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1. A compact connected oriented Riemannian 4-manifold (M, g) is called
half conformally flat, or a Riemannian metric g on M is called self-dual or
anti-self-dual, when W-=0 or W*=0 where W* is the self-dual (anti-self-dual)
part of the Weyl conformal curvature tensor W of g.

We denote for an arbitrary Riemannian metric g by R=(R;jz1), Ric=(R;;)
and p the Riemannian curvature tensor, the Ricci tensor and the scalar curva-
ture, respectively. Then the Weyl conformal curvature tensor W=W ;::), con-
sidered as a section of the symmetric product bundle S?(£?), is defined by

R=W+LDg

(L=1/2 (Ric—(p/6)g) is the Schouten tensor and ® is the Kulkarni-Nomizu
product).

In terms of the Hodge star operator the bundles £% and S%*( 2% decompose
as 2°=0'PR- and SA(LH=SUQLHPR* R )P(NR-R2"DS*L2-), respectively

R* R*- w+ 0
and then the tensors R and W split as R= and W= in

R-* R~ 0o w-
such a way that R*=W*4(p/12)I.

The notion “half conformal flatness” depends only on a conformal Structure
[g], the conformal equivalence class represented by a Riemannian metric g,
because W and the Hodge star operator are conformal invariants.

The significance of the half conformally flat structure is that it ensures the
integrability of the almost complex structure which is naturally defined on the
twistor space Zy—M, the unit sphere bundle of £2* such that Z, becomes a
complex 3-fold admitting a real structure ([17).

Like Yang-Mills instantons on 4-manifolds, every half conformally flat
structure [g] enjoys an elliptic complex at any representative within [g] pro-
vided W=W~- i.e., W*=0
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C=(M, Ty) —Li C=(M, S§T3)) Bi C>(M, S§(2*)),
where L, is the tracefree Lie derivative of g and the second order operator
D, is the linearization of the self-dual part W* of W ([10]).

The index of this complex is from the Atiyah-Singer index theorem 1/2
(297 (M)+15x(M)) ([10D.

This elliptic complex gives rise to a local description of the moduli space
My of half conformally flat structures on M, the space of all diffeomorphism-
equivalence classes of half conformally flat structures on M. The moduli space
has a structure of real analytic variety. In fact it is written as Zero (K)/C,»,
the zero locus of the map K between cohomologies H', H? of the complex
divided by the [g]-conformal diffeomorphism group C.,; at each [g] ([Theorem
2, 10]). In the sense of this local description H' and H® represent the space of
infinitesimal deformations of half conformally flat structures and the space of
obstruction for local deformations, respectively.

We restrict ourself in this article to 4-manifolds of certain type, namely,
Kihler surfaces of zero scalar curvature and investigate how the second co-
homology group H? relates with certain cohomology groups of other elliptic
complexes which are holomorphically defined.

The following are several examples of half conformally flat 4-manifolds
for which H? is computed: (i) the 4-sphere S* with the standard metric;

=0, (ii) the complex projective plane CP? with Fubini-Study metric; H?>=0,
(iii) a complex 2-torus with a flat metric; H?*=R", (iv) a K3 surface with Ricci
flat metric; H*=R".

The latter two 4-manifolds are examples of Kédhler surface of zero scalar
curvature. Another example of those Kidhler surfaces is a ruled surface M, of
genus £(=2) (a CP' bundle over a compact Riemann surface ', of genus £=2)
with a Kihler metric induced from the product metric on D'XCP! (D': the
unit disk in C) of metrics of curvature =+1.

Any compact Kidhler surface of scalar curvature p=0 is necessarily one of
the following ([9], [4)

i) a Kéihler surface covered by a complex 2-torus with a flat metric (a
complex 2-torus and a hyperelliptic surface)

ii) a Kdihler surface covered by a K 3 surface with a Ricci flat Kédhler
metric (a K 3 surface and an Enriques surface)

iii) a ruled surface M, (k=2) with a Kdihler metric of zero scalar cur-
vature

iv) a Kihler surface, obtained by blowing up / times either CP? ({=10), a
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ruled surface of genus 0 (/=9) or a ruled surface of genus k& (/{=1).

