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DEFORMATIONS OF TRANSVERSELY
SYMPLECTIC AND TRANSVERSELY

CONTACT FOLIATIONS

By

J. GIRBAU and G. GUASP*

Introduction

The aim of this paper is to give a versality theorem for deformations of
transversely holomorphic foliations on a compact manifold with an additional
transversely symplectic or transversely contact structure and give some examples
of deformations of such structures.

First of all recall the definitions of (holomorphic) symplectic and contact
manifolds. A complex manifold $M$ of even complex dimension $q=2q^{\prime}$ admits a
(holomorphic) symplectic structure if there exists a closed holomorphic 2-form $\omega$

such that $\omega^{q^{\prime}}\neq 0$ at each point. If the complex dimension $q$ of $M$ is odd, $q=$

$2q^{\prime}+1$ , and there is an atlas $\{(U_{i}, z_{i}^{1}, \cdots, z^{q_{i}})\}$ , a family $\{\omega_{i}\}$ of holomorphic 1-
forms on each $U_{i}$ such that $\omega_{i}\wedge(d\omega_{i})^{q^{r}}\neq 0$ at each point and there are holomor-
phic functions $e_{ij}$ on $U_{i}\cap U_{j}$ with $\omega_{i}=e_{ij}\omega_{j}$ then $M$ is said to be a (holomorphic)

contact manifold.
In 1960 Kodaira studied the theory of deformations of such structures ([7])

(among some other types of structures.) With the notations of that paper, the
symplectic complex manifolds are the $\Gamma_{a}(\omega)$-structures with $\omega=dz^{1}\wedge dz^{2}+\cdots+$

$dz^{q-1}\wedge dz^{q}$ and the contact complex manifolds correspond to the $\Gamma_{r}(\omega)$-structures
with $\omega=dz^{1}+z^{2}dz^{3}+\cdots+z^{q-1}dz^{q}$ .

A transversely holomorphic foliation of complex codimension $q$ on a manifold
$M$ can be defined as a $\Lambda^{tr}$ -structure, where $\Lambda^{lr}$ denotes the pseudogroup of
local diffeomorphisms of $R^{p}\times C^{q}$ of the form $f=(f^{u}, f^{a})$ such that

$\frac{\partial f^{b}}{\partial x^{u}}=\frac{\partial f^{b}}{\partial\overline{z}^{a}}=0$

for $u\in\{1, \cdots, p\}$ and $a,$ $b\in\{1, \cdots, q\}$ . This means that $M$ is endowed with
an atlas with local charts modeled in $R^{p}\times C^{q}$ whose coordinate changes belong
to $\Lambda^{tr}$ . The subbundle $F$ of $cTM$ locally generated by the vector fields of the
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form $(\partial/\partial x_{i}^{u}),$ $(\partial/\partial\overline{z}_{i}^{a})$ characterizes the foliation.
Let $\mathcal{F}$ be a transversely holomorphic foliation on a manifold $M$. If the

complex codimension $q$ of $\mathcal{F}$ is even, $q=2q^{\prime}$ , we shall say that $\mathcal{F}$ admits a
transversely (holomorphic) symplectic structure if there is a complex-valued 2-
form $\omega$ on $M$ such that:

1. $\omega(X, Y)=0$ if $X\in\Gamma(F)$ .
2. $L_{x}\omega=0$ if $X\in\Gamma(F)$ .
3. $\omega^{q^{\prime}}\neq 0$ at each point.
4. $d\omega=0$ .
If the codimension $q$ of $\mathcal{F}$ is odd, $q=2q^{\prime}+1$ , we shall say that $\mathcal{F}$ admits a

transversely (holomorphic) contact structure if there exists a complex-valued 1-
form $\omega_{U}$ on a neighbourdhood $U$ of each point such that

