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CONSTRUCTIONS OF COMPLETE METRIC SPACES
AND COMPACT HAUSDORFF SPACES

WHICH ARE NOT BAIRE SPACES

By

Nobutaka TSUKADA

The standard proofs of the Baire category theorem for complete metric
spaces (for compact Hausdorff spaces) use the Principle of Dependent Choice.
Goldblatt [1] showed the Baire Category Theorem for complete metric spaces
is equivalent to the Principle of Dependent Choice. So there are models of set
theory in which the Baire Category Theorem for complete metric spaces fails.
On the other hand, in case of the Baire category theorem for compact Haus-
dorff spaces the existence of such models has not been known.

The purpose of this paper is to construct compact Hausdorff spaces which
are not Baire spaces in models of set theory. We also show explicitly com-
plete metric spaces which are not Baire spaces.

\S 1. Preliminaries.

The Baire Category Theorem. A subset $S$ of a topological space $X$ is
meager (or of first category) if $S$ is a countable union of nowhere dense sets.
A topological space $X$ is a Baire space if every nonempty open set of $X$ is not
meager. The Baire Category Theorem for complete metric spaces (resp. for
compact Hausdorff spaces) is the assertion every complete metric space (resp.

compact Hausdorff space) is a Baire space.

Dependent Choice. The principle of Dependent Choice (DC) is a weakened
form of the Axiom of Choice (AC):

(DC) If $R$ is a binary relation on a set $S$ such that for all $s\in S$ there exists
a $t\in S$ with $sRt$ , then for any $s\in S$ there exists a sequence $f;\omega\rightarrow S$ with $f(O)=s$

and $f(n)Rf(n+1)$ for all $ n<\omega$ .

Set theory with atoms, ZFA. The set theory with atoms, ZFA, is a modified
version of Zermelo-Fraenkel set theory (ZF), and it admits objects other than
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sets, atoms. Atoms are objects which have no elements. The language of
ZFA consists of $=$ and $\in$ and of two constant symbols 0(the empty set) and
$A$ (the set of all atoms). The axioms of ZFA are as follows:

O. Empty set $\urcorner\exists x(x\in 0)$ .
A. Atoms $\forall x[x\in A\leftrightarrow\urcorner x=0\wedge\urcorner\exists y(y\in x)]$ .

Atoms are the elements of $A$ ; sets are all objects which are not atoms.
Al. Extensionality ( $\forall$ sets $X,$ $Y$ ) $[\forall z(z\in X\leftrightarrow z\in Y)\leftrightarrow X=Y]$ .
A2. Pairing; A3. Comprehension; A4. Union; A5. Power-Set;
A6. Replacement; A7. Infinity are like the axioms of ZF.
A8. Regularity ( $\forall$ set $X$) $[X=0\vee\exists y\in X(X\cap y=0)]$ .
For any set $S$ let $\mathcal{P}^{\alpha}(S)$ be defined as follows:

$\mathcal{P}^{0}(S)=S$ ,

$\mathcal{P}^{\alpha+1}(S)=\mathcal{P}^{\alpha}(S)\cup \mathcal{P}(\mathcal{P}^{\alpha}(S))$ ,

$\mathcal{P}^{\alpha}(S)=\bigcup_{\beta<\alpha}\mathcal{P}^{\beta}(S)$ for limit $\alpha$ ,

and let
$\mathcal{P}^{\infty}(S)=\bigcup_{\alpha\in 0n}\mathcal{P}^{\alpha}(S)$ .

Then we have $V=\mathcal{P}^{\infty}(A)$ . So we can define the rank of $x,$ $\rho(x)$ , for every
set $x$ ;

$\rho(x)=the\alpha$ such that $x\in \mathcal{P}^{\alpha+1}(A)-\mathcal{P}^{\alpha}(A)$ .

(For an atom $x$ , let $\rho(x)=-1.$ ) If we add to ZFA the axiom $A=0$ , we get
ZF. $ZFA+AC$ is consistent iff ZF is consistent.