We remark that LeBrun showed recently by using the generalized Hawking
Ansatz the existence of Kidhler metric of zero scalar curvature on a compact
complex surface of type (iv) above, namely a surface derived by blowing up !/
points of a ruled surface M, of genus k=2, (=2 ([I5]).

When H? vanishes, the moduli space #; admits at worst conformal sym-
metry singularities. On the other hand the vanishing of H?® might give like
Yang-Mills instantons guarantee to the grafting procedure for concentrating
half conformally flat structure (see [7], where CP? with the Fubini-Study
metric behaves as “half conformally flat 1-instanton”), which corresponds in
terms of twistor spaces to the connected sum procedure of half conformally
flat 4-manifolds (see [6] in which the isomorphism H?= H*(Zy, O(T%%) is as-
serted).

As for half conformally flat structures of positive scalar curvature on a
simply connected 4-manifold, the positivity might ensure vanishing of H? as is
conjectured and is proved partially under the condition dim|Kz'/?|>0 ([14]).

This conjecture corresponds to the vanishing theorem in the Atiyah-Hitchin-
Singer complex for Yang-Mills instantons ([I]) and other vanishing theorems
of half spinorially defined operators ([p. 178, 8]).

For Kdihler surfaces of p=0 the bundles S}(T%), Si(£2*) appeared in the
elliptic complex have natural decompositions and the kernel of the adjoint D*
can be described in terms of cohomologies H°M, o(KY)), i=1,2 and
H*M, o(T°)).

In fact we have the following for Ker D¥=H

THEOREM 1. Let (M, g) be a compact Kahler surface of zero scalar curva-
ture. Let SYQ")=V°PBV'PV? V°=lg be the real subbundie decomposition cor-
responding to the identification S§(R2")=1xDKuPK%. Then (i) Ker (D*| g, voy)
= (fe C=(M); Hes(f)=—1/4Afg—1/2 f Ric}, (i) Ker (D*| cocar, v1) = H'M, O(Ky))
and, (iii) if H*M, o(T4))=0, then

Ker (D*| goqar, ver) = HY(M, O(K%)) .
Moreover (iv) under the condition H?*(M, o(T%4%)=0
Ker (D*|con, vieve) = H (M, O(Ky))DH (M, O(K3)) .
By applying this theorem we get the

THEOREM 2. Let (M, g) be a complex 2-torus or a K 3 surface with a flat
Kdhler metric or a Ricci flat Kahler metric. Then H.=R".
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2. Proof of Theorem 1.

(i) To verify our theorem we begin with a sufficient but small amount of
Kéhler geometry needed for our study.

Assume that (M, g) is a Kidhler surface with a complex structure J. The
Kihler form is §=+/—1g,3dz* \dz?.

We omit the symbol of summation by Einstein convention.

The bundles of self-dual (anti-self-dual) 2-forms 2*, - on M are identified
by the aid of (p, ¢)-form bundles 27¢ as

2*=ROPH*°
2.1) R-=01'=1{e0", E=¢, ONE=0}.

Here 2*°=K,, the canonical line bundle of M and the identification for 2% is
al+o=ROIDR* —al+(p+p)=02".

Fix a point p=M and take at p complex coordinates {z'=x'4+/—1x2,
2’=x4++/—1x* in such a way that {0/0x%} -, ..« is an orthonormal frame at
p with dual frame {dx%}a-1,.. -

So {w=dx'Ndx*+dx*Ndx*, n=dx*Ndx*+dx*Ndx? {=dx'Ndx*+dx*
Adx*} forms a frame of 2% at p.

Notice that 20=6 and ¢=x+:{ is a (2, 0)-form.

The bundle Si(2*) has then the following canonical basis at p:

D=w*—1/2(p*+L2)=1/46°—1/2¢-§ ,

(2.2)

V' —C'=1/24"+6Y, 29-L=1/QV=1)$"—5").
From this we have the identification S}(2*)=1PKy,PDK?% in such a way that
a®+¢+¢ < a®+(p+HNO+(P+d),

a=R, =Ky, y=K%. Here 9*4L* and hence @ does not depend on a choice
of %, { so that @ is globally defined.

