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ON RAMANUJAN SUMS ON ARITHMETICAL SEMIGROUPS
By
Aleksander GRYTCZUK

1. Introduction.

Let f: N—C be an arithmetic function and let f*=pux*f denote the Dirichlet
convolution and the Mobius function g, so that

(1.1) frm= 3 pdf(F), nzl.
Let

g .hn
(1.2) Cq(n)———(h %1:1 exp(Zﬂz —q~)

be the Ramanujan’s trigonometric sum. A Ramanujan series is a series of the

form
(13) 3 agedn)
where ¢4 (n) is Ramanujan’s sum and

‘ _ & [Xmg)
(1.4) aq—-m=l~———mq .

Important result concerning Ramanujan’s expansions of certain arithmetical
functions has been given by Delange [2]. He proved the following result:

) @ ()
THEOREM A. If 2_1 ~2—7~1~ | f¥(n)| <oo, where w(n) is the number of distinct

prime divisors of n, then % lagce(n)| <oco for every n and %ach(n)Zf(n).
g=1 q=
In his proof, Delange used the inequality
(1.5) 2 lean)] =2°®n,
I
see [2; Lemma, p. 263] and conjectured [2, p. 264] that his Lemma is best

possible.
In we proved the following identity :
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) 2 |ex(n)| =20t 5 1(k, 1)
dlk

for all positive integers £ and n.

D. Redmond generalized (*) to a larger class of functions and K.R.
Johnson evaluated the left hand side of (*) for second variable. Further
generalizations connected with (*) have been given by K.R. Johnson [5], J.
Chidambaraswamy and D.V. Krishnaiah and D. Redmond [8].

In this paper by using (*) we give a theorem inverse to the Theorem A.
Moreover we obtain an evaluation of Ramanujan’s sum defined on an arith-
metical semigroup.

2. Inverse Theorem to the Theorem A.

We prove the following

THEOREM 1. If kﬁUk<oo. where
=1

@2.1) U= 5 U ("“’)‘1 ca(m)],

mq==

then
2w(n

B 1) <o

PROOF. Let us suppose kE U,<o, where U, is given by above. From
=1

we get

k
2.2) 570 5 o<
By and (*) we obtain
©0 x*
(2.3) kgl |fk(k)|2m(h/(k.n))(k’ n)<oo .
Now, by well-known properties of the function w(n) it follows that
2w(k)
(2.4) PAIALE ">>2————2m((k 5
and if D=(k, n) then
(2.5) - D=2

From and we obtain
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(k, n)

(2.6) 2(0(18/(/3.”))(/2’ n)gzw(k)?}'(mzzm(k) .

By [2.3) and [2.6) our theorem follows.

3. Ramanujan’s sum on an arithmetical semigroup.

Let G denote a commutative semigroup with identity element 1, relative
to multiplication operation. Suppose that G has a finite or countably infinite
subset P such that every element a1 in G has a unique with to up to order
of the factor indicated of the factorization of the form
(3-1) i a:pldl cee pkdk

where p,=P, p;#p; for i#j and a; are positive rational integers. It there
exists a real-valued norm mapping |-l on G such that

(i) =1, lpll>1 it peP
(3.2) (ii) labll=\allbl for all a, beG,
(ili) Ng(x)=card {a=G: |la||=x} <o  for x<0

then the semigroup G will be called the arithmetical semigroup.

We have the following;

LEMMA 1. Let c.(a) denote the Ramanujan sum defined on an arithmetical

semigroup G as follows
_ r P

(3.3) ea=_ 3 w(Z)dl
where v, a=G; 0>0, p denotes the Mébius function on G and (r, a) is the g.c.d.
of v, a in G. Then we have _

Iplem—lplocm=*  if p™|a
(3.4) ¢ m(a)=y —|p[’m-" if p"*la and p™fa

0 if pmt)a

for any prime element p<P and positive integer m. Moreover c,(a)=1 and for
any fixed a=G the junction c.(a) is a multiplicative function with respect to

variable r.

The proof of this Lemma follows from the results given by J. Knopfmacher
see [6, pp. 185-186].
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Now, we can prove the following:

THEOREM 2. Let G be a given arithmetical semigroup and c.(a) denote the
Ramanujan sum on G. Then for any r, acG we have

3.5 2 leda)| =2/ o2, a)l’

where >0 and w(D)=Fk if D=p7" - pi*.

PROOF. Let a<G be fixed. Then the function f(r)=(r, a) is a multiplica-
tive function of ». Hence by (ii) of it follows that

(3.6) (rs, )lI*=|(r, a)l’l(s, a)ll® for r, s&G such that (r, s)=1.

Let g=pe - p*,, p,=P, p;+p; for i#j, then we have w(g)=+k. Consider the
function F(g)=2%,

It 1s easy to see that F(g) is a multiplicative function. Hence

(3.7) (rs, a)) ((r, a)) ((s, a)) for (r, s)=1;r, s&€G.
From and [3.7) it follows that the function

P(r, a)=207/22|(r, a)|°

is a multiplicative functions of rG for any fixed a=G.

By it follows that the left hand side of is also multiplica-
tive of <G for any fixed a=G. Thus it suffices to verify for r=p",
where p= P and m is a positive integer. Denote by L(r, a) the left hand side
of (3.5) and suppose that p'|a.

If 0=1<m then we have

(3.8) Lp™, 0= e @)l =le@)] + T e @)l + e, en(a)].
By and it follows that
L(p™, &)=L+ S} (1= 179+ p=2( pl1"
If 1>m then by we obtain
L(p™, &)= 33 le @I =1+ 5 (pIF—pPd-)= plP™

Comparing the functions L(p™, a) and P(p™, a) we get L(p™, a)=P(p™, a) and
the proof of is complete.
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