Permutation Models. Let $\mathscr{R}$ be a transitive model of ZFA and let $A$ be the
set of atoms of .St. For each permutation $\pi$ of $A$ , we can define $\pi(x)$ for
every set $x$ by recursion on the rank of $x$ ;

$\pi(0)=0$ , $\pi(x)=\{\pi(y)|y\in x\}$ .

Then $\pi$ becomes an automorphism of ,St. Let $\mathcal{G}$ be a group of permutations
of $A$ . A set $\mathcal{F}$ of subgroups of $\mathcal{G}$ is a normal filter on 9 if for all subgroups
$H,$ $K$ of $\mathcal{G}$ ;

(1) $\mathcal{G}\in \mathcal{F}$ ;

(2) if $H\in \mathcal{F}$ and $K\in \mathcal{F}$ , then $H\cap K\in \mathcal{F}$ ;

(3) if $H\in \mathcal{F}$ and $H\subset K$, then $K\in \mathcal{F}$ ;

(4) if $\pi\in \mathcal{G}$ and $H\in \mathcal{F}$ , then $\pi H\pi^{-1}\in \mathcal{F}$ ;
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(5) for each $a\in A,$ $\{\pi\in \mathcal{G}|\pi a=a\}\in \mathcal{F}$ .

Let $\mathcal{G}$ and $\mathcal{F}$ be fixed. $x\in\ovalbox{\tt\small REJECT}$ is called symmetric if $\{\pi\in \mathcal{G}|\pi x=x\}\in \mathcal{F}$ .
The permutation model determined by $\mathcal{G}$ and $\mathcal{F}$ is the class

$7l=\{x|x\subset\Re\wedge\{\pi\in \mathcal{G}|\pi x=x\}\in \mathcal{F}\}$

which consists of all hereditarily symmetric objects. Then

,EIZ is a transitive model of ZFA; $\mathcal{P}^{\infty}(0)\subset\Re$ and $ A\in\Re$ .
Let $\mathcal{G}$ be a group of permutations of $A$ . An ideal $I$ on $A$ is normal if

(1) if $\pi\in 9$ and $E\in I$, then $\{\pi e|e\in E\}\in I$ ;

(2) for each $a\in A,$ $\{a\}\in I$ .

For each $x$ , let fix $(x)$ be the subgroup of $\mathcal{G}$ defined by:

fix $(x)=$ { $\pi\in \mathcal{G}|\pi y=y$ for all $y\in x$ }.

Let $\mathcal{F}$ be the filter on 9 generated by the subgroups fix $(E),$ $E\in I$ . Then $\mathcal{F}$ is
normal. In this case, $x$ is symmetric iff there exists an $E\in I$ such that

fix $(E)\subset\{\pi\in \mathcal{G}|\pi x=x\}$ .
$E$ is called a support of $x$ . Normal filters used in this paper will be of this
type.

For more detailed descriptions on ZFA and on permutation models refer to
[2; Chapter 4].

\S 2. Complete metric spaces which are not Baire.

Let .SIt be a model of $ZFA+AC$ with countable atoms. Divide the set $A$

of atoms of $\mathscr{R}$ into countably many disjoint pairs:

$A=\bigcup_{n<\omega}A_{n}$ , $A_{n}=\{a_{n}, b_{n}\}$ .

Let $\mathcal{G}$ be the group of all those permutations of $A$ which preserve the pairs
( $i$ . $e$ . $\pi A_{n}=A_{n}$ for all $ n<\omega$). Let $I$ be the ideal of all finite subsets of A. $I$

is normal. Let $\mathcal{F}$ be the filter generated by subgroups fix $(E),$ $E\in I$ . Let 71 be
the permutation model determined by 9 and $\mathcal{F}$ . In [2], 92 is called the second
Fraenkel model. Note that for $ x\in\Re$ we can take a support of $x$ of the form
$A_{0}\cup A_{1}\cup\cdots\cup A_{k}$ (as each $A_{n}$ is finite).

For each $ n<\omega$ , let
$A_{n}^{*}=A_{n}\cup\{n\}$ .
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In the model $7l$ , consider the set

$P=\prod_{<n\omega}A_{n}^{*}$

and the metric on $P$ defined by

$d(f, g)=\{\mu n[f(n)\neq g(n)]+1\}^{-1}$ for $f,$ $g\in P(f\neq g)$ .
Then we have the

THEOREM 1. In 9, $\langle P, d\rangle$ is a complete metric space which is not a Baire
space.