LEMMA 2. 1 ([5]). The globally defined tensor @ is g-parallel.

PRrROOF. Since Fw=1/2F0=0, it suffices to show V(9*+{*)=2(n-Vn+L-V{)=0.

For any point p=M choose an orthonormal frame field {ey}q-1....« defined
around p satisfying e,=0d/0x*, a=1, ---, 4 at p and e,=]e;, e.=]es.

Since V' /=0, we have the connection forms {w}} associated to {e,} in the
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following form

0 w? o ot
—w? 0 —owt o
(wg’): 3 4 4 .
—@1 (4 O W3
—wt —w}@ —wi 0

For the dual frame {e%},-,,... of {e,} the connection forms {&¢}, defined by
Ver=23 8¢, satisfy @¢=—wb.

By the aid of these connection forms we have for the frame field {w=-¢e'A ¢*
+e*Net, p=e'NePtetNe?, [=e'Net+e*Ae’} of 2% the following connection
forms

Vo=(@+a)l+@i—ahn=0,

Aﬁ:(al + @D+ (Bi+3HL=(@3+aC
Vi=(—@i+ad)o+@i+a)n=(@1+ad)n .
Hence 7-Vn+Z-V{=0.

We remark that for an arbitrary Kidhler surface the self-dual part W™ of
W is given by W*=cp® for a constant ¢>0 ([5]). A Kdihler surface is then
anti-self-dual if and only if p==0.

We would like now to decompose the bundle S%(T%), the tracefree sym-
metric product of the real cotangent bundle, whose sections give the space of
infinitesimal deformations of metrics of a fixed volume form.

As is shown in [9], the bundle S3(T%) is in general isomorphic to
Homg(2*, 2)=2+*®N~ in such a way that from the identification (2.1) we have

2.3 SHT %) =Her(T*)DSk,(T*),
where Hero(T*)={h=S¥TH); h(JX, JY)=h(X, Y)}, isomorphic to 2}’ and
Sko(T*)={h=S}T*); h(JX, JY)=—h(X, Y)} =S*(L2"°).

By making use of these identifications one can represent D, : C~(M, S3(T*))
—C=(M, S3(2*)) and its formal adjoint D} in terms of naturally defined

operators.
(ii) Let g be an arbitrary anti-self-dual metric. The operator D, is re-

presented as
(2.4) D(h)y=URr)*+V ()",

he C=(M, S¥T*)) (see [Appendix, 10]). Here (U(h))* and (V(h))* are the
Sz(Q2*)-components of U(h) and V(h), which are defined as

U, V:C(M, S(T)) —> C=(M, 2*R2"),
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(2.5) Uh)issi=1/2 VT ;his—V WV ;his—V oV b+ 7 ks

(2.6) V(h)=1/4 (B)Dh), B=Ric—p/4 g.

Here the Kulkarni-Nomizu product is
(hDR)ijri=hrsku—hijki—hiikjthikyy .

Assume that (M, g) is a Kihler surface of zero scalar curvature.

LEMMA 2.2. In the decomposition (2.3) (hDR)*=0 for heHer (T*), ke
Sko(T*) and (hDk)*=—1/3(h, k)D for h, kcHer (T*) ((h, k) is the inner product
induced from the metric g).

REMARK. The tracefree Ricci tensor B is in C=(M, Her,(T*)) and then
(V(h+R)Y* =V (h)*=—1/3 (Ric, h)® for h&Her(T*), k=Sk,(T*).

The formulae in follow from simple computation.
We extend the forth order covariant tensors U(h) and V(h) over C as
U(h):(UABCD)r Usscp=Uisen

UABCD:1/2 (VCVBhAD_VDVBhAC_VCVAhBD+VDVAhBC'*)’

with respect to complex coordinates {z4, A=1, 2, 1, 2}.
We symmetrize U(h)eC>(M, 2°Q2%) as Uh)=1/40 zcp(dzA AdzE)-

(dz° NdzP), U s5op=1/2 (Uascp+Ucpas). Then (U(h)* is the S(R*)-component
of U(h).