1. $\omega_{U}(X)=0$ if $X\in\Gamma(F)$ .
2. $L_{X}\omega_{U}=0$ if $X\in\Gamma(F)$ .
3. $\omega_{U}\wedge(d\omega_{U})^{q^{\prime}}\neq 0$ at each point.
4. If $ U\cap V\neq\emptyset$ one has $\omega_{U}=e_{UV}\omega_{V}$ on $U\cap V$ , where $e_{UV}$ is a basic trans-

versely holomorphic function, that is, $X(e_{UV})=0$ if $X\in\Gamma(F)$ .
From the point of view of the pseudogroups a manifold $M$ endowed with

one of the two structures above is nothing but a $\Lambda_{\omega}^{tr}$-manifold, where $\Lambda_{\omega}^{tr}$ is
the pseudogroup of local diffemorphisms of $R^{p}\times C^{q}$ of the form $f=(f^{u}, f^{a})$ ,

such that

$\frac{\partial f^{b}}{\partial_{X^{u}}}=\frac{\partial f^{b}}{\partial\overline{z}^{a}}=0$

for $u\in\{1, \cdots , p\}$ and $a,$ $b\in\{1, \cdots, q\}$ , fullfilling $ f^{*}\omega=\omega$ with $\omega=dz^{1}\wedge dz^{2}+\cdots$

$+dz^{q-1}\wedge dz^{q}$ in the symplectic case, and $ f^{*}\omega=e(z)\omega$ with $e(z)$ a non-vanishing

holomorphic function of $C^{q}$ and $\omega=dz^{1}+z^{2}dz^{3}+\cdots+z^{q-1}dz^{q}$ in the contact case.
Let us give some examples of these structures. The complex projective

spaces $CP^{2n+1}$ of odd dimension are holomorphic contact manifolds in the fol-
lowing way ([6]). Let $U_{i}$ be the open set of $CP^{2n+1}$ of those points with
homogeneous coordinates $z^{1},$

$\cdots,$
$z^{2n+2}$ such that 2’#0. Let $s_{i}$ be the map

$U_{i}-C^{2n+2}$

$[z^{1}, \cdots, z^{2n+2}]\rightarrow(z^{1}/z^{i}, \cdots, z^{i- 1}/z^{i}, 1, z^{i+1}/z^{i}, \cdots, z^{2n+2}/z^{i})$

where $[z^{1}, \cdots , z^{2n+2}]$ means the point of homogenous coordinates $z^{1},$
$\cdots,$

$z^{2n+2}$ .
Let $\omega_{i}$ be the l-form on $U_{i}$ given by $\omega_{i}=s_{i}^{*}\omega$, where $\omega$ is the following l-form

of $C^{2n+2}$

$\omega=(z^{1}d_{Z^{2}}-z^{2}dz^{1})+\cdots+(z^{2n+1}d_{Z^{2n+2}}-z^{2n+2}dz^{2n+1})$ .
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One has $\omega_{i}=e_{ij}\omega_{j}$ on $U_{i}\cap U_{j}$ , with $e_{ij}=(z^{i}/z^{j})^{2}$ . By virtue of this construc-
tion the transversely holomorphic foliation on the real sphere $S^{4n+3}$ given by

the Hopf fibration $S^{4n+3}\rightarrow CP^{2n+1}$ is endowed with a natural transversely contact
structure.

Another natural example is the projective co-tangent bundle $M$ of $CP^{2n+1}$

(that is, the projectivization of the co-tangent bundle of $CP^{2n+1}$ ). As $CP^{2n+1}$

admits a holomorphic contact structure, $M$ is endowed with the transversely

contact structure associated to the foliation given by the bundle $M\rightarrow CP^{2n\cdot 1}$ .
Since the complex torus $T^{2n}C$ obtained by the quotient $C^{2n}/(Z+iZ)^{2n}$ admits

a natural holomorphic symplectic structure induced by the 2-form of $C^{2n}\omega=$

$dz^{1}\wedge dz^{2}+\cdots+dz^{2n- 1}\wedge dz^{2n}$ , all the bundles $M\rightarrow T^{2n}C$ induce transversely holo-
morphic foliations on $M$ with a transversely symplectic structure.

