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OF COMPACT RIEMANN SURFACES

By

Katsuaki YOSHIDA

Introduction.

In this paper we consider some families of double coverings of compact
Riemann surfaces (or complete irreducible non-singular algebraic curves over C)
allowing ramifications, and we study the Prym varieties of these double coverings.

Let =: R—R be a double covering, where R and R are compact Riemann
surfaces of genera # and g, and J(B) and J(R) be Jacobians of R and R,
respectively. If = has 2» branch points, we have g=2g+n—1 by means of
the Riemann-Hurwitz relation. We denote by ¢ the generator of the Galois
group of RB/R. Moreover we denote by the same ¢ the involution of ](ﬁ)
induced by that of RB/R. The norm map Nm: j(f?)*»](R) is defined by the
induced map on divisor classes given by D — n(D) (D a divisor on ﬁ). The
Prym variety P=P(R/R) of R/R (or (R, ¢)) is defined by the conneted com-
ponent containing the origin of the kernel of Nm, and we have an isogeny
tx: J(R) X P— J(B) naturally (see Mumford [5], Fay [5], Sasaki [7]). The
process taking Prym varieties defines the so-called Prym map P: R/R—P(R/R)
from the family of (R, ¢)’s to the moduli space of polarized abelian varieties.

In case of unramified double coverings, Mumford states some beautiful
results concerning the relative dimension of the Prym map. For double cover-
ings with ramification points, however, the contribution of those points to the
Prym map might be unknown.

In this paper we will caluculate the relative dimension of the Prym map
for some typical examples of R/R with 2n (n=1) ramification points.

We consider the following three families of compact Riemann surfaces
parametrized by ¢ or ¢,’s:

(1) R,: y*=(x—1—1) (x*+x+1)  genus 3
R;: yi*=(x—1—t) (x*+x+1) genus 1
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() R.: y*=(x—1—¢) (x*+x+1)  genus 4
R,: yv’=(x—1—t) (x*+x+1) genus 1
(M) Riyrpeyt y'=(x—1=t) (x—p—pts) (x—p*—p’t)
X(x—p*) (x—p*) genus 6
Ry 1)y Vi=(x—1—t) (x—p—pty) (x—p*—p*s)
X(x—p°%) (x—p*) genus 2,
where p=exp(27ni/5).
(1) is an example for n=2, and (II), () are for n=3.

Hereafter we write R and R instead of R, R, ., ., and R, R, ., for the
sake of convenience occasionary.

In case (I) or (IlI), the surface R has an automorphism 7 of order 4
defined by T : (x, v) — (x, iy) where i=+/—1, and the involution T%: (x, y)—
(x, —y). In case (II), B has an automorphism T of order 6 defined by T:
(x, y)—(x, ¢y) where ¢=exp(2zi/6) and the involution 7°: (x, y)—(x, —y).

(T> will denote the group generated by 7 and as usual B/<T> will denote
the surface obtained by identifying points on R which are equivalent under the
action of <T> on R. In case (1) or (), B/<T?> is canonically isomorphic to
R, and in case (II), R/(T* is canonically isomorphic to R.

Under these notations, we can give our main results as follows:

THEOREM 1 (Joint work with Sasaki). In case (1), the Prym variety P has
a period matrix of the form
i 0
I,, .
0 ¢

That is to say, P is isomorphic to the product J X J where J=C/<1, ).

THEOREM 2. In case (1) the Prym variety P has a period matrix of the
form (I, IT) where Il is the following:

1 1+e)+z 1—o? 2
- 2<1—o){(2+a)+z}( rd 3(a—-2) 2(1—a)(1+2) )

7 -0
2 21—0)1+2) 204+20(1—0)z

where z= (SB w,)/(SA w1> is the modulus of the surface R, and
3 3
R: y’=(x—1—f)(x+x41) and o=exp(2ri/6).

THEOREM 3. In case (W), the Prym variety P has a period matrix of the
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form (I,, II) where II is the following :
| —1/2+i/s 1/2—ip/s —1iq/s (1—2)/2—ir/s
1/2—ip/s i/2+ip*/s  (1—i)/24+ipg/s i+ipr/s
—1q/s A—29)/24ipg/s —A—i)+iq*/s —i+iqgr/s
\(1—12)/2—ir/s i+ipr/s —i+1q7/s i+irt/s

S @, S @, S (OF
43 Bs Bg

p=-"—40—) +(1—-7), q¢q=0—1) +@-1),
o o
A, A,

Ay

r=(1—i) L 2 ) —(1—z'>j”4wl — (),

Ay 4y 4,

s=—2p—q*—2pg+4p—2r—2.

where

THEOREM 4. In case (1),the Kodaira-Spencer map
k: Tso—> H' R, 9%  is given by
£((0/0t)))=(3x)7'y*0> .

THEOREM 5. In caie (1), the Kodaira-Spencer map k is given by

£((0/9t)0)=(1/3)x%0 .

THEOREM 6. In case (), the Kodaira-Spencer map k is given by

(0/0t1), 1 1 1 X0z
k| (0/0t5), =—,;1;— e’ p* o' || x%. |,
(0/0t5), ot o p°/ \x%.

where p=exp(2ri/5).
(The above notations in 5, 6 are explained in §2.)

OBSERVATION. In case (1), the parameter ¢ is not reflected in the Prym
variety as a variable, that is to say, the Prym is uniquely determined. In case
(1), t is refrected as a variable, and in case (W), ¢, ¢, and ¢; are refrected as
independent variables in the Prym.

In section 1, we find a canonical homology basis and we compute the period
matrix of J(RB) in each case. Moreover, by the operation of a second order
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transformation, we obtain the period matrix of the Prym variety. In section
2, we caluculate the Kodaira-Spencer map and we give not only to prove the
independency of parameter #;’s but also to the explicit representation of influence
of parameters on the Prym variety.

[ would like to express my hearty thanks to Professor T. Sekiguchi for
his advices and encouragement during the preparation of this paper. In pati-
cular, he informed and teached me the notion and method of Kodaira-Spencer
map and gave me some instructive suggestions. Also I would like to thank
Professor R. Sasaki for his stimulative suggestions in our conversations which
gave me the motivation of this paper.

§1. Period matrices and Prym varieties.

In this section, we shall construct the period matrices of surfaces in cases
(I), (II) and (W), according to Farkas’ method [1], [9].

CASE (1). R: y*=(x—1—1) (x*+x+1)
R: y’=(x—1—1t) (x*+x+1)

where 14+t+# o, exp(27i/3), exp(dri/3).

Here we have an automorphis T : (x, ) — (x, {y) of F.