By using the canonical basis (2.2) for S%(2*) we write the SZ(2*)-component
of U(h) or more generally of Z< C=(M, S*(R2%)).

Then the Si(£2*)-component Z* of Z=1/47 sgcp(dzAN\d2zPB)-(dz° NdzP)E
SQ(QZ(X)C), Z ascp=Zcpap 1 given as

Zr=—1/6(Z 1111+ 2Z 1505+ Z 2305 +8Z 1575) D
+(21212+Zi§i§)(7]2‘cz)+(le12—Zi§I§)(2 \/jfﬂ * C)
+(Z 1211+ Z 123+ Z 1113+ Z ssis)(— vV — 1w+ 1)

+(Z 11t Z 1205~ Z 1515~ Z 5313)(@- ) .
We have then

LEMMA 2.3. With respect to (@, 0-¢, 0-4, ¢%, ¢* Z* is
2.7 Z*=—1/6(Z:1111+2Z 1155+ Z 2305 +8Z 1035) D

1 1 - -
+ 2—\_/:—1(212”4_21222)0 ’ ¢+§ﬁ(ziili+ziézi)0 ‘@+Z121:0" +Z 1310
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Next we consider the adjoint operator
D*: C=(M, S3(2*)) —> C=(M, S§(T*)).
In real local coordinates {x?} it has the form
(2.8) (D*Z2)as=FFV2+VV)Z sear+RZ acas ,

Z=(Z spca)E C=(M, S3(2*%)) where R°¢=g*°g®?R,, is the Ricci tensor of g ([Ap-
pendix, 107).
By using complex coordinates {z4} we rewrite this formula as

(2.9) (D*Z) =WV VP4V PV Z 4008+ RCPZ 4008

for Z=1/2 Z 45cp(dzANd2B)-(dz2° ANdzP), Z szcp=2Z i5cp SO that for the adjoints
U**, (VvH*
(U*Y*Z) 4g=F°VP+VPV°)Z 4op5 ,
(2.10)
((V+)*Z)AB=RCDZACDB .
iili) We deduce first the Hessian equation from Ker (D*|cecs, vo,).
From the decomposition S%(T*)=Her (T*)PSk,(T*) we have

LEMMA 2.4. The Hero(T*)-part of D*(f®), f®=C=(M, V°) is

(2.11) D¥(f@)ap=—VV5f—1/4 4f - ga5—1/2 [R5,
Af=20f=—2gV Vf is the real Laplacian) and the Sko(T*)-part is
(2.12) D*(fD),p=1/2 VaVﬁf.

ProOOF. From (2.10) and the definition of ¢ and @ the Her,(7T*)-part of
(UH*(fD) is computed as
(U+)*(f@)a/§:_V‘;fogbadérﬂ-‘yaVﬁf .
Substitute the value of ¢ at a point p. Then (UN*(f@)ag=—VoV5f—1/20f gap-
On the other hand (V*)*(f®),; is
(VY[ D)ap=—1/4 [RPasprp—1/4 fRa5

reducing to —1/2 fR,5 so that is derived.
The Sk,-part of D*(f®) is from equal to that of (U*)*(f®)

which is
(U*)*(f@)a,s=VCVDf¢aCDﬁ+VDVOf¢aCDﬂ=—27577f@a7,95 .
Then (2.12) follows since D.555=—1/4 ga7885.



150 Mitsuhiro IToH

REMARK. From this lemma f@< C>(M, V° is in Ker D¥ if and only if

(2.13) Hes (f)=—1/44f-g—1/2 fB,

since Ric=B for a Riemannian metric of zero scalar curvature. Similar Hessian
equations with a positive smooth function solution were dealt with in [1I].

Next we consider the kernel of D* restricted to C=(M, V'), namely, to
those Z< C=(M, Si(2*)) of the form Z=0(p+@), p=C>(M, Ky).

Z=(Z 4pcp)s Zapcp=0¢)apcp+(0@)ancp has nontrivial components Z.zs=
1/28/=1gapprs and Z,p75=1/2+/—1gq5@rs and other components are zero.