Another non-trivial example of such structures is the suspension of an
isomorphism of the symplectic structure of $T^{2n}C$ constructed in the following
way. Given $A\in Sp(2n, Z)$ , take the quotient manifold $M$ of $R\times T^{2n}C$ by the
equivalence relation identifying $(t, z)$ with $(t+1, A(z))$ . Take the transversely

holomorphic foliation $\mathcal{F}$ on $M$ whose leaves are induced by the lines $R\times\{z\}$ .
As $A$ preserves $\omega$ then $\mathcal{F}$ is transversely symplectic.

The theory of deformations of holomorphic foliations was initiated by Ko-
daira and Spencer [8] in 1961. G\’omez-Mont [5] and Duchamp-Kalka [2] gave
a weak version of the versality theorem (often called Kuranishi’s theorem) for
deformations of a transversely holomorphic foliation on a compact manifold.
Girbau, Haefliger and Sundaraman [4], using the original ideas of Kodaira and
Spencer as well as a version of the classical Kuranishi’s theorem for complex
structures given by Douady [1], obtained a strong versality theorem for defor-
mations of transversely holomorphic foliations.

One of the aims of this paper is to give such a versality theorem for de-
formations of transversely holomorphic foliations endowed with an additional
transversely (holomorphic) symplectic or contact structure. The sheaf of in-
finitesimal transformations of these stuctures is the sheaf $\Theta_{\omega}^{tr}$ of germs of $C^{\infty}$

local vector fields $X$ whose expression in a local chart $(U_{i}, x_{i}^{u}, z_{i}^{a})$ adapted to
the foliation is

$X=\sum X^{a}(z_{i})\frac{\partial}{\partial z_{i}^{a}}+X^{u}(x_{i}, z_{i},\overline{z}_{i})\frac{\partial}{\partial_{X_{i}^{u}}}$ ,

where the $X^{a}$ are holomorphic functions and $X$ fulfils, moreover, the condition
$L_{X}\omega=0$ in the symplectic case or $L_{X}\omega_{i}=\lambda_{i}\omega_{i}$ in the contact case, where $\lambda_{i}$ is
a basic transversely holomorphic function.
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As Kodaira and Spencer say in the introduction of their “Multifoliate struc-
tures” [8], the following pattern is needed to study the deformations of a given
structure:

1. A fine resolution of the sheaf of germs of infinitesimal transformations
of the structure such that its space of sections is an elliptic complex.

2. A Lie algebra structure in this resolution compatible with its differential
operator.

3. A procedure associating a family of deformations of the structure to
each family of degree 1 sections of the resolution, fulfilling a suitable integra-
bility condition which depends on the Lie algebra product of point 2.

The fine resolutions of $\Theta_{\omega}^{tr}$ we give here (point 1) (in the symplectic as
well as the contact cases) are a combination of the resolutions of “Multifoliate
structures” and those given by Kodaira in [7]. Once the above plan is accom-
plished we are able to prove a versality theorem for these structures using the
same construction that in [4].

In this paper we put special emphasis on computing the versal space and
the versal family of deformations for the natural examples described above.
For the Hopf fibration $S^{4n+3}\rightarrow CP^{2n+1}$ with its transversely contact structure we
prove that the versal space is smooth, that is, a neighbourhood of the origin
in the vector space $H^{1}(S^{4n+3}, \Theta_{\omega}^{tr})\cong H^{0}(CP^{2n+1}, \Theta_{\omega})$ , where $\Theta_{\omega}$ is the sheaf of
germs of holomorphic vector fields $X$ on $CP^{2n+1}$ fulfilling $L_{X}\omega_{i}=\lambda_{i}\omega_{i}$ . This
is a vector space of complex dimension $(2n+2)^{2}-(1+2+\cdots+(2n+1))$ . Remark
that the versal space of the same foliation without the contact structure ([3],

[4]) is also smooth and its dimension is $(2n+2)^{2}-1$ .
For the projectivization of the contangent bundle of $CP^{2n+1}$ with its natural

transversely contact structure we find that this structure is rigid.
An example of transversely contact structure with non-smooth versal space

is the product $T^{n}R\times CP^{3}$ with the trivial transversely holomorphic foliation
whose leaves are $T^{n}R\times\{p\}$ .