Then R is regarded as a double covering of R with the involution 7°2:
(x, y) = (x, —).

Since we can easily examine the divisors of differentials, we obtain a basis
of the vector space of holomorphic differentials given by

o=y %dx, w,=y3xdx, ws=9y %dx.
Then we see
Tw=iw, T?w;= —w; (7=1, 2)
(1)
Tw,=—ws, T w;=w;
that is to say, w, and w, are the anti T2-invariante differentials and w, is 7%
invariante differential. So, w, and w, are the differentials which correspond to
the differentials of Prym variety and w, is considered as a differential of R by
the natural projection R—R=R/<T>.
Here we construct a canonical homology basis on R (cf. [6], [3]). We

consider the following closed curves a, B, ¥ and 0 on x-sphere as illustrated
in Fig. 1.
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q
Fig. 1

v has four branches y,, y; (=iy)), ¥s(=—2y1), v« (=—1iy,). Let a; be the
lifting of a which is a path from y,-branch to y;,,-branch (=1, 2, 3) and a,
be the lifting of a from y,-branch to y,-branch. In the same way, let B, 7;
and d; be the liftings of B, v and 8, respectively.

Then we get the following relations

arFastas+a~0 B+ Byt Bat B0

2 ) FTetTabre~0  8,48,48,48,~0

] Qi+ Bt Ts+8~0 ot PatTe+8:~0
s+ Bat71+0:~0 @+ Bi+7.+0:~0

where a8 denotes the composition of @ and f by joining the final point of
a and the initial point of 8, and ~ means homotopic equivalence.
Then a canonical homology basis is represented as follows;

A1=a1—51“64+a4 Blz_a2+5z+73—ﬁ3
(3) A2=a1_181 By=—a,;+7:
As=as;— B Bs=—a;+7;.

Here A, and B, are considered as a canonical homology basis of R by the
natural projection B—R. We illustrate this homology basis in Appendix.
Then, from (2), we see the following

0 { T®A,~—A, T A, = A,
(
TzBlz_Bl TszzBs
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Ay=—Ay—B,—TA,—TB,
() { By=—TA,+B;—A,—B,
where =~ means homological equivalence.
We put SAjwizai,, Siji=b,-,.
From (1) and (4), we see that
Q1s5=—0qy3, GQys=—03, a3,=0, a3,=0ass,

bys=—b,, bos=—bss, b3y =0, bs;=bss.

We put
¢1 a;, G\ fw,
- ’ ¢s=w3/032
¢2 Az Qe @2
bis 12 ay; G2\ ' (b bre
= ’ T=bss/0s;.
by, bz, Az Qo ber  ba»
Then
1 0 0 o bie —bie
I LIRS A W e A
01 1 0 T

From (1) and (5), we see that

1=S41¢‘= _S43¢‘_S32¢‘_Suf‘-gmzqs’: biatibls

or bi,=—1+17)/2.
By the same way, we see that

n=1+ji, bs=—(1+1), bs,=1.
We put
901=¢1, 902=(¢2+¢3)/2, S03=(¢s_¢2)/2 .

Then we see that

PROPOSITION 1. R has a period matrix of the form
1+: —(142)/2 (1+4+46)/2
[ 00 [, 0l={tn —a+iz @tiz @iz
4 Bj
1+3)/2 (t—0)/2 (z+14)/2

where I is the 3% 3 identity matrix and t is the modulus of R with respect

to
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the homology basis on R determined by the natural projection R—R.

Recall that in general there are 2gx2g integral matrices (é g) which

act on Siegel space &, in the following fashion G, 21— (Ar+B)Cr+D) e,
where A, B, C, D are gx g integral matrices, A‘B and C‘D are symmetric and
A'D—BtC=mlI. 1f m=1, the action is so called the element of the Siegel
modular group or linear transformation, while the more general type of trans-
formation is called an m-th order transformation ([17J).

PROPOSITION 2. There is a second order transformation of &; which maps
the period matrix of R to the matrix

I 0 A+2/2 —A+46)/2
( ) where H:( )6@2.
0 = —(1+2)/2 7

ProOOF. The proof is by computation. We takke ‘é g) where

10 0 2 0 0
A=|0 1 -1}, D=0 1 -1} B=C=0.
01 1 01 1

Then a simple computation gives above result.

PROPOSITION 3. There is a linear transformation of &, which maps II to
0)662.

the matrix (6 ;

Proor. We take ‘é g)ESP(Z, Z) where

-1 0 1 -1 -1 0
A= ), Bz( ), C=( ), D=0.
11 0 1 -1 -1

Above matrix Il or (6 8) is the period matrix of the Prym variety. As

a consequence of this, we have

THEOREM 1. In case (1), the Prym variety P has a period matrix of the
form (12, 6 9) That is to say, P is isomorphic to the product | XJ where
J=C/<1, 3.

CASE (II). R: y*=(x—1—1)(x*+x+1)

R: y*=(x—1—t) (x®3+x+1)
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where 14-t+ o, exp(2ri/3), exp(dni/3).
Here T': (x, y) — (x, ¢y) where o=exp(2ri/6). Then R is regarded as a
double covering of R with the involution
T3: (x7 y) B (xa _y)'
Since we can easily examine the divisors of differentials, we obtain a basis
of the vector space of holomorphic differentials given by
@,=y7%dx, w,=y7°%dx, w;=y *xdx, w,=y‘dx.
Then we see
Tw,=—w, Tw;=ow;, Tw,=oc%w,
(6) =2, 3).
T:w,=—m,°* Tw;=—w;, Tw,—=—w,
So, @, @, and w; are the anti T*invariant differentials and w, is T3-invariant
differential. Hence w,, w, and w; are the differentials of the Prym variety and
w; is considered as the differential of R by the natural projection R—R.
Here we construct a canonical homology basis on R. We consider the
following closed curves a, 8, ¥ and 6 on x-sphere as in Fig. 1. y has six bran-

ches yi, ¥o(=01), ¥s(=0°y1), ys(=—31), ¥ys(=—0y) and y{(=—a%y,). Let a; be
the lifting of @ which a path from y,-branch to y,,,-branch (i=1, ---, 5) and

as be the lifting from ys-branch to y,-branch. In the same way, let B: and 7;
be the liftings of 8 and 7, respectively. We must pay attention to the lifting
of 9, for the branch points over infinity are of order 1. Let d; be the lifting
of ¢ from y;-brach to y;,s;-branch (¢=1, 2, 3) and 0; be the lifting from y;-
branch to y;_,-branch (j=4, 5, 6). Here we get the following relations

it tastaitastac~,  BitBot Bt Bt Bt B0
) { Tt Tot st Tt TotTen0,  8148~0,  8340~0,  Bo4,~0

