal variables. (In contrast, the original variables may be called “internal”
ones.)

2) Terms are those of $LS$ . (That is, external variables do not occur in
compound terms.)

3) Atomic exL-formulas are of the form $t\in s$ where one or both of $t$ and
$s$ may be external variables. The exL-formulas are defined similarly to LS-
formulas where the quantifications over external variables are unbounded.
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4) The external logical system $exIL$ is defined as the system IL (See De-
finition 2.2) with the following additions.

$\forall ex$ right

$\frac{\Gamma\rightarrow\Delta,\{A_{a}(X_{\alpha})\}_{\alpha<\gamma}}{\Gamma\rightarrow\Delta,\{\forall X_{\alpha}A_{\alpha}(X_{\alpha})\}_{\alpha<\gamma}}$

where $X_{a}$ is an external eigenvariable.
$\forall ex$ left

$\frac{\{A_{a}(t_{\alpha})\}_{\alpha<\gamma},\Gamma\rightarrow\Delta}{\{\forall X_{\alpha}A_{\alpha}(X_{\alpha})\}_{a<\gamma},\Gamma\rightarrow\Delta\prime}$

where $X_{\alpha}$ is external, $t_{\alpha}$ is either an external variable or an LS-term, in the
latter case of which $t_{a}$ is a maximal term.

Similarly for $\exists ex$ .

Similarly to the Main Proposition in \S 3 we obtain the external parallel.

MAIN $exPROPOSITION$ . $exIL$ is a two-sorted, homogeneous logic, and hence
the consistency and the completeness together with the cut elimination hold. (The

external domain contains the internal domain.)

PROPOSITION 6.1. The following are exIL-provable under the premise of
the symmetry of the equality: $t=t$ .

1) $\exists X(x=X)$ (An internal element is external.)

2) $\exists X(c=X)$ (A standard element is external.)

3) $\vee[c\in C]X=c\rightarrow\exists x(X=x)$ (A standard element is internal.)

We owe an informal account of the following lemma, which is necessary
for the standardization property, to N. Motohashi.

DIAGONAL LEMMA. Let $A$ be any exL-formula, and let $v_{e}$ be any infinite
set. For any map $v_{i}$ from $P(v_{e})$ to $v_{e}$ ,

$\rightarrow\{i\prime d\in d\equiv A(i‘ d);v_{d}\in P(v_{e})\}$

is provable in $GA$ extended to the external language $exL$ .

PROOF. Define (in the real world)

$p=\{v_{i}(v_{d});v_{i}(v_{d})\not\in v_{d}\}$ .
By the comprehension axiom in $V,$ $p$ is a set, and $p\in P(v_{e})$ and $v_{i}(p)\in p$ . But
then there is a $q\in v_{e}$ such that $v_{i}(p)=v_{i}(q)$ and $v_{i}(q)\not\in q$ . Put $b=ic_{p}$ . Notice
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that $ic_{p}\in c_{p}$ and $ic_{q}\not\in c_{q}$ can be regarded as axioms (in $D$).

$A(b)\rightarrow ic_{p}\in c_{p}\equiv A(ic_{p})$

and
$\urcorner A(b)\rightarrow ic_{q}\in c_{q}\equiv A(ic_{q})$

are provable, and hence

$A(b)\rightarrow\{i\prime d\in d\equiv A(id);v_{d}\in P(\nu_{e})\}$

and
$\urcorner A(b)\rightarrow\{i‘ d\in d\equiv A(i‘ d);v_{d}\in P(v_{e})\}$

are also.
From these follows the claim.

NOTE. One should keep in mind that the lemma relies on the fact that $p$

is a set, which is a consequence of the comprehension in the real world.

THEOREM 5 (Standard comprehension of external statements.). For any
exL-formula $A(X)$ and any standard set $v_{e}$ in $V$ ,

$\rightarrow\{\wedge[j\in e](j\in d\equiv A(j));v_{d}\in P(v_{e})\}$

is GA-provable (since the well-ordering property is assumed for the sets in $V$).