For the transversely symplectic structures described above we obtain the
following results. When $M$ is the quotient manifold $R\times T^{2n}C$ by the equiv-
alence relation $(t, z)\sim(t+1, A(z))$ with $A\in Sp(2n, Z)$ we find that the versal
space is smooth and its dimension is the sum of dimensions of the three vector
spaces $H^{0}(T^{2n}C, \Theta_{A}),$ $P_{A}$ and $Q_{A}$ , where $H^{0}(T^{2n}C, \Theta_{A})$ is the space of holomor-
phic vector fields on $T^{2n}C$ invariant by $A,$ $P_{A}$ is the space of those $2n\times 2n$

matrices commuting with $A$ and QA is the vector space of those $2n\times 2n$ antisym-
metric matrices $\epsilon$ such that ${}^{t}A\epsilon A=A$ . For example, if $n=1$ and
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$A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$

then the versal space has dimension 3 when $a+d\neq 2$ and dimension 4 when
$a+d=2$ .

Finally we give an example of transversely symplectic structure with non-
smooth versal space. For this purpose we take a $S^{1}$-principal bundle over the
torus $T^{2n}C=C^{2n}/(Z+iZ)^{2n},$ $M\rightarrow T^{2n}C$ , with Euler class $e(M)\in H^{1.1}(T^{2n}C)$ . In
this case the space of infinitesimal deformations, $H^{1}(M, \Theta_{\omega}^{tr})$ , has dimension
$(2n)^{2}+\left(\begin{array}{l}2n\\2\end{array}\right)+\dim E_{\Omega}$ , where $E_{\Omega}$ is the space of holomorphic vector fields $X$ on
$T^{2n}C$ fulfilling $\Omega\wedge i_{X}\omega=0$ , where $\omega$ is the symplectic form of $T^{2n}C$ and $\Omega$ is
the harmonic representative of Euler class (that is, a 2-form). So the dimension
of $H^{1}(M, \Theta_{\omega}^{tr})$ deoends on $\Omega$ . We compute the versal space giving its equation
and showing that for many 2-forms $\Omega$ this space is not smooth.

1. Resolutions of the sheaves $\Theta_{\omega}^{lr}$

Let $\mathcal{F}$ be a transversely holomorphic foliation on a manifold $M$ endowed
with an additional transversely contact or symplectic structure. Let $\hat{\Theta}_{\omega}^{tr}$ be the
sheaf of germs of $C^{\infty}$ local vector fields $X$ which in local coordinates ( $x^{u},$ $ z^{a}\rangle$

adapted to $\mathcal{F}$ are of the form

$X=\Sigma X^{a}(z)\frac{\partial}{\partial z^{a}}+X^{\overline{a}}\frac{\partial}{\partial\overline{z}^{a}}+X^{u}\frac{\partial}{\partial x^{u}}$ ,

where the components $X^{a}$ are transversely holomorphic functions and $X$ fulfils,
moreover, the condition $L_{X}\omega=0$ in the symplectic case and $L_{X}\omega_{i}=\lambda_{i}\omega_{i}$ in the
contact case, where $\lambda_{i}$ are transversely holomorphic functions. We shall give
a resolution of $\hat{\Theta}_{\omega}^{tr}$ instead of the sheaf $\Theta_{\omega}^{tr}$ defined in the introduction. Remark
that $\Theta_{\omega}^{tr}$ is the quotient of $\hat{\Theta}_{\omega}^{lr}$ by a fine subsheaf, thus the cohomology of $M$

with values in these two sheaves is the same, except in degree $0$ .
Let $A^{*}(M)$ be the graded Lie algebra of $C^{\infty}$ complex-valued differentiaI

forms on $M$. Kodaira and Spencer [8] show that every degree $k$ derivation $\delta$

of $A^{*}(M)$ is determined in a local chart $(x^{u}, z^{a})$ by a couple $(\varphi, \xi)$ of vector forms
of degrees $k$ and $k+1$ ,