1!11‘*‘,32‘*‘73‘*‘54’\-’0, Gt BatTiH0~0, @yt But7s48e~0

it Bst7e+0i~0,  astBetTi0~0, et Bitratd~0

Then a canonical homology basis is represented as follows;
Av=1141+7—0, B\=0s—75—1:—7s

8y Ay=aytasta,—0, B,=B:+pi+Bs—as—ai—as;

] Ay=a,— B, By=7,—a,

CAi=a,— B, B.=7:—a,.
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Here, A, and B, are considered as a canonical homology basis of R by the
natural projection R-—R. We illustrate this homology basis in Appendix.
Then, from (6), (7) and (8), we get the following

(9) { T*A,=—A, T Ay,=—A, T*Ay=A,
T°B,~—B, TB,=—B, T’B;=B,
10) { A~—TA—~B,~TB., B,=+A:+B,+T°B,
A= —T?As+B; B,~—T?A;—A,—TA,.
We put

SAjwiz ai, SijFbu .
From (6) and (9), we see thaat
Q43 =0,,=by =0, =0, A43= Qs bis=by.
ai=—0ays, biu=—biy (=1, 2, 3).
From (6) and (10), we see that

an:S w1=~g wx—g w;—g w1=g W =01~ — 03
Aq TA, B, T8, A,

am:S 0)1:—"_S w1+g wl'——-_g (01+S 0y =0a3+bys
Az T24, B3 Ay By

bu:S C01-_—‘S (!)1+S (Ul”f‘g @, =0ay3+b13—bis=ay3
B, Az B3 TZBA,

b12:S a)I:—‘S 9 w1"‘S a)x—g W, =—0ay3.
By T24, 4, T4,

By the same way

Ay =—0%ay+(1—0%bss, A32=—00z3+bss
51=—0"A33+(1—0)bss, A35=—0033+ b3
boy=a33+(1+0)bss, ber=20,3
bsi=as3s+ 1+ 0)bss, b3s=2ass.

We put as=k, bys=I[, bis/as=r.

(O3 ¢1
(a:) M @ |=| P2 | @/ Ass=@s .
W3 ¢3

Then
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/100 0 / | 2bn 2bi, bis —bis.
|
45 i_ko 01 —1 ' LBJ N st,n Zbgz gs —bx,ss
/0 0 1 1 1o 0 = 7
where
, (14a)k+! y o . (A+o)k
2bu,= 1—a) {2+ o)k+1} 2bzy=2b1,= Q2+ a)k+!
., k T =,
S T By s ey N
R b= o{k+1—a)l}
2T 2+ o)k +! BT A-) {2+ a)k+1}

We put ¢;=¢; (i=1, 2), ps=(@s+¢.)/2, ©:=(d:—¢s)/2. Then we see that

PROPOSITION 4. R has a period matrix of the form
| 2b1,  2bi. ¢ —bis
2b1,  2bs, bss —bzs
S (Pi,S Qi |= 1, , ,
45 Bj b1 bzs (bss+7)/2 —(b3s—1)/2
—bls —bis —(bis—7)/2 (bss+7)/2 |

|
I

where bi; is that in (11) and t is the modulus of R with respect to the homology
basis on R determined by the natural projection from R—R.

PROPOSITION 5. The modulus t is ? (w=exp2ri/3)).
PROOF. The proof is a direct calculation.

PROPOSITION 6. There is a second order transformation of S, which maps
the period matrix of R to the matrix [OI a())z) where
bi: bi: bis
1= 12 bae by |E8s.
13 bes  bis

PROOF. We take a second order transformation M =<‘él g) of &, where
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1 0 0 0] 2 0 0 0!
010 0 0 20 0
A= , B=C=0, D= )
0 01 —1 0 01 —1
0 01 1 0 01 1

Summalizing above results, we have

THEOREM 2. In case (1), the Prym variety P has a period matrix of the
form (Is, II) where Il is that in Proposition 6, that is

(1+0)+z 1—-¢® 2
1—g?* —3(1—a) 2(1—a)1+2)
2 2(1—0)1+2) 20+420(l—0)z

. 1
T 20—0){2+0)+2}

where z=l/k=(§83w1) / (SA;"‘)‘

PROPOSITION 7. z is corresponding to the modulus of the surface R: y:=
(x—1—-08) (x*+x+1).

7

PrROOF. R/KT? is canonically isomorphic to R and @, is the holomorphic
differential which corresponds to theodifferential of R and A, B, are the
homology basis on R determined by the natural projection from R — R.

CASE () R: y'=(x—1—t) (x—p(+t)) (x—p*(L+1y)) (x— p%) (x— p*)
R: y*=(x—1—1) (x—p(1+t) (x—p*(1 +15)) (x—0°) (x —p*)
where 1+4t,, o(1+4t2), p*(1+ts), p° p* and oo are distinct.
T: (x, y) —>(x, iy).
Then R is regarded as a double covering of R with the involution
T*: (x, y) —> (x, —y).

Since we can easily examine the divisors of differentials, we obtain a basis
of the vector space of holomorphic differentials given by

o, =y7'dx, @,=y7%dx, W=y ’xdx, W=y °x%x,
ws=y *dx, we=y’xdx,

Then we see
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Tw,=—iw, Tw;=tw;, Tw;=—w,
(12) { (=2, 3,4, j=5, 6)

T*w,=—w, Tw;=—0,;,, T 0w;,=w,
namely, w;, w,, w; and w, are anti T’ invariant differentials and w; and w, are
T*invariant differentials. So w,, ., w; and w, are differentials of Prym variety,
and w; and w, are considered as differentials of R by the natural projection
R—R=R/KT>.

Here we construct a canonical homology basis on R. We consider the

following closed curves a, B, 7, 4, ¢ and { on x-sphere in Fig. 2.