PROOF. First note that

$(*)$ If $A_{0}\cup A_{1}\cup\cdots\cup A_{k}$ is a support of $f\in P$, then $f(n)=n$ for each $n>k$ .
For if $n>k$ and $f(n)\neq n$ , then $f(n)\in A_{n}$ and there is a $\pi\in fix(A_{0}\cup A_{1}\cup\cdots\cup A_{k})$

such that $f(n)\neq\pi(f(n))$ , but $\pi(f(n))=(\pi f)(\pi n)=f(n)$ , a contradiction.
Next we show that the metric space $\langle P, d\rangle$ is not a Baire space in Su.

For each $ n<\omega$ , let

$S_{n}=\{f\in P|\forall m>n f(m)=m\}$ .
Then, by $(*)$ , we have

$(**)$
$P=\bigcup_{n<\omega}S_{n}$ .

As every $\pi\in \mathcal{G}$ preserves $S_{n}$ and the sequence $\langle S_{n}|n<\omega\rangle$ , these are in $\Re$ . Each
$S_{n}$ is nowhere dense in $yl$ , since $S_{n}$ is closed and does not contain any non-
empty open set. So $(**)$ shows that $\langle P, d\rangle$ is not a Baire space in $\mathcal{J}1$ .

Finally we show that the metric space $\langle P, d\rangle$ is complete in $\Re$ . By $(*)$ we
have

$(***)$ if $f,$ $g\in P$ have a support $A_{0}\cup A_{1}\cup\cdots\cup A_{k}$ ,

then either $f=g$ or $d(f, g)\geqq(k+1)^{-1}$ .

Let $\langle f_{i}|i<\omega\rangle\in 7l$ be a fundamental sequence of $\langle P, d\rangle$ . Take a $k$ such that
$A_{0}\cup\cdots\cup A_{k}$ is a support of $\langle f_{i}|i<\omega\rangle$ . Then for $\pi\in fix(A_{0}\cup\cdots\cup A_{k})$

$\langle\pi(f_{i})|i<\omega\rangle=\pi\langle f_{i}|i<\omega\rangle=\langle f_{i}|i<\omega\rangle$ .

So $A_{0}\cup\cdots\cup A_{k}$ is also a support of $f_{i}$ for every $ i<\omega$ . As $\langle f_{i}|i<\omega\rangle$ is a
fundamental sequence, by $(***)$ , there must exist an $n$ such that

$\forall i,$ $j\geqq nf_{i}=f_{j}$ .
Hence
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$\lim_{i\rightarrow\infty}f_{i}=f_{n}$ .

This shows $P$ is complete in $\Re$ . $\square $

Goldblatt [1] showed that under $\urcorner DC$ there is a complete metric space
which is not Baire. We show here how to construct such a space because his
construction is indirect.

CONSTRUCTION: Assume $\urcorner DC$ . Then we can take a set $S$ , a binary rela-
tion $R$ on $S$ , and an element $s$ of $S$ such that $\forall x\in S\exists y\in S(xRy)$ and such that

$\forall f:\omega\rightarrow S\{f(0)=s\rightarrow\exists k<\omega[\forall n<kf(n)Rf(n+1)\wedge\urcorner f(k)Rf(k+1)]\}$ .
Let

$P=$ { $p|$ Fnc $(p)\wedge 0<dom(p)<\omega\wedge p(O)=s\wedge\forall n[n+1\in dom(p)\rightarrow p(n)Rp(n+1)]$ }.