$\varphi=\Sigma\varphi^{u}\frac{\partial}{\partial_{X^{u}}}+\varphi^{a}\frac{\partial}{\partial_{Z^{a}}}+\varphi^{\overline{a}}\frac{\partial}{\partial_{\overline{Z}^{a}}}$

$\xi=\Sigma\xi^{u}\frac{\partial}{\partial x^{u}}+\xi^{a}\frac{\partial}{\partial_{Z^{a}}}+\xi^{\overline{a}}\frac{\partial}{\partial_{\overline{Z}^{a}}}$
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where $\varphi^{u}=\delta(x^{u}),$ $\varphi^{a}=\delta(z^{a}),$ $\varphi^{\overline{a}}=\delta(\overline{z}^{a}),$ $\xi^{u}=(-1)^{k}\delta(dx^{u}),$ $\xi^{a}=(-1)^{k}\delta(dz^{a}),$ $\xi^{\overline{a}}=$

$(-1)^{k}\delta(d\overline{z}^{a})$ . The vector k-forms $\varphi_{i}$ on each local chart $U_{i}$ glue together giving
a global vector k-form. If we denote by $d\varphi_{i}$ the vector $(k+1)$-form on $U_{i}$

given by

$d\varphi_{i}=\sum d\varphi_{i}^{u}\frac{\partial}{\partial x_{i}^{u}}+d\varphi_{i}^{a}\frac{\partial}{\partial z_{i}^{a}}+d\varphi_{i}^{\overline{a}}\frac{\partial}{\partial\overline{z}_{i}^{a}}$

then the $d\varphi_{i}-\xi_{i}$ give a global vector $(k+1)$-form denoted by $ d\varphi-\xi$ . Denote
by $\eta$ the vector $(k+1)$-form $\eta=(-1)^{k}(\xi-d\varphi)$ . Then the derivation $\delta$ is deter-
mined by the couple $(\varphi, \eta)$ . If $\sigma\in A^{r}(M)$ then the action of $\delta$ on $\sigma$ is given
in terms of $\varphi$ and $\eta$ by the following expression:

$\delta(\sigma)=(-1)^{k}d(\varphi\overline{\wedge}\sigma)+\varphi\overline{\wedge}d\sigma+\eta\overline{\wedge}a$ , (1)

where the product $\overline{\wedge}$ is defined in [8]. Recall that ( $\alpha\otimes X\overline{)\wedge}\sigma=\alpha\wedge i_{X}\sigma$ when
$\alpha$ and $\sigma$ are ordinary differential forms and $X$ is vector field.

Denote by $\mathcal{D}_{0}^{k}$ the vector space of all the derivations of degree $k$ of $A^{*}(M)$ .
$\mathcal{D}_{0}^{k}$ is endowed with a natural Lie bracket defined by $[\delta, \delta^{\prime}]=\delta\delta^{\prime}-(-1)^{kk^{\prime}}\delta^{\prime}\delta$ ,

where $k$ and $k^{\prime}$ are the respective degrees of $\delta$ and $\delta^{\prime}$ . If $\delta=(\varphi, \eta)$ and $\delta^{\prime}=$

$(\varphi^{\prime}, \eta^{\prime})$ then

$[\delta, \delta^{\prime}]=([\varphi, \varphi^{\prime}]+\eta^{\prime}\overline{\wedge}\varphi+\eta\overline{\wedge}\varphi^{\prime}, -[\eta, \varphi^{\prime}]-[\eta^{\prime}, \varphi]+\eta^{\prime}\overline{\wedge}\eta+\eta\overline{\wedge}\eta^{\prime})$ , (2)

where the brackets in the right hand side are those of vector forms and the
product $\overline{\wedge}means$ here the product of vector forms fulfilling $\varphi\overline{\wedge}(\beta\otimes Y)=(\varphi\overline{\wedge}\beta)$