Fig. 2.

y has four branches y,, y.(=iy,), y«(=—y,) and y,(=—iy,). Let a; be the
lifting of @ which is a path from y,-branch to y.,,-branch (¢=1, 2, 3) and a,
be the lifting of a from y,-branch to y,-branch. In the same way, let B8, 7.,
d;, &; and {; be the liftings of B, 7, 9, ¢ and {, respectively. Here we get the
following relations

ataztas+ai~0,  Bi+B:+Bs+Bi~0,  ri+7e+7s+7~0
13 8,+0;+0,+0,~0, et etest+e~0, 5+E+Es+0~0
ay+Be+7s+0.+e+L~0, ar+Bs+7,+0,+&+8~0
1 as+Bi+714+0,+,+L~0, a+Bi+7: 405+ &,4+L~0

Then a canonical homology basis is represented as follows
A=CA4C—11—7, A=Bit+Bitete,  As=a—f;
A=71+0,, As=a;— s, Ae=7:+0,

B,=—7:+0:+ &+ Bs—as+s, By=8:—a;—L;—71+0,—¢;
B.=f,—a,, Bi=¢e,—7,, B:=0;—a,, Be=¢g;—73

(14)
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Here, A, B,;, A, and B, are considered as a canonical homology basis of R by
the natural projection R—R. We illustrate this homology basis in Appendix.
Then, from (12), (13) and (14), we get the following

T°A;=—A, T*A,=—A, T?As= As T*As= A,
T?B,~—B,; T?B,;~—B, T’B;=B; T*B,=B;
Ay~ A3+TA—TA,—A—TB;—TB,—2B;—TB;—B;,
16 Ae~2A4;+TA;—A—TA+TA;—TB;—B;
Bi=—TA+TA—As+A+TB+B:;+TB:+B;
I By~ A;—TA—As+TA—TB;—TB,—B;—B;

|

We put
SAjwiza,-j, Sijizbi,-.
From [I5), we see that
A51= Q5= 0Ae1= A0, Q55— Ass, Q5= A5, Ag3— Ass,
Qgs= Qgg, A13=—0Qy;, A14=—Qye, Qy3= —Qys, Q24= — Q g,
Q33— — A3, Q3= — Qs Q43— —Qys, Q4= — Q6.

There are same relations in {b;;}.

We put
Qi Q2 Qi3 G|t | @1
Qg1 Q22 Q33 Ay (OF ¢2
= s
Q31 Q33 Q33 Q34 (OF ¢3/
Ay Qup Qg3 Aay! Wy | | ¢4‘

Gss Qss \ 7' W5 s Ass Qss \ ‘[ bss b4
= ’ =(zi)=n
Qgz Qes We ¢s Qg3 Qgs bes bes

1y Qiz Qi3 G\ "' [by by by bu 2b1y  2b3; bis bl

A2y Q22 Q23 Qo bai bizs bas ba 2b21  2bze  bis 24
Q3 A3z A3z Ay bsi bis bss bsy 2bs, 2b3s  bis a4
Qa1 Q4 Qy3 Gy biy biz bis buy 12biy 2bix  bis 14

where, from Riemann’s equation, b;;=b};, m,;=n.. Then



14 Katsuaki YOSHIDA

1)

o O o o = O

S o O ©O O =

’2b{1 2b1,
2b1: 2bs,
2b1s  2b3s
(Sﬂf’b"): 2%, 2bis
0 0
0 0

We put

0
0
1
0
1
0

bis
bzs
bss
bss
T

iz

= o O o o <

0 0
0 0
~1 0
0 —1
1 0
o 1
—bly —bia
—bss —bs
—bss  —bss
—bs —bu
11 12
T2 o2

¢i=ciwl+$i (z'=l, 2, 3, 4)

where ggi are linear combinations of w,, w; and

of the first column of (a;;) 'isi. jse

w;. Since C; is the i-th entry

a,,Ci+a,,C,+a,;Cs+a,,Ci=1.

We put
S (U],:am:k
43
S a)1=b“—_—‘m
B,

Then

S w1=a“=l
4,

S w,=b=n.
B,

S“s¢i=gu3<ciwl+55,-)=2z'ci/<—z'SA3¢i,

STBB¢i=2icim—iSBS¢,-,

From (16), we see that

STA4¢i=21Cil_ZSA ¢i

4

Sm4¢i=2z’Cm—isB4¢i.

1= SA,¢' :S43¢' +S“8¢1“S“4¢1_L6¢‘_ ST83¢'_STB4¢'

_2S35¢' —8”5451—8869251

or
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1=2:1C(k—!—n)+2b1s+1+5)b1s.
We have the following relations similarly,
0=—2iC,((+m)+ (1 +2)bis
2b1,=2iC\(—k+![—m+n)—(1—10)b1s—(1+2)bis
2b1,=—2iC,2l+m-+n)+(1+2)(bis+bis)
0=2iCy(k—{—n)+2bzs-+(142)bs,
1=—2iCo({+m)+(142)bzs
2b1,=2iCo(—k+[—m~+n)—(1—0)bss— (1 +12)b2,
2b35=—21Cyl+m~+n)+ 1 +1)(bzs+bs.)
0=(01—4)42iCylk—l—n)+2bss+(1+7)bss
0=2—-2:Cs({+m)+(1+7)bss
2b1s=1+0)+2iCs(—k~+[—m~+n)—(1—12)bss— (1 +7)bs.
2b335=2—2iC32l+m~+n)-+(1+2)(bss+bss)
0=(1+2)+2iC.(k——n)+2b3+(1+2)bis
0=—Q1—9)—2iC.({+m)+1+2)bs,
2b1,=—~ 1+ +2iC(—k+I—m+n)—(1—D)bs,— (1+2)bis
2b34=27—2iC,2l+m~+n)+ (1 42)(bsa+bis)
From the above relations, we have
2b,=—142i/s, 2b1,=1-2ip/s, bis=—1iq/s
blu=Q1—19)/2—ir/s, 2bsy=1+2ip*/s, bss=(1—17)/24+ipq/s
bye=i+ipr/s, bys=—Q1—i)+ig*/s, bsy=—i+iqr/s
biu=i+ir/s
where p=k/l+A—)m/l+(1—7)
g=—1—m/l—1—1)
r=1=0k/l—2im/l—(1—n/l—1+7)
s=—2p"—q¢*—2pq+4p—2r—2

amn

REMARK 1. In (17), p, ¢ and » are represented as other forms.

we put

15

Indeed,
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Qg Qg3 Gp\ "'/ an 8
As; A3z QAsy as, |=[ ¢
Ays Q43 Qg4 aq r’
then, we can find p=p’, g=¢’ and r=r" by means of concrete caluculation.
Furthermore, we put
aza a24 b2s azs 024 b24
A(lzis, Aq, B3)=det ass Ay bgs ) A(Ag, Al) B;):det ass sy b34
Qs Q4 by Qs Qs by
Qs by by Ay bas by
A(Aay Bag BA)=det Qs bss by |, A(Ab Bs, B4)=det Qs bys by
Q43 bus by Qi by by
Then, we see, by means of caluculation,
. A(A39 A() B‘)
P 4@, A, By)
~ o 44, A, By) L d(A., Bs, B
q ( Z) A(AS’ A4) B4) )A(Aav A4, Bﬂ)
. L A4, A, B) L A(A,, B,, B
r=0—-0)+0—1)—7i—"—A+)—— 22
A(A3: A49 BS) )A(A3: A4: BS)
or from (17)
44, A, B .
44, A, By /l+A—2)m/
A(A,, B, B ) .
W @, A, gy "M
A(A\Sv BS’ Bl) B .
T x A o —— 1—
A(AS’ A4, BB) zn/l+( z)
We put
§0i=¢i, ¢i+2=(¢i+2+¢i+4)/2; ¢i+4=(¢t+4_¢i+2)/2 (i=1’ 2)-