The Hermitian part h,; of h=D*(Z) is from [2.9)

has=VEV°Z 45cs+V°VPZ ancs
= ETTATTTPVZ o st P ETT ATV B)VZ o555
+ VBV VIV Z ars+ VI VTV BYZ o35 .

Since Z.p75=2 aprs=0, has=2VEV1Z ,5,5+VPV7Z ,535) reduces to v—1{F3(VP@ap)
+V V7 1s} .

Thus we have

LEMMA 2.5. The Hermitian part of D*7Z, Z=0(¢+@), o=C>(M, Ky) is
(2.14) (D*Z)as=~—1F VP pap+V V7 5,5).

REMARK. We can rewrite as
(2.15) Her,(T*)-part of D*Z=—+/—1{3(3*p)+0(5*p)},
when we regard it as section of 2¥!. Here 0%, o* are the adjoint of 9: Q" °—
00, 5: Q%' 0% respectively; (0*@)a=—V ps., 0*3=0%0.

The skew hermitian part of D*Z, Z=0(p+¢@) is

(VBVC AVOVBYZ qpes=WAVT+V TV AYVZ o pss+ W EVT+V TV BYZ 4515 .

So substituting Z.zrs=+~—1/2 gagprs We get

LEMMA 2.6. For Z=0(p+¢), ¢=C>(M, Ky) D*Z has the following skew
hermitian part

(2.6) (D*Z)as=~=1/2 OV o +F V) prs+ v =1/2 OV 54V I ) prac -

Now we will show
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PROPOSITION 2.7. For Z=0(p+@)=C>(M, V"), Z is in Ker D* if and only
if ¢ is a holomorphic section of Ky, i.e., o= H(M, O(Ky)).

PROOF. Assume D*Z=0. We have from [2.15) d(0*¢)+0(0*@)=0. To this
we operate o*: 2"'—0Q"° the adjoint of 4: 2"°—2"'. Then §*30*¢+0*3(0*p)
=0. Here the second term vanishes since it reduces to —gfW oV V7@, =
—V V3¥75,5=0. Hence 0*00*p=0.

Since 0=<8*30*¢, 0*@)>=<3(0*¢), 5(0*¢)y if follows that 90*¢=0, in other
words, 0*p is holomorphic as a (1, 0)-form. So dd*¢ is holomorphic and then
is written as dd*¢=¢, for some ¢,= H"(M, O(Ky)).

Together with =0 this 1mplies (36*+0*d)¢p=¢, to which we use the fact
that H(M, O(Ky))= {parallel sections of Ky} (see Lemma 2.10). Then [(00*+
0*0)p||*=<0*¢, 0*¢p,>=0, namely (90*+0*3)p=0. To this we apply the Weitzen-
bock-Bochner formula and then conclude that ¢ is parallel, that is, ¢<
HYM, 0(Ky)).

It is obvious that conversely any ¢ in H'(M, ©)Ky)) satisfies and
(2.16), since ¢ is parallel.

In the rest of this section we will show (iii) of [Theorem 1.
For Z of form Z=¢+¢, ¢=C=(M, K%) components Z,gcp are all zero
except for Z.srs, Zaps. So the Hermitian part of D*Z vanishes since

SM(h, D*Z)dvzgu(Dh, Z)dv=SM(U(h)+, Z)dv and U(h)*, he C*(M, Her(T*)), has

neither afyd-components nor @j374é-components.
Therefore, Z=Ker D* if and only if

S(D(h), Z)dvzg((U(h)*, Z)dv =0

for all h<=C=(M, Sk (T*)).

Since every h<= Sk (T*) satisfies h(J X, JY)=—h(X, Y), there exist an endo-
morphism I of T=T, satisfying that (X, Y)=g(IX, Y)+g(X, IY) and IJ+]JI
=0 hold (J is the complex structure of (M, g)).

From the last relation [ is represented in complex coordinates as

0 : — 0
—=Ja_—_ B a_— 8
=1 - Xdz +Iﬁaza®dz

so that @f-component of h is hzsg=1Is5+Ipa, Where Ia,g-—-gra]%.