PROOF. By the lemma above and the rule: $\wedge$ right.

DEFINITION 6.2. $Z_{1}$ will denote the collection of axioms on sets except
the axioms of replacement (and comprehension) and regularity written in terms
of the external language. $Z_{2}$ will denote the collection of the comprehension
axioms on the exL-formulas. That is,

$\forall Y\exists X\forall Z(Z\in X\equiv Z\in Y\wedge A(Z, Y))$

for any (external) $A$ .

We need another fact in order to develop the external theory. This is
essentially Lemma 2 in [5] of Kawai.

THEOREM 6 (See [5].). The collection $\Sigma=\{D, gst, Z_{1}, Z_{2}\}$ of exL-formulas
is consistent with the logic $exIL$ ,

PROOF. Otherwise, $\Sigma\rightarrow$ or
$D$ , gst, $Z_{1},$ $ Z_{2}\rightarrow$

would be exIL-provable. By the Main exProposition it would be valid, and
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hence every interpretation of the language $exL$ makes $\Sigma$ false. On the other
hand, { $D$ , gst} is consistent with $IL$ due to Theorem 4, and hence there is an
interpretation $ U\equiv\langle U, \phi\rangle$ of $LS$ which makes it true. Define an interpretation
of $exL$ , say $ W=\langle W, \Phi\rangle$ as follows.

$W_{0}=U,$ $W_{n+1}=P(W_{n})\cup W_{n},$ $W=\bigcup_{n}W_{n}$ , $\Phi(x)\in U$ ,

$\Phi(\in)=\phi(\in)$ in $U$ and $\Phi(\in)=the$ real elementhood otherwise.

Then $W$ makes $\Sigma$ true, and hence $\Sigma\rightarrow is$ impossible.

NOTE. The consistency of $\Sigma$ relies on the real world of sets, and is not

an immediate consequence of metatheory.

DEFINITION 6.3. $\Gamma\rightarrow\Delta$ , a sequent of $exL$ , is said to be a ‘theorem of $EA$

(external analysis)’ if
$\Sigma,$ $\Gamma\rightarrow\Delta$

is exIL-provable.

As an immediate consequence of Theorems 5 and 6 and the definition im-
mediately above, we obtain the following conclusion.

THEOREM 7. The external theory of analysis, $EA$ , is consistent, and proves
the axiom of standardization.

DEFINITION 6.4. $c=^{l}\sup\{r\in R;A(r)\}$ (the standard $\sup$ of the external
set $A$):

$(\wedge[r\in R](A(r)\vdash r<c))\wedge(\wedge[d\in R](d<c\vdash\vee[r\in R](A(r)\wedge d<r)))$ .
The statements below relate standard and nonstandard elements, and are

consequences of Theorem 7.

PROPOSITION 6.2. 1) The completeness of standard reals holds in $EA$ .
2) The standard part of a bounded (finite) real can be defined in $EA$ .

PEOOF. 1) Let $A(X)$ be any exL-formula. By virtue of Theorem 5 with
$v_{e}=R$ and $v_{r}\in R$ ,

$\rightarrow\{\wedge[j\in R](j\in d\equiv A(j)\wedge j<r);v_{d}\in P(R)\}$

holds in $EA$ . For each $v_{d}$ in $P(R)$ which is bounded (by a standard real), and
for some $v_{c}$ in $R$ ,

$\sup d^{\epsilon}=c$
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is a theorem of $GA$ . So,

V $[c\in R](\sup\{J\in R;A(j)\wedge j<r\}=^{s}c)$

holds in $EA$ , which means the completeness of standard reals.
2) For an $r$ in $R$ , let $A(x, y)$ abbreviate $x,$ $y\in R\wedge y<x<r$ . The $n$ , by 1),

$\vee[c\in R](\sup\{J\in R;A(x, ])\}=^{s}c)$ .