Then we see that

PROPOSITION 8. R has a period matrix of the form
2L M —M
(S ¢o | qnt): I, M (@+S)/2 (z—S)/2
A5 By
—M (#—S)/2 (=+S)/2
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where

L—( —1/241i/s 1/2—ip/s ) Iy ( —iq/s (1—27)/2—ir/s )
N\ 12—ipss i2vipys)  \A—i)/24ipg/s  it+ipr/s
( —(1—i)+iq®/s —i+iqr/s ) ( Ty 7:12)
S= , W= .
—i+iqr/s i+ir?/s T Tas

Furthermore, © is the period matrix for R with respect to the homology basis on
R determined by the natural projection R—R.

PROPOSITION 9. There is a second order transformation of S, which maps
the period matrix of R to the matrix

I 0 L M
( ) where Il= ( ) =e,.
0 = M S

PROOF. We take the second transformation A B ) of &, where

C D
I, 0 0 2I, 0 O
A= 0 [, —I,|, B=C=0, =0 I, —I,].
0 I, I, 0 I, I,

THEOREM 3. In case (), the Prym variety P has a period matrix of the
form (I, Il) where II is that in proposition 9, that is,

—1/24i/s 1/2—ip/s —iq/s (A—2)2—ir/s|
1/2—ip/s i/24ip*/s  (1—=i)/2+ipg/s  i+ipr/s
—iq/s (1-9)/2+4ipq/s —(1—i)+ig®’/s —i+igr/s
(1—i)/2—ir/s i+ipr/s —i+igr/s i+ir?/s

REMARK 2. I has three parameters p, ¢ and ». These parameters are
independednt, but the strict proof will be given at §2.

§ 2. Kodaira-Spencer map and local injectivity.

First we recall the Kodaira-Spencer map associated with a deformation
according to Sekiguchi’s paper ([8], [4]).

Let S be a k-scheme, oS a k-rational point and 7 : X—S be a smooth
and proper morphism. Denote X, the fibre over 0o<S.

We have a short exact sequence of sheaves on X ;



18 Katsuaki YOSHIDA

0~—->gx/s——>gx—>7r*gs-—-—>0

defining the relative tangent sheaf T y,s. By restriction this to X,, we obtain

an exact sequence
0— Tx,—> TxQ0x, —> T5,8:0x,—> 0.

From the exact seqence of cohomology, we obtain the so-called Kodaira-Spencer

map
K. TS,O — Hl(Xo, gXO)'

From now on, we will compute this map exactly in our cases by Seki-

guchi’s method.

CASE (I). In the above general theory, 2=C
X=R,: y*=(x—1—t)(x2+x+1)
Xo=R,: vi=x°—1
S=Spec(C[t]/(t?).

A smooth model of B, is given by

k;':-'CUgUCVg
with
U,=Spec (C[t1[X, V]/V*—(X*—1)—t(X*+X +1)))
=Spec (C[t1[x, ¥1)
@, =Spec(CLU, V]/(V*+U*-U+tU*+U*+U?))
=Spec (C[¢1[x, v])
and
U NV, =Spec (C[t][x, ¥, x~'])=Spec(C[t][u, v, u™'])
x=u"! X=U"
where { or {
y=u"v Y=U"V

By using the Ceck cohomology over the covering {U,, <V,} of B., we can
compute the cohomology groups HY(R, ) for a coherent sheaf ¢ on F,. In

particular, we obtain the following :

LEMMA 1.
(i) A basis of H(R., Q&) is given by

o=y %dx, w,=y 3xdx, ws=y"%dx,



Local injectivity of prym maps for some families 19

(ii) A basis of H'(R,, 2% is given by
Qi =0i=y7(dx)}, i=ww,=y*x(dx)?, LQ:=wi=y *x*(dx)?,
==y 4(dx)?, Q. =ww,;=y %dx)?, Ri=w,ws=y *x(dx)*.
(iii) A basis of H\(R,, éﬁt) is given by
6,=x"'y%., 0,=x"%y%,, 0;=x73y%,,
0., =x7'y40,, 0s;=x"'y%., f0e=x"%y%0,,
where 0, is the derivation on C[x, y] defined by
0.(0=1,  d.(»=dy/dx.
PrROOF. (i) is mentioned in §1. (ii) is asserted by Max Noeter’s theorem.
(iii) First, we have to compute H l(ﬁ,, th). We see
(U, 22,)=C[x, y1y—*dx and I'(V,, 2z,)=Clu, vIv*du |
(U, Qa)NI(V,, 25)=C[x7}, x7'y]y~*xdx. |

Therefore x~'dx is a basis of H(R,, 2z,). From Serre duality theorem, cor-
responing to a basis of H°(R,, 2%:), we obtain

Hl(ﬁt' bk,:):<x-1ysax, x72y%0z, x7°y%0z, x7'y%0., x72Y%0., X7y

where Qz, coincides the tangent sheaf Tz, of F,.
We look for derivations over C:

D: Clt1[x, y] — Clt1[x, y] and 9: C[t][u, v] —> C[t][u, v]

such that
9@)=1 and I@)=1.

If @ and 9 are such derivations, then we get the following; Since
yi=xd—1—t(x*+x+1) and v*=—u(u*—1)—tu?(u®*+u+1),

(1) 4y*9(y)={3x*—tCx+1)} D(x)—(x*+x+1),

(1) 4°9@)={—4u*+1—tu(@u?+3u+2)} D(u)—ud(u*+u+1).

Put

(2) { D(x)=(A+By+Cy*+Dy)+(G+Hy+]y*+ Kyt
D(y)=(L+My~+Ny*+Py")+Q+Ry+Sy*+Ty’)

[ 9w)=(A+Bo+Cov*+ Do) +(G+ Ho+ fo+ Koyt
( { D@)=(L +Mv+ No*+ Pv*)+( @+ Bo+Sv+ Ty
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From (1), 2), (1’) and (2’), we get
AM(x*—1)=3Ax*—(x*+x+1)

4N (x*—1)=3B«x*

4P(x*—1)=3Cx*?