From the 2% °XRQ2*-component of U(h)* is U(h)y,=1/2(F ¥ ,h,,
+V Y hyy—V ¥ ohyy—V V hy). Since from the Kéhler property we have V.V, h,,=
ViV, h,s, this reduces to 1/2(2V V,h,,—V V hi —V V., hy,) and its conjugate is the
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Q°2R802%2-component U(h)si;.
Thus

(2.17) Uhysis=V ¥ sIsi+V i 515y —V iV 1135 —V iV 3 155 .

On the other hand, because of IJ+JI=0, I is a deformation of complex struc-
tures and is regarded as a section of the bundle T"°®2*!, =1 %(a/az") Rdzh.
The bundle T'°®L%' is equipped with the d-operator o: C*(M, T"°RL*")—

C>(M, T*°®R2"?). So sl C=(M, T"°'RN2"?).
Define an operator

(2.18) 9: C=(M, TR —> C=(M, 2°:Q8*?)
by
(2.19) HL)=b@(# L)), L&C=(M, T"°QRR2"?)

where #:T"'@QQ%*—Q"'QAT"", Lgy—LE and b: Q*'QAT" -2 Q2"
N 33— Nasr.

LEMMA 2.8. The 0*°Q80*°PNR"*RN2**-component of U(h)*, he
C=(M, Sko(T*)) coincides with (90I)+(3dI). Here I 1is I=I%(a/az“)®dz56
Co(M, T*°QRRN2"") satisfying hzp=1Is5+1pa and Iang,al;}.

From this lemma
S(Dh, Z)dv =S(U(h)+, Z)dvzg(aal 951, Z)dv=0

for all e C=(M, T*°QRN*') and this is equivalent to that the Q%*®Q%2-com-
ponent ¥ of Z satisfies S(z, 1931)dv=§(.9*2, 3I)dv=0 for all I, in other words,

I*YeKer o*=H*M, o(T"")).
We assume now HXM, o(T'°)=0. Then 9*3¥=0. Since T"°=Q"!, the
operator J is considered as

9: C=(M, 2*:QR*?) —> C(M, 2" 2®Q°- 2,
So for a=1/2 az3;dz*Q(dz* Ndz")e C=(M, 2"'QN2"*)
Sa)aspr=V aasps—V 5a 457
and for 3=1/4 Dz55:(d2z* Nd2®)R(dzP Ndz") the adjoint 9* is
(2.20) (9*2)apr=—28"V ,Zsap

LEMMA 2.9. For any T C=(M, 2°*Q82°%%)
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(2.21) QI+ PN =V 7+ 7" |

where §: C=(M, Q°2RR*%)—C>(M, L°3RR2%2) is the extended operator of I on
Q%R and V"*V” is the rough Laplacian — g’V V.

In fact, from the Weitzenbodck-Bochner formula
O+ 9N s55:=— gV V¥ a35:+ 87 [V o Val¥ 57
— gV, Vﬁjwaz‘-ﬁf .
We apply the Ricci identity and 2p=g*?R;; to have
(2.22) G+ I =V 7V 7T + p¥

from which follows.
From the Q2" *-component X of Z satisfies V':3355;=0 and

then by applying the Ricci identity again V,3}z557=0 so that X and its complex
conjugate X are parallel. So T gives a holomorphic section of K%.
Conversely, given Y= H%M, ©(K%)). Then £ is parallel from
- (iii) so that Z=2X+2 turns out to be in the kernel of D*, which proves (iii),
[Theorem 1.
The proof of (iv) of is easily done, since for Z of form 6(¢p+@)
(P+¢), p=C=(M, Ky), ¢<=C=>(M, K3%) we have

jow, 2)d0={Dh), 66p+enav
for he C=(M, Her,(T*)) and

fcom, Z)dv=\(D(R), g+G)dv

for he C=(M, Sko(T*)).
Thus by these arguments we can prove completely.

(iii) We would like to show the following parallel lemma which was

applied to the proof of (iii), [Theorem 1.

