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IDEMPOTENT RINGS WHICH ARE EQUIVALENT
TO RINGS WITH IDENTITY

By

J. L. GARCIA!

Let A be a ring such that A=A? but which does not necessarily have an
identity element. In studying properties of the ring A through properties of
its modules, it is pointless to consider the category A-MOD of all the left A-
modules : for instance, every abelian group -with trivial multiplication- is in
A-MOD. The natural choice for an interesting category of left A-modules
seems to be the following: if a left A-module 4M is unital when AM =M, and
is A-torsionfree when the annihilator :4(A) is zero, then A-mod will be the
full subcategory of A-MOD whose objects are the unital and A-torsionfree left
A-modules. The category A-mod appears in a number of papers (for instance,
[7-97) and when A has local units [1, 2] or is a left s-unital ring [6, 12], then
the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck
category and we study here the question of finding necessary and sufficient
conditions on the ring A for A-mod to be equivalent to a category R-mod of
modules over a ring with 1. This was already considered for rings with local
units in [1], or [3], and for left s-unital rings in [6]. Our situation is
therefore more general.

In this paper, all rings will be associative rings, but we do not assume
that they have an identity. A ring A has local units when for every finite
family a,, ---, a, of elements of A there is an idempotent e= A such that ea;=
a;=aje for all j=1, ---, n. A left A-module M is said to be unital if M has
a spanning set (that is, if AM=M); and M has a finite spanning set when
M=>)Ax; for a finite family of elements x,, ---, x, of M. The module .M
will be called A-torsionfree when :4(A)=0. A ring A is said to be left nonde-
generate if the left module 4A is A-torsionfree, and A is nondegenerate when
it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with
local units is nondegenerate. The ring A will be called (left) s-unital in
case for each a< A (equivalently, for every finite family a,, ---, a, of elements
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of A) there is some u= A such that ua=a (respectively, ua,=a;, for alli): see
[12, Theorem 1]. Any left s-unital ring is idempotent and left nondegenerate.

We will say that a ring A is generated by the element a= A in case A=
AaA. The above mentioned results of Abrams and Anh-Marki [T], [2], and Koma-
tsu [6] may be stated as follows: if A has local units, then A-mod is equivalent
to a category of modules over a ring with 1 if and only if A is generated by an
idempotent e [2, Proposition 3.5]; if A is left e-unital and A-mod is equivalent

to the category of left modules over a ring with 1, then A is generated by some
element @ [6, Proposition 4.7].

In the sequel, we will be dealing with left modules, and so we follow the
convention of denoting the composition gof of two module homomorphisms as
the product fg. On the other hand, if R is a ring with 1, M is a left R-
module and E=End(zM) is its endomorphism ring, then we will denote by
E,=f End(zM) the following subring -in general, without identity- of E: E,=
{feE|f: M—M factors through a finitely generated free module}.

We now state and prove the following result.

THEOREM. Let A be an idempotent ring. Then the category A-mod is eqi-
valent to the category R-mod of left modules over a ring R with 1 if and only
if there is some integer n=1 such that the matrix ring M,(A) is generated by
an idempotent.

PrROOF. We divide the proof in several steps.

Step 1. For any idempotent ring A, let us put ann(A)={xs A| AxA=0}
and A’:=A/ann(A4). Then A’ is a nondegenerate idempotent ring and A-mod
and A’-mod are equivalent categories.

The fact that A’ is nondegenerate is easy to verify. On the other hand,
if e: A—A’ is the canonical projection, then one may see that the restriction
of scalars functor &4 gives indeed a functor from A’-mod to A-mod. Now, if
4+M belongs to A-mod and a=ann(A), then AeaM=AaAM=0, so that aM <
'y(A), and aM =0, because M is A-torsionfree. As a consequence, there is a
functor F': A-mod— A’-mod which views each ,M of A-mod as a left A’-module.
Then F and e, are inverse equivalences and hence A-mod and A’-mod are
equivalent categories.