4L =3Dx*

—4M (x4 x+1)+4R(x*—1)=—AQ2x+1)+3G x*
—4N(x*4x+1)+4S(x*—1)=—B(@2x+1)+3Hx*
—4P(x*+x4+1)+4T(x*—1)=—C(2x+1)+3] x*
4Q=D(2x+1)+3Kx*

(3)

AM (—u*+u)=A(—4u*+1)—(u* +u+u?)

AN (—ut+u)y=B(—4u+1)

4B(—ut+u)y=C(—4u*+1)

4L (—u*+u)y=D(—4u*+1)

—4M (- ut) AR (—utu) = — A(dut+-3u+2u)+ G (—4u+1)
——41\7(u“+u3+u2)+4§(—u‘+u)= —§(4u3+3u2+2u)—ﬁ(—4u3+1)
—4ﬁ(u"+u3+u2)+47‘(—u‘+u)= —Cdu+3u+2u)+J (—4us+1)
40=—D@u*+3u*+2u)+ K(—4u*+1)

(3)

In these equalities, we may put
and

Then, we get
AM(x*—1)=3Ax*—(x*+x+1)
(4) {——4M(x2+x-{—l)—l—4R‘(xs—1)=——A(2x—|—1)—|—36x2
(4 {41\71(—u‘+u)=f~1(—4u3+1)—(u‘+u"-i—u”)
—AM (w4 ut) + 4R (—ut+u)= — Al + 30+ 2u)+ G (—4u+1).
Here, we can put
(5) { A=(x*+x+1)/3, M=(x+1)/4
G=—(x"+x+1)/3, R=—@3x+2)/12,
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(51 { A=—u@+u+1)/3, M=—{lu*+4u+1)/12
C=u(u—)(u+u+1)/3, R=@u+u—1)/12.

Therefore, by (2), (2), (6) and (5’), we get

(6.) {g?(x)———(x2+x+l)/3——(x2+x+1)t/3
D(y)=(x+1)y/4—@x+2)yt/12

. {@(u)z~u(u2—|~u-l—l)/3—|—u(u—1)(u2+u+1)t/3
PW)y=—u(@u?+4u+1v/12+@u+u—1ot/12.

Now we put
D=9 (modt) I=9D (mod?)

Then we get
D(x)=P(u)=—uP(u)=(u+1+u"")/3=(x+1+x7"/3
IN=Iu v)=u{ud@)—vIw)} =@lu) v=y/4.
Hence on v,NV,, we get
(7 {(@*E?)(x)=(x2+x+1)/3——(X+1+x“)/3=(xz~x“)/3=y4/3x
(D—=D))=(x+1)y/4—y/4A=xy/4=(y*/3x)(dy/d x)
Here, we notice that

£(0/8.)0)=(D— D)= H'(R,, Tr,)

and from (7),
D—D=(3x)"'y*0-.

Therefore, from lemma 1 (iii), we could prove the following

THEOREM 4. The Kodaira-Spencer map «: Ts.o—HYR,, Iz, is given by
(8) £((0/0:)0)=3x)"'y*0,=0,/3.

REMARK 3. is an alternative proof of the fact that there is no
contribution of the parameter ¢ to Prym variety (This is a direct result of
[Theorem I). Indeed, from Serre duality, 6, corresponds to £, which is a
quadratic differential for R, while 2,=®? does not corresponds to Prym variety
since ws is not a Prym differential.

CASE (I) X=R,: y’=(x—1—t)(x*+x+1)
Xo:ﬁo: y6=x3-—1
S=Spec (C[t1/(t*)
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A smooth model of R, is given by

f(‘¢=‘UtUCVg
with
U,=Spec (C[t][X, Y]/(Y*—(X*—1)+t(X*+X+1)))
=Spec (C[t][x, ¥])
v, =Spec (C[tI[U, V1/A—(V*=U+t(VU*+VU*+U*®)))
=Spec (C[t]Lu, v])
and
U,NV,=Spec(C[t1[x, ¥, y'])=Spec(C[t][w, v, u™'])
where
x=u"% y=u""',
LEMMA 2.

(i) A basis of HY(R,, Qz,) is given by
w, =y 3dx, w,=y %dx, ws=y *xdx, w,=y *‘dx
(iii)y A basis of HR,, Q%) is given by
Q=wi=y(dx)? 2, =w,w,=y ¥ (dx)?, Qi=w,ws=y " x(d x)*
Q=wi=y71dx):, Qy=wws=y ""x(dx)? Qi=wi=y 'x*(dx)*
2.=w,w,=y "(dx)? s=w,w,= 7y %(d x)?, Q,=ww,=y °x(dx)*
(iii) A basis of H'(R, 2z, is given by
0,=x%0., 0,=x%y%., s =xy%0;
0.=x*y'0., Os=xy%0., 0°=y‘0.
0,=x%y0, 0= x%y%0., 0,=xy%0=
PROOF. The proof of the above is the same as the lemma 1 and is there-
fore omitted.
We look for derivations over C
D: C[t1[x, y] —> C[t1[x, y] and D: C[t1[u, v] —> C[t][%, v]

Since
yei=x*—1—t(x*+x+1) and *=u’+14t(u**+u‘v+u),

we get the following
(9) 6y°D(¥)={3x*—t2x+ 1} D(x)—(x*+x+1)

and
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(97 {3v*—tQRuv+u*)} D)= {6u°+tQuv*+4u’v+6u)} D)+l +uv+u).

Put
10) {@(x)=A+By+Cy2+Dy3+Ey“+Fy5+t(G+Hy+Iy2+jy3+Ky“+Lys)
D(y)=M~+Ny+0y*+Py*+Qy*+Ry*+t(S+Ty+Uy*+Vy'+Wy'+Zy")
10/ {@(u)zfl—{—év-}-évz—{—t(ﬂﬁﬁ—f?}vtﬁ‘vz)
DW)=G+Hv+I*+t(J+ Kv+Lv?)
From (9), (10), (9’) and (10"), we get
6N (x*—1)=3Ax*—(x2+x+1)
60(x*—1)=3Bx*
6P(x*—1)=3Cx?
6Q(x*—1)=3Dx?
6R(x*—1)=3Ex*
6M=3Fx*
AD ¢ 6N(x*+ x+1)+6T (' —1)=— A@x+1)+3G x®
—60(x*+x41)+6U(x*—~1)=—B@x+1)+3Hx?
—6P(x*+x+1)4+6V(x*—1)=—C(2x+1)+3Ix*
—6Q(x*+x+1)+6W(x*—1)=—D@2x+1)+3] x*
—6R(x*+x+1)+6Z(x*—1)=—E@x+1)+3Kx®
6S=—F(2x+1)+3L x*

3H (1 +1)=6Aut+u°

3w +1)=6Bu+u

3G=6Cut+u

11y | —Gu*+3Aus+Tu*(u®+1)+3Kws+1)
=6AuS+2Bu+1)+4Cu*(ut+1)+6Du®

—2Gur+2Hut +31u+ 3L (w+1)=4Au*+6Bu+2Cu+6Eu’

Hu+27ut +3]=2Au+4Bu*+6Cu*+6Fus

In these we may put



24 Katsuaki YOSHIDA

and

Moreover we can put

a2 { A=(x*+x+1)/3, G=—(x*+x+1)/3
N=(x+1)/6, T=—Bx+2)/18

(A=w/6, B=u%6, D=u'/18, G=u'/3

42 { A=u*/3, I=u'/3, K=u*/9, L=2u*/9.