LEMMA 2.10. Let (M, g) be a compact Kihler surface of zero scalar cur-
vature. Then for any positive integer m>0

H(M, O(K%))={parallel sections of K%}.
PrROOF. The space of holomorphic sections of K%, HM, O(K®), is

{TeC=(M, K%); d*3T=0}, where §: C*(M, Kp)—C=>(M, K3RQR"Y) and, 5* is
its adjoint with respect to the naturally induced fibre metric on the m-th power
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of Ky. The Weitzenbock-Bochner formula is then
(2.23) 5*3¥7=—g“57al75w+m/2pw

(see Theorem 6.2 in [12], we applied a similar argument to our case). From
=0 we have Fz;¥=0 for any 3 and further from the Ricci identity V,¥=0
and thus V¥ =0.

3. Cohomologies of K}, i=1, 2 and T}°.

For each type of compact Kihler surface of zero scalar curvature we can
evaluate cohomologies H°(M, O(K})), i=1, 2 and H*M, o(T4").

HYM, 0(Ky)) H'M, 0(K3)) H*M, o(T"")

(1) complex 2-torus C C C?
(ii) K3 surface C C 0

Enriques surface 0 C 0
(iii) ruled surface M, 0 0 0
(iv) blown up of M, 0 0 0

For the evaluation of H°(M, ©(KY)), i=1,2 we apply to the
first three cases. H'WM, o(Ki)=0, i=1,2 for the last case since
dimH(M, o(K})), i>0, is a birational invariant.

The cohomology group H?*(M, ©(T"°) which is the obstruction space
for deformation of complex structure is isomorphic by Serre’s duality to
H'M, 0(Kxy@®2"%). For the first two surfaces this 1is isomorphic to
H'(M, o(2*°%) because O(Ky)=0 and then H*(M, o(T"") is isomorphic to C?
for a complex 2-torus and is zero for a K 3 surface.

For an Enriques snrface with a Ricci flat Kdhler metric we have similarly
H*M, (T H)=H°(M, O(KyQ"*)=0 since it is a Z,-quotient of a K 3 sur-
face.

That H*(M, o(T"°) vanishes for the case of ruled surface is obtained by
restricting ¢= H' (M, O(Kx®£2"°) to each fibre, a complex projective line CP!,
since any holomorphic covariant tensor on CP' must vanish.

Vanishing of H*(M, ©(T* %) for the last case is derived from the fact that
there is a one-to-one correpondence between holomorphic covariant tensors on
M and those on M, a one point blown up of M ([p. 225, 13]).

REMARK. A hyperelliptic surface M is a finite group quotient of a product
of elliptic curves. As a smooth 4-manifold the surface M is a quotient of
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complex 2-torus and it is seen that M admits a flat Kdhler metric. It is shown
that the canonical line bundle K, is a torsion bundle of order 2, 3, 4 and 6
according to the type of M ([p. 148, 2]). So we have H°(M, ©(Ky))=0 and
H:(M,o(T**)=0. Moreover H*(M, ®(K%))=C when &(K?%)=0 and H*(M, O(K%))
=0 when O(K%)+0. That H*M, &(T"°) vanishes follows from the fact that
H'(M, 0(2")=C together with Lemma 2.10.

4. The case of trivial K.

Let M be a complex 2-torus or a K 3 surface with a Ricci flat Kdhler
metric. Since K,=0, it admits a holomorphic section ¢ which is parallel with
respect to the Ricci flat Kihler metric from

We now show namely that the second cohomology group H?
is isomorphic to R® for such a 4-manifold M. For this it suffices to verify
from the proof of iv), that Ker (D*| gy, voors) = R°.

Suppose that f@+Z is in Ker D*, for Z=0(p+@)<=C=(M, V'). Then we
have and [2.14).

Since = C*(M, Ky) is written as ¢=F¢ for a complex valued function F
on M. So combining the formulae [2.11) and [2.14) we get the equation

4.1) —VVaf—144f- gap+ V=TT °F-@as+VaV"F-G,5t=0.

Operating the partial covariant derivation F# to both sides and taking the con-
traction we have
4.2) —VE V5f—1/AV Adf +~/—T{F BV gV°F- o5} =0,

since in the forth term VAV ViF-§,s=FV VAVF-$,5 and [V?, F7]=0 and ¢z is
skew symmetric.
Since M is Ricci flat, (4.2) reduces to

4.3) 1AV df —~—=1/2(F°4F)$as=0.