Step 2. For each n=1, let A be the matrix ring M,(A). Then A-mod and
A-mod are also equivalent categories.

To see this, consider the bimodules ,(A®), and 4(A"),, and the natural
mappings @ : A"Q A*—A, U: AR A"—A. It is clear that they are bimodule
homomorphisms which give a Morita context between A and A (if we represent
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elements in 4(A"), in row form, and elements of 4(A™), in column form, then
® and ¥ are induced by products of matrices). Also, the fact that A is idem-
potent allows us to deduce that @ and ¥ are surjective. Then, by [7, Theorem],
A-mod and A-mod are equivalent categories.

Step 3. We prove now the sufficiency of the condition of the Theorem.
Assume that A=M,(A) is generated by an idempotent. By step 1, A is equi-
valent to A’=A/ann(A). But A=AeA for the idempotent e¢ implies that A'=
A’e’A’ for the idempotent ¢’=e-+ann(A); so, we can assume that A is a nonde-
generate ring. Then A belongs to the category A-mod and is a generator of
this category. But 4(Ae) generates A, so that it is also a generator of A-mod.
Ae, being finitely spanned, is clearly a finitely generated object of A-mod [11,
p. 1217. Finally, let p: Y—X be an epimorphism in A-mod, and put U=Im p,
V=X/U, W=V /w(A). Then W belongs to A-mod and hence the canonical
projection from X to W must be 0; thus, AV=0 and X=U, so that p is a
surjective homomorphism. If f: Ae—X is now a homomorphism, then f(¢)=ea
for some a<X, and a(e):=ey, with y such that p(y)=ea, gives a morphism
a with f=a-p. This shows that Ae is projective. It follows that A-mod is
equivalent to the category of left modules over the ring End (Ae)=ele. By
step 2, A is equivalent to a ring with 1.

Step 4. Let us now suppose that A is an idempotent and left nondegenerate
ring and that there is an equivalence F: A-mod—R-mod, R being a ring with
1. We are to show that M,(A) is generated by an idempotent, for some n=1.

By [4, Theorem 2.4], there exists a generator zgM of R-mod with the
property that, if E=End(zM), and E,=f End(zM), then A is isomorphic to
some right ideal T° of E, such that E,T=F,.

We now point out that we can further assume that there is an epimorphism
of left R-modules 7: M—R. Indeed, this is true for some M*, and we put
S: =End(zM*), S;:=f End(zkM*), so that there is an isomorphism S=M,(E).
We assert that, in this isomorphism, S,=M,(E,); in fact, the inclusion S,&
M. (E,) is obvious, and the inclusion M,.(E,)SS, depends on the easily verified
fact that morphisms M"™—M or M—M?® factor through free modules of finite
type whenever they are induced by endomorphisms of rzM belonging to E,. By
substituting M*, S and S, for M, E and E, we have that the matrix ring
M, (A) is still (isomorphic to) a right ideal of S, in such a way that -assuming
the obvious identification- S,-M,(A)=S,. So, by replacing A by M,(4) if
necessary (note that AM,(A) is again idempotent and left nondegenerate), we
may indeed assume that =: M—R is an epimorphism.

Let x= M be such that n(x)=1. Since E,A=FE, and >secr, Imo=M we
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deduce that 3,4 Im 6=M. Therefore there exists a homomorphism a: M"—
M such that x&Im «; and each component a;:=g;-a, with g;: M—M" being
the canonical inclusion, satisfies a;=A. So we have that a-7: M*—R is an
epimorphism and hence there is g: R —> M" with gar=1; and arg=e an
idempotent in the ring End(zM™)=M,(E). Moreover, each of the components
of ¢, when considered as a matrix, consists of yangpr=a;(rgpr)=a;ESA
(where the p, are the canonical projections M®—M). This means that ec M,(A).