Therefore, by (10), (10"), (12) and (12’), we get

13 {ﬂ)(x)=(x2+x+l)/3—(x2+x+l)l‘/3
D(y)=(x+1(y/6—3x+2)yt/18

13 {@(u)z(u’—i—usv)/6+(u’+2u5v)t/18
D)= +uv+uv?)/3+Quv+uvt/9.

Now we put

D, D=9 (modt).

(S
il

Then, we get
(=P w)=u"*{ud@w)—20P(u)} =1/3
I(y)=—uPu)=—(x+1)y~*/6
Hence on U,NV,, we get
14 {(@—.‘7))(x)=(x2+x)/3
(D—P)(y)=(x*/3)(dy/dx)+(x/3)(dy/dx).

Here £((3/0,)s)=92—9 is determined by the part (x%/3)d. and (x/3)d. is a boun-
dary component from lemma 2, (iii). Therefore, we could prove the following
THEOREM 5. The Kodaira-Spencer map &: Ts,o—H'(R,, Tz is given by

(15) £((0/0:)e)=(x%/3)0:=6,/3.
REMARK 4. shows that there is the contribution of the para-
menter ¢t to Prym variety. Indeed, from Serre duality, #, corresponds to £,

which is the quadratic differential for R, and 2,=w} corresponds to Prym
since w, is a Prym differential.

CASE (1)
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X=R, .., y'=(x—1—t)(x—p—pt)(x— 0~ p*ts)(x —p*)(x — p*)
Xo:ﬁo,o.o: yi=x°—1
S:Spec (C[[tl, tg, t3]])

For our purpose, we may consider R; oo, ﬁo,;z,o and R, ., separately. So

we reset
X:ﬁ,vo,o:ﬁ,l: yi=(x—1—t)(x*+ 2+ x4+ x+1)
S=Spec (C[#:]/#)
A smooth model of R, is given by

'ﬁ‘l: CULIUCVLI
with

U,,=Spec (C[t,1[X, Y 1/(V —(X°—1)+t:,(X*+ X°+X*+X +1))
~ =Spec(C[,][x, y1)
v, =Spec(C[#,]LU, V]/(U=Vi+Us+t,(UV U VU VAUV +U?))

=Spece (C[¢,1[u, v])
and
UMV, =Spec (C[#,][ x, ¥, y ' ])=Spec(C[t:][u, v, v™'])
where

LEMMA 3.
(i) A basis of HY(X, 2x) is given by

o=y 'dx, w,=y *dx, ws=y *xdx
w,=y *x%dx, w;=y *dx, W=y *xdx
(ii) A basis of HYX, 2%2) 1s given by
Q,=wi=y*(dx)% Q,=w,w,=y *(dx)?, Q,=w,w;=y *x(d x)?
Qi=0w=y"*x%dx)}, Q=wi=y"dx)?,  Li=wws=y*x(dx)’
Q:=w.w, =y x*(dx)?, Qi=ww,=y *x3(dx)? Qo=wi=y x4 (dx)?

Qlo:a)lwg,:y—s(d.X)z, Q11=w1ws=y—3x(dx)2, sz:wzwszy_s(dx)z

Ry =wws=y *x(dx)’, Qi =wws=y " x*(dx)?, Qis=ww=y *x3(d x)

(iii) A basis of H'X, 2x) is given by

01:3)_2%48;, 02:x4ax, 0s=x36x, 04-':2628;, 05=x“y20x

25
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0e=x°y%0z,  0:=x°Y%0z,  0s=x3%0:, 0,=3%: 60..=y'x'0,

0u=y"'x°0z,  01=x'0:, 015=x°y0:, 0.=xy0;, 0:=x)0.
PROOF. The proof is omitted as lemma 2.

We look for derivations over C

9,: Cltlx, y] —CLt1(x, y],  D.: C[tJ[u, v] —> C[t,][u, v]
such that |

Dit)=1, D,¢,)=1.
Since

yi=(x—1)—t,(x*+ x4+ x%+x+1)
and

V=ultutt,(uvt+utvitupi+utv+ub),
we get the following
(16) 4y*9,(y)={6x*—t,:(4x*+3x°+2x+1)} Dy (x)—(x*+ x4+ x2+x+1)
(16”")  {5v*—t,(duv*+3uv+2u*v+u)} D,(w) — (uv* + u?v’+ uv? + u*v + u®)
={Gu*+1)+t,w*+2urv* +3utv*+4uv+5u*)} D,(u)
Put

- {£Dl(x)=A+By+Cy2+Dy3+t1(E+Fy+Gy2+Hy’)
D(N=I1+]y+Ky*+ Ly +t:(M+Ny+Py*+Qy°)

, @1(u)=A7+§v+5vz+§u3+ﬁv‘+t,(§+ﬁv+5vz+ﬁvs+§v‘)
4 { .C'Dl(v)=f+j~v+I?vz+L~v“’+Wv‘+t1(1\7I+1\7v+13v2+5v‘°‘+2~v‘).
From (16), (17), (16’) and (17’), we get
4] (x*—1)=5Ax*—(x*+x*+x24+x+1)
4K(x*—1)=5Bx*
4L (x*—1)=5Cx*
41=5Dx*
—4J(x*+ x4 x4+ x+1)+F4AN(x*—1)=— A4 x*+3x2+2x+1)+5E x*
—4K(x*+x*+x*+x+1)+4P(x*—1)=—B(4x*+3x*+2x+1)+5Fx*
—4L(x'+x°+ 2"+ x+1)+4Q(x*—1)=— C@x*+3x*+2x41)+5G x*
AM=—D4x*+3x*+2x+1)+5Hx*

(18)
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AGut+1)+us=5/(u’+u)

BGut+1)+u*=5Ku’+u)

5(5u4+1)+u3:53(u5+ u)