Consider the metric space $P^{\omega}$ with the metric defined by

$d(f, g)=\{\mu n[f(n)\neq g(n)]+1\}^{-I}$ for $f,$ $g\in P^{\omega}(f\neq g)$ .
$P^{\omega}$ is complete, for the limit of a fundamental sequence can be defined ex-
plicitly. The subset

$C=\{f\in P^{\omega}|\forall n<\omega f(n)\subset f(n+1)\}$

consisting of increasing sequences is nonempty and closed, for, if $f(m)\not\subset f(m+1)$ ,

then $\{g\in P^{\omega}|\forall n<m+2[g(n)=f(n)]\}$ is a neighbourhood of $f$ disjoint from $C$ .
So $C$ is a complete metric space with the metric $d\cap C^{2}$ . Now we shall show
$C$ is not a Baire space. For each $ n<\omega$ , let

$C_{n}=\{f\in C|\exists m<\omega n\in dom(f(m))\}$ .

Then $C_{n}$ is open in $C$ . For, if $f\in C$ and $n\in dom(f(m))$ , then $\{g\in P^{\omega}|g(m)=$

$f(m)\}\cap C$ is a neighbourhood of $f$ in $C$ included in $C_{n}$ . To see that $C_{n}$ is
dense in $C$ , take $f\in C$ and let $N=\{g\in P^{\omega}|\forall i<kg(i)=f(i)\}\cap C$ be a basic open
neighbourhood of $f$ in $C$ . By applying the condition $\forall x\in S\exists y\in S(xRy)$ at
most $n$ times, $f(k)$ can be extended to a $p\in P$ with $n\in dom(p)$ . Define $g$ by:

$g=(f|k)\cup\{\langle n, p\rangle|k\leqq n<\omega\}$ .
Then $g\in lV\cap C_{n}$ , so $C_{n}$ is dense. Now by the definitions of $C$ and $C_{n}\prime s$ we
have

$f\in\bigcap_{n<\omega}C_{n}-\forall n<\omega[f(n)\subset f(n+1)]\wedge\bigcup_{n<\omega}$ dom $(\int(n))=\omega$ .

So by the choice of $P$
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$\bigcap_{n<\omega}C_{n}=0$ , $i$ . $e$ . $C=\bigcup_{n<\omega}(C-C_{n})$ .

As $C-C_{n}$ is nowhere dense, $C$ is not a Baire space.

\S 3. Construction of a compact Hausdorff space which is not Baire.

Let $\ovalbox{\tt\small REJECT}$ be a model of $ZFA+AC$ and assume that the set $A$ of atoms of .Sit
is countable in $\ovalbox{\tt\small REJECT}$ . Let $A$ be divided into countably many disjoint countable
sets:

$A=\bigcup_{n<\omega}A_{n}$ , $A_{n}=\{a_{nm}|m<\omega\}$ .

By AC in .Su, we can take sets $<_{n}$ and maps $\varphi_{n}$ such that each $\varphi_{n}$ : $\langle A_{n}, <_{n}\rangle$

$\rightarrow\langle Q, <\rangle$ is an order isomorphism, where $\langle Q, <\rangle$ is the usual order structure
of rationals. Let $\mathcal{G}$ be the group of all those permutations of $A$ which preserve
each $A_{n}$ and each order $<_{n}$ , and which move on only finitely many $A_{n}\prime s$ . Let
$I$ be the ideal of all finite subsets of $A$ . Let $\mathcal{F}$ be the normal filter on 9
generated by the subgroups fix $(E),$ $E\in I$ . Let su be the permutation model
determined 9 and $\mathcal{F}$ . By the choice of 9, each $\langle A_{n}, <_{n}\rangle$ is in Su.

In $\Re$ , consider $A_{n}$ as a topological space with the open interval topology
induced by the ordered set $\langle A_{n}, <_{n}\rangle$ . Then we have the

LEMMA. (a) Every open set of $A_{n}$ is a union of finitely many open intervals
of $\langle A_{n}, <_{n}\rangle$ .

(b) Every closed set of $A_{n}$ is a union of finitely many intervals of the forms
$(\leftarrow, a],$ $[a, b],$ $[a, \rightarrow$).

(c) Every compact set of $A_{n}$ is a union of finitely many closed intervals of
$\langle A_{n}, <_{n}\rangle$ , and vice versa.

PROOF. Let $ B\in\Re$ be a subset of $A_{n}$ and let $E$ be a support of $B$ . As
$\pi(B)$ is determined by $\pi|A_{n}$ , we may suppose $E\subset A_{n}$ . Let

$E=\{e_{0}, e_{1}, \cdots, e_{k}\}$ , $e_{0}<ne_{1}<n$ $<_{n}e_{k}$ .