As before, we may put S:=End(pM")=M,(E), S,:=f End(pM™)=M,(E,)
so that M,(A) is an idempotent right ideal in S, which satisfies SoM,(A)=S,.
Thus, ¢ is an idempotent element in M,(A)SS, and is an endomorphism of M™
such that Im e is a direct aummand of M™ isomorphic to R. Consequently, Im e
generates M™ and hence, if we let ¢ range over all the elements in ¢S, we
have >}, Imt=Mn™. This shows that eS, is a right ideal of S which satisfies
M"-(eSy)=M™. 1If we apply now [5, Proposition 2.5], we see that this implies
SoeSe=3S,.

Since A=A*%* M,(A)-S;=M,(A) and so we have: M,(A)-e- M,(A)=M,(A)-
See:So=M,(A)-S,=M,(A). This proves that M,(A) is generated by an idem-
potent element.

Step 5. Now we complete the proof of the Theorem. Let A be an idem-
potent ring (but not necessarily left nondegenerate), and assume that there is
an equivalence of categories between A-mod and R-mod for R a ring with 1.
Put 4,(A)={a=A|Aa=0}, and A*=A/.4,(A). In a way analogous to that of
Step 1, we may show that A and A* are equivalent rings, so that we can
deduce from stea 4, that for some n=1, the matrix ring M,(A*) is generated by
an idempotent. Thus, all that is left to show is that this property can be lifted
from M,(A*) to M,(A). But we have that M,(A*) = M,(A/+4(A)=(M.(A))/
(M,(:4(A))), and this last quotient is nothing else than M,(A)/ix ,cay(Mn(A)),
that is, (M,(A))*. Therefore, it will suffice to prove that if a ring of the form
A*=A/+4(A) is generated by an idempotent, then so is the ring A.

So, let us assume that A*= A*.e¢- A* for some idempotent ¢. There is ues
A with u+:4(A)=¢e, and then u®*—u<,(A), from which we see that u*=wu?=u*.
Therefore, w=u? is an idempotent of A such that w+:,(A)=e. Now, let a,
be A; by hypothesis, b+14(A)=a;-e-B; in the ring A*, so that b—3a;-w-b;=
+4(A), for some a; and b; in A. Then ab=Xaa;wb; and ab= AwA. But since
A is idempotent, we have finally that A=AwA and A is generated by an
idempotent.

REMARKS. 1) It follows from the Theorem that an idempotent ring A
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which is equivalent to a ring with 1 must be finitely generated as a bimodule
over A: the coordinates of the idempotent matrix ¢ in the adequate M,(A) give
the family of generators. When A is left s-unital this gives as a consequence
the already mentioned result of Komatsu [6, Proposition 4.7]. If A has local
units, we get [2, Proposition 3.5].

2) However, the condition that A be finitely generated as a bimodule over
itself is not sufficient for A to be equivalent to a ring with 1. To see this,
take a ring A such that A=A* A is finitely generated as an A— A-bimodule,
is nondegenerate and coincides with its Jacobson radical (Sasiada’s example
[10, p. 314] of a simple radical ring fulfills these requirements). It is not
difficult to show that the Jacobson radical of such a ring is the intersection of
all the subobjects of A in A-mod which give a simple quotient of A in A-mod,
so that A has no simple quotients in A-mod. Suppose that the category A-mod
were equivalent to R-mod for R a ring with 1. Then, if zM corresponds to
A in this equivalence, we would have that M is a generator of R-mod without
simple quotients. But this is absurd, since R is isomorphic to a summand of
some ME#E,

3) It may happen that A be an idempotent ring such that A-mod is equi-
valent to a category R-mod for a ring R with 1 but, nevertheless, A is not
generated by an idempotent. For instance, let R be a simple domain which
is not a division ring and let / be a right ideal of R such that /+0, [+ R.
Then RI=R, I=IR=1I® and [ is a faithful right ideal of R, so that we can
view I as a left nondegenerate and idempotent ring contained in R=f End(zR).
By [4, Theorem 2.4], we see that I-mod is equivalent to the category R-mod.
But I contains no idempotent other than 0, so that [/ is not generated by an
idempotent.
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