DGut4-1)+ ut=5W(us+u)

RGu*+1)+u=51

5Au+ B+ u)+2Cuub+u)+30ur (w0’ + u) +4Ru(wb+u)+ EGut+1)
= —fu‘+5fu5+ﬁu(u5+u)+2fuz(u5+ u)+3Wu3(u5+u)+51\~J(u5+u)

18) { 4Aur+5B8u*+Cui+u)+2Duus+u)+3Ru(w’+u)+ FGu+1)
= — 20w+ 4 u +5 Ku+ L u(us+u) +2W u?(ub 4 u) +5P(w*+u)

3Aut+4Bus+5Cus+ D(ub+u)+2RBuu’+u)+G Gut+1)
=—3Ju+3Jut+4 Ku* +50 us + Wu(u®+u)+5Q (us+u)

2Au+3But+4Cu+5Du*+ R+ u)+ HGu*+1)
=—4Ju+2Ju+3RKu* +40 uw* +5Wub+5Z (ub+u)

A+2Bu+3Cut+4Du*+5Ru*+SGut+1)
:fu+2]%uz+3fu3+4ﬁ7'u4+5]\71

In these equalities, we may put
A=(x*+x*+x*+x+1)/5 J=x*+x*+x+1)/4

(19) N=—(10x*+9x2+7x+4)/20 E=—-2(x*+x*+x2+x+1)/5
B=C=D=F=G=H=I=K=L=M=P=Q=0

J=ut/4 K=uw4 L[L=u*/4 W=u/4 I=—u’
] E=us/a F=uv2 G=3uw/4 H=w Z=0
§=0 M=—u®,

{ /~l=u5/4 §=u4/4 C=ut/4 D=u?/4 =—u

(19

Therefore, by (17), (17’), (19) and (19’), we get

20 { Di(x)=(x*+ x4+ x2+x+1)/5—-2t,(x*+x*+x,+x+1)/5
D)=+ x2+x+1)y/4—t,(10x3+9x2+Tx+4)y/20

20" {.@l(u)z(u“—}—u‘v+u3v2+u”v3—4uv‘)/4+tl(uB+2u‘v+3u3v2+4u’v3)/4
D,W)=(—4ub+uv+uv?’+uv*+uvt)/4+t,(—4us—3utv—2u% —uv?) /4

Now we put
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Il

D =9D, 9,=9, (modt,).
Then we get
Py(x)=D(uvH)=u"{ud,w)—vd ()}
=u{(—4ut 4+ uSv+uvi+ud+uv) — (v +utvi+utvi+ulvt —4ut)} /4
=—ut+uvr=—u+u(u4u)=1
P:MN=P,(u)=—u"d,(uw)=—1+x+x2+x*—4x)y-2/4.
Hence on vU,N\<V,, we get
(D,— D )(x)=(x*+x*+x%)/54+(x—4)/5
(21) (D:1—=D)N=(x"+x*+x+1)y/4+1+x+x+x°—4x)y~2/4
=(x*+x*+x%)Gx) @y /5+(x —HGx)(@Ey*) /5

Hence x((8/0t,)e)=2.,— 9D, is determined by the part (x*+x°*+x%d./5 and (x—
4)0./5 is a boundary component from lemma 3 (iii), that is

(22)  k((@/0t)e)=(x*+x*+x20:/5=(0,+05+8.)/5.
Next, we reset
X=Ri ., =R, : y'=(x—1)(x—p—pt)(x—p*)(x—p*)(x—p*).
This equation is obtained by setling
r=pX, y=Y and t,=t,

in the equation of R, ,,: Y'=(X—1—t,) (X—p) (X—p?) (X—p°) (X—p*). Hence,
9, and 9, which are corresponding derivations to ﬁ,z must satisfy the following

(D= D)(2)=(D,— D) (pX)= (D1~ D) X)=p(X*+X*+X*)/5
=(0*x*+p°x"+0'x%)/5
@,—D)(N=(D,— I )Y)=(X*+X*+X*)(5X*)4Y*)"/5
=(p*x'+p*x*+p'x)(5x)(4y") /5
Therefore
(23) £((0/0t2)0)=(D2—D2)=(00.+0°0:s+0*0.)/5.
Next, we reset again
'X:ﬁo.o.q:ﬁ@: yi=(x—1)(x—p)(x—p*— p*t:)(x — p*)(x — p*)
This equation is obtained by setting

x:p2X’ y:Y, t-i:tl
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in the equation of f?tl_o,o.
Hence, 9,, 9, which are correspoding derivations to ﬁts must satisfy the
following

(D35—D)(X)=(D1—D)(p*X)=p*(D:— D )X)=p*(X*+X°+X*)/5
=(p*x*+px°+0°x%)/5
(@5s—D)N=(D1— D)X )=X'+X*+X?)/5
=(p*x*+px*+p*x)ExAY*) /5.
Therefore
24) £(@/8t5)0)=(Ds—D5)=(0*0:+ 005+ 0*0.)/5.
From (22), and [24), we could prove the following theorem for the
family X:ﬁtl,

tantg

THEOREM 6. The Kodaira-Spencer map «: Ts,—H' (X, Tx) is given by

(0/0t1)0 1 1 1\/6,
@) x| @t |=5| 0t o ot | O
(0/0ts), et o p*/\ 6,

COROLLARY. & is injective.
PROOF. It is clear since the matrix in (25) is nonsingular.

REMARK 5. and show that ¢,, ¢, and ¢; are independent
parameters of Prym variety. Indeed #,, 65 and 6, correspond to £2,=w,®,, 2,=

0,0, and Q,=w,w, where ,, w,, w; and o, are Prym differentials and the in-
jectivity asserts their independency.
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Appendix.
1. A canonical homology basis of the Riemann surface defined by

Vi=(x—-1-)(x+x41).

) exp(dni/3) exp(2ri/3) 14t

A, A, A,
A
b s N 45

A, B, B'({ A, B,
> A,

TN <

A,

B,

B,
, \\ > B,
B, <

B,

A,

Y

)] @ (B) (a)
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A canonical homology basis of the Riemann surface defined by

Yoi=(x—1—-8)(x*4+x+1).

31

) exp4rni/3) exp (2rni/3) 1412
A, As
B,
O, QA
A, B, ~
lL_ B, A, A,
B,
Al B' Az 132 Al

B, B,

ARG

B,

) t9) (8

(a)
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3. A canonical homology basis of the Riemann surface defined by

y'=(x—1=t)(x—p—pt)(x—p*— p*ts)(x — p°)(x — p*).

o* Pt o0 P+t ptt) 14,

As

B,

Bs

® (s) ) @ () (@)
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