$\sup\{j\in R;A(x, j)\}=c\rightarrow x\approx cs$

also holds. So,
$x\in R\wedge x<r\rightarrow[c\in R](x\approx c)$ .

The uniqueness of such $c$ for an $x$ can easily be proven, and hence the $c$ can
be expressed as $st(x)$ .

We can now state the second group of linkage principles (of $NA$ with $EA$)

in addition to the first one in \S 3.

Linkage Principles II

[STD: standardization theorem] Theorem 5
[CNS: consistency of external comprehension] Theorem 6

Since it is now a routine to carry out the external mathematics, we shall
explain with just one example how one can express the theorems of Loeb
measure in our theory. This will be done in the next section. We do not
have set-theoretical operations such as {X, $Y$ }$\cdot,$

$\cup X,$ $P(X),$ $XY$ and $\{X/X\in$

$Y\wedge A(X)\}$ officially (for external variables). They are abbreviated expressions,
which can be restored to finitary formulas.

\S 7. Loeb measure.

We assume henceforth that

$P\equiv(\Omega, A, \mu)$

is an internal probability space. That is, $P$ is a variable and we place the
following internal premise.

$\Sigma(P, c):P\in c\wedge P$ is of the form $(\Omega, A, \mu),$ $\Omega$ is a set, $A$ is a finite
algebra over $\Omega$ and $\mu$ is a finitely additive probability on $A$ .

Under this premise, we shall show how an external $\sigma$ -algebra extending $A$

and the so-called Loeb measure can be expressed in our external theory.
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DEFINITION 7.1.

$B(B):B\subset\Omega\wedge\forall a\in A\wedge[\epsilon>0]\exists x,$ $y\in A(x, y\subset a\wedge x\subset B\cap a\subset y\wedge\mu(x-y)<\epsilon)$ ,

where $B$ is an external variable, the quantifiers are internal and $\epsilon$ is any posi-
tive real constant.

Notice that $\Omega\in d\wedge B(B)\rightarrow B\in b$ holds, where $v_{b}=P(\cup^{\mathfrak{l}}v_{d})$ .

PROPOSITION 7.1. $\forall x\in AB(x)$ and $B$ is a $\sigma$-algebra, where a ‘a-algebra’ $is$

expressed in terms of an infinitary $\wedge$ .

PROOF. One can follow the usual mathematical proof. To show that $B$ is
a $\sigma$-algebra, one uses the extension theorem, Proposition 5.2, where the $b$ there
is here $A_{a}$ with $a\in A$ and $A_{a}=\{c\in A;c\subseteqq a\}$ .

Due to the consistency of the external comprehension (CNS), $B$ is an ex-
ternal set, and hence it is meaningful to work on $B$.

DEFINITION 7.2.
$\lambda(B, e);e=\inf\{d;\exists Q\in A(B\subseteqq Q\wedge d\approx\mu(Q))\}$ .

PROPOSITION 7.2. 1) $B\subset\Omega\rightarrow\vee[e\in R]\lambda(B, e)$ is a theorem of $EA$ .
2) $\lambda$ is a countably additive probability measure on $B$ .

PROOF. 1) By Proposition 6.2.
2) For example, the binary additivity of $\lambda$ is expressed as:

$B,$ $C\subset B,$ $B\cap C=\emptyset,$ $\lambda(B, b),$ $\lambda(C, c)\rightarrow\lambda(B\cup C. b+c)$ .
By virtue of 1), the assumptions $\lambda(B, b)$ and $\lambda(C, c)$ are meaningful.

We can also express and show that $(\Omega, B, \lambda)$ is a complete, countably
additive probability space, which is an extension of $(\Omega, A, st\mu)$ , where $st\mu$ is
the “standard part of $\mu’$ .

Various properties of Loeb measure and the integration can be dealt with
similarly; see also \S 7 of [11] for the integration.
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