So, by integrating, we derive the following over M

4.4) 1/4 SMHGA flltdv— \/:I/ZSMVMFV“A Fas=0.

The second term is SMAf(V“V5AF)¢a5 and then vanishes. So 04f=0, that is,

df is constant and then by integrating it over M space f must be constant.
Therefore, it follows from D*(f@+Z),;=0 that f is constant and that

D*¥(Z)a5=0. We can then apply the statement of (ii), and have
Theorem 2.
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5. The Hessian equation.

Let (M, g) be a compact Kahler surface of zero scalar curvature.
Consider on M the equation (2.13),

Hes(f)=—1/44f-g—1/2f-B,

B=Ric—p/4 g=Ric.

Except for the case of a complex 2-torus or a K 3 surface as is seen in
[Theorem 2, so far we do not have exact knowledge of the solution space of
the above equation.

Now we assume that (M, g) is a ruled surface of genus £=2. M is then
a compact quotient of the product Kéhler surface D' X CP*' by a subgroup I’ of
SL2, RyxSU(?2)/Z, acting freely and properly discontinuously.

Let (2%, 2%, z'=2, z’=w, be the complex coordinate of D'xXCP' in such a
way that z and w represent complex coordinates of D' and CP!, respectively.
Then the metric g is g=g,+ 4., @1=g:(2)dzdz, g,=g.(w)dwdiw and the Ricci
tensor is Ric=—g,+ g».

Suppose now that f< C=(M) is a solution of [2.13).

We consider f as a function on D'XCP! invariant under the action of /.

So by taking (2, 0) and (0, 2) parts of we have

(51) azawfzo ’ aiawfzo
and also
(6.2) azaﬁfzawaif:()

by substituting (3/0z, d/0w) into [2.13).

(5.1) and [5.2) are the second order partial differential equations and then
f must be written in the form f=F(z, 2)+G(w, W) where F and G are real
valued functions on D' and CP!, respectively.

We put f=F+G into [2.13). We have then

6.3 0.0;F=1/2 (g71'0.0;:F+ 27'0,05G)- g.+1/2 g(F+G),

5.4) 0,05G=1/2(g7'0,0;F+g3'0,05G)- g.—1/2 g,(F+G).

So O, F=—g71'0,0;F and 0,G=—g3'0,05G satisfy the following equation:
(5.5) 0 F—0.6=—(F+G)

from which
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holds. Thus F—2 is an eigenfunction of [J, corresponding to the eigenvalue
—1. Since f is [-invariant, F is considered as a function on a compact Rie-
mann surface D'/I’. Hence F—A is an eigenfunction of negative eigenvalue
and must be zero, in other words, F=2 and then f=G(w, w)+A.

Since [1,(G+A)—(G+A)=0 and ,=1/24,, f=G+4 is an eigenfunction of
the real Laplacian 4, on CP! corresponding to the eigenvalue 2. These eigen-
functions are obtained by restricting each coordinate function x, y and z of
R? to the unit sphere S*={(x, y, 2)ER?; x?+y?*+2*=1} =CP* (see [p. 160, 3]).
It is easily shown that these functions satisfy the rest of the equation
because of the symmetry of S®.

We have thus

PROPOSITION 5.1. Let (M, g) be a ruled surface of genus k=2 with a
Kdhler metric of zero scalar curvature. Then the solution space of the equation

(2.13) is isomorphic to R®, namely the kernel of D* restricted to C*(M, V°) is
Ker D*ICW(M.WO)gRa.

The proof of given in §4 can be applied to the case of Ricci
flat Kdhler surfaces with nontrivial canonical line bundle (for example, Enriques
surface and hyperelliptic surface). In fact we have

PROPOSITION 5.2. For a Ricci flat Kahler surface Ker D*|coy, voy=R.

PROOF. Suppose that D*(f@)=0 for feC=(M). Then from we have

—VaV,gf-l/4Af-ga,§=0,
since Ric=0. So
—VﬁVaVﬁf—1/4VaAf———0

which reduces to 1/4F ,4f=0. Thus f must be constant.
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