If $a\in B$ , then $\pi(a)\in B$ for all $\pi\in fix(E)$ . If $a\in(\leftarrow, e_{0})$ , then $\{\pi(a)|\pi\in fix(E)\}$

$=(\leftarrow, e_{0})$ . So, if $a\in B\cap(\leftarrow, e_{0})$ , then $(\leftarrow, e_{0})\subset B$ . Hence

either $(\leftarrow, e_{0})\cap B=0$ or $(\leftarrow, e_{0})\subset B$ .
In the same way, we can prove

either $(e_{i}, e_{i+1})\cap B=0$ or $(e_{i}, e_{i+1})\subset B$ for $i=0,1,$ $\cdots,$ $k-1$ ;

either $(e_{k}, \rightarrow)\cap B=0$ or $(e_{k}, \rightarrow)\subset B$ .
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Thus $B$ must be a union of some of sets:

$(\leftarrow, e_{0}),$ $\{e_{0}\},$ $(e_{0}, e_{1}),$ $\{e_{1}\},$
$\cdots,$

$(e_{k-1}, e_{k}),$ $\{e_{k}\},$ $(e_{h}, \rightarrow)$ .
Therefore (a) and (b) hold.

Now we turn to proving (c). For each subset $B$ of $A_{n}$ , let $B^{\wedge}$ be the cor-
responding subset of reals in ,Si: for example

$(a, b)^{\wedge}=\{r|\ovalbox{\tt\small REJECT}\models[r\in R\wedge\varphi_{n}(a)<r<\varphi_{n}(b)]\}$ ;

$(\leftarrow, a)^{\wedge}=\{r|\ovalbox{\tt\small REJECT} F[r\in R\wedge r<\varphi_{n}(a)]\}$ ;

$[a, b]A=\{r|\ovalbox{\tt\small REJECT}\models[r\in R\wedge\varphi_{n}(a)\leqq r\leqq\varphi_{n}(b)]\}$ ;

if $B=(\leftarrow, b_{0})C)(b_{1}, b_{2})\cup\cdots\cup(b_{2k-1}, b_{2k})$ with $b_{0}<b<b<n$ $<_{n}b_{2k}$ ,

then $B^{\wedge}=(\in-, b_{0})^{\wedge}\cup(b_{1}, b_{2})^{\wedge}\cup\cdots\cup(b_{2k-1}, b_{2k})^{\wedge};$

if $B=[b_{0}, b_{1}]\cup\cdots\cup[b_{2k}, b_{2k+1}]$ with $b_{0}\leqq b<b\leqq b<n$ $<_{n}b_{2k}\leqq_{n}b_{2k+1}$ ,

then $B^{\wedge}=[b_{0}, b_{I}]^{\wedge}\cup\cdots\cup[b_{2k}, b_{2k+1}]^{\wedge};$ and so on.

Let $B$ be a union of finitely many closed intervals of $\langle A_{n}, <_{n}\rangle$ . Then the set
$B^{\wedge}$ is a bounded closed subset of $R$ in $\ovalbox{\tt\small REJECT}$ . Let $\{G_{j}|j\in J\}$ be an open covering
of $B$ in $\Re$ . Then $\{G_{j}^{\wedge}|j\in J\}$ is an open covering of $B^{\wedge}$ in $\ovalbox{\tt\small REJECT}$ . By the Heine-
Borel theorem in ,St, we can take a finite subcovering $\{G_{j}^{\wedge}|j\in J_{0}\}$ of $B$ . Then
$\{G_{j}|j\in J_{0}\}$ covers $B$ . As $J_{0}$ is finite, $\{G_{j}|j\in J_{0}\}$ is in $yt$ . Therefore $B$ is
compact in $7l$ . This proves the reverse direction of (c). Next, to prove the
forward direction of (c), assume that $B$ is compact and that $B$ is not a finite
union of closed intervals of $\langle A_{n}, <_{n}\rangle$ . Since $A_{n}$ is a Hausdorff space, $B$ is
closed. By (b), $B$ must be one of the forms:

$(\leftarrow, e_{i}]\cup B^{\prime}$ with $ B^{\prime}\subset[e, \rightarrow$ ) for some $e>e$ ,

$B^{\prime}\cup[e_{i}, \rightarrow)$ with $B^{\prime}\subset(\leftarrow, e$] for some $e<e$ ,

$A_{n}$ .
But then in either case, we can take explicitly an open covering of $B$

which has no finite subcovering of $B$ , a contradiction. Therefore (c) holds. $\square $

By (c), every point of $A_{n}$ has a compact neighbourhood, and hence $A_{n}$ is
locally compact. So let $A_{n}^{*}$ be a one-point compactification of $A_{n}$ :

$A_{n}^{*}=A_{n}\cup\{n\}$ .
By (c) and (a), an open neighbourhood of the point $n$ is of the form

$(\leftarrow, a)\cup\{n\}\cup(b, \rightarrow)\cup G$
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where $G$ is an open set of $A_{n}$ .
In $3l$ , consider the product space

$T=\prod_{n<\omega}A_{n}^{*}$

with the weak topology (this is possible as the sequence $\langle A_{n}^{*}|n<\omega\rangle$ is in $7l$).

Then we have the

THEOREM 2. In $\mathcal{J}l,$ $T$ is a compact Hausdorff space which is not a Baire
space.

PROOF. In [3], we constructed a model $\mathfrak{N}$ of ZFA, in which the Boolean
prime ideal theorem holds. The model 92 constructed above is a special case
of $\mathfrak{N}$ . So, in $\sqrt[C]{}$ , the Boolean prime ideal theorem holds. The Boolean prime
ideal theorem is equivalent to the Tychonoff’s Theorem for compact Hausdorff
spaces ([2, pp. 27-30]). Since each $A_{n}^{*}$ is compact Hausdorff in $yt,$ $T$ , also, is
a compact Hausdorff space in $\Re$ .

In the sequel we prove that $T$ is not a Baire space. For each $ n<\omega$ put

$ A_{n}=A_{0}^{*}\times A^{*_{1}}\times\cdots\times A_{n}^{*}\times\{n+1\}\times\{n+2\}\times\cdots$ .

Then each $\tilde{A}_{n}$ and the sequence $\langle A_{n}|n<\omega\rangle$ are in $\Re$ , since every $\pi\in 9$ pre-
serves $A_{n}$ . $\tilde{A}_{n}$ is closed and does not contain any nonempty open set in Su;

thus $\tilde{A}_{n}$ is nowhere dense in cfl. In order to prove that $T$ is not Baire, it
suffices to show that

$(****)$ $T=\bigcup_{n<\omega}\tilde{A}_{n}$ .

in Su. Let $f\in T$ and let $E$ be a support of $f$ . As $E$ is finite there is a $k$

such that
$E\subset A_{0}\cup A_{1}\cup\cdots\cup.4_{k}$ .

Assume that $n>k$ and $f(n)\neq n$ . Then there is a $\pi\in fix(E)$ such that $\pi(f(n))$

$\neq f(n)$ . Since $E$ is a support of $f,$ $\pi(f(n))=(\pi f)(\pi n)=f(n)$ , this is a contra-
diction. So if $n>k$ , then $f(n)=n;i$ . $e$ . $f\in\tilde{A}_{k}$ . As the sequence $\langle\tilde{A}_{n}|n<\omega\rangle$ is
in $7l,$ $(****)$ holds in $yl$ . $\square $

The truth of the assertion:

$T$ is a compact Hausdorfi space which is not Baire

is determined in the set $\mathcal{P}^{\omega_{1}}(A)$ . So we can apply the First Embedding Theo-
rem in [2, THEOREM 6.1, p. 85] to the above permutation model to get a ZF
version ( $i$ . $e$ . a symmetric model in which there is a compact Hausdorff space
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which is not Baire). Thus we have the

THEOREM 3. $In$ ZF (ZFA), the Baire category theorem for compact Haus-
dorff spaces is unprovable (if ZF is consistent).
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