$\otimes Y$ , where $\beta$ is an ordinary form.
We have a differential $D:\mathcal{D}_{0}^{h}\rightarrow \mathcal{D}_{0}^{k+1}$ defined by $D(\delta)=[d, \delta]$ , where $d$ is the

exterior derivative. If $\delta=(\varphi, \eta)$ then $D\delta=((-1)^{k}\eta, 0)$ .
Let $l_{F}$ be the ideal of $A^{*}(M)$ of those forms $\omega$ such that $w(X_{1}, \cdots, X_{k})=0$

when $X_{1},$
$\cdots,$

$X_{k}$ are sections of F. (Recall that $F$ is the subbundle of $cTM$

locally generated by $\{(\partial/\partial x^{u}), (\partial/\partial\overline{z}^{a})\}.)$ $l_{F}$ is locally generated by $\{dz^{a}\}$ . Let
$\mathcal{D}^{k}$ be the subspace of $\mathcal{D}_{0}^{k}$ of those derivations $\delta$ such that $\delta(l_{F})\subset l_{F}$ . Since
$d(l_{F})\subset l_{F},$ $D$ maps $\mathcal{D}^{k}$ into $\mathcal{D}^{k+1}$ .

1.1. The symplectic case
Denote by $S^{k_{(2)}}$ the subbundle of $\Lambda^{k}(cTM)^{*}$ of those $\sigma$ which can be written

in local coordinates
$\sigma=\sum\sigma_{ab}\wedge dz^{a}\wedge dz^{b}$

with $\sigma_{ab}\in\Lambda^{k-2}(CTM)^{*}$ . Let $S_{(2)}^{k}$ be the sheaf of germs of sections of $S^{k_{(2)}}$ .
Denote by $\Phi^{k}$ the sheaf of germs of elements of $\mathcal{D}^{k}$ . Set $\Phi_{\omega}^{0}=\mathfrak{H}_{0}$ and $\Phi_{\omega}^{k}=$

$\Phi^{k}\oplus S_{(2)}^{k+1}$ when $k\geqq 1$ . Define the following maps:
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$\iota;\hat{\Theta}_{\omega^{r}}^{t}-\Phi_{\omega}^{0}=\tilde{\mathcal{D}}^{0}$ by $\zeta(X)=L_{x}$

$D_{\omega}$ : $\Phi_{\omega}^{0}-\Phi_{\omega}^{1}=\Phi^{1}\oplus s_{(2)}^{2}$ by $D_{\omega}(\delta)=(D\delta, \delta(\omega))$

$D_{\omega}$ : $\Phi_{\omega}^{k}\rightarrow\Phi_{\omega}^{k+1}$ when $k>0$ by $D_{\omega}(\delta, \sigma)=(D\delta, \delta(\omega)-d\sigma)$

In this way we have a sequence
$f$

$D_{\omega}$ $D_{\omega}$

$ 0-\hat{\Theta}_{\omega}^{tr}\rightarrow\Phi_{\omega}^{0}\rightarrow\Phi_{\omega^{1}}\rightarrow\cdots$ (3)

Let us prove its exactness. In fact a simple computation shows that $D_{\omega}^{2}=0$ .
To prove the exactness at $\Phi_{\omega}^{k}$ when $k\neq 0$ let $s=(\delta, \sigma)$ be such that $D_{\omega}s=0$ .
This is equivalent to the fact

$\left\{\begin{array}{l}D\delta=0\\\delta(\omega)-d\sigma=0\end{array}\right.$

From the first equation one sees that there exist $\delta^{\prime}$ with $ D\delta^{\prime}=\delta$ . Then second
equation is now $d(\delta^{\prime}(\omega)-\sigma)=0$ , so there is a section $\sigma^{\prime}$ of $S_{(2)}^{k}$ with $\delta^{\prime}(\omega)-\sigma=$

$d\sigma^{\prime}$ . Then
$D_{\omega}(\delta^{\prime}, \sigma^{\prime})=(D\delta^{\prime}, \delta^{\prime}(\omega)-d\sigma^{\prime})=(\delta, \sigma)$ .

An analogous argument shows the exactness of (3) at $\Phi_{\omega}^{0}$ .

1.2. The contact case
Suppose now that the contact structure is defined by a family $\{\omega_{i}\}$ of 1-

forms on each local chart $U_{i}$ in such a way that $\omega_{i}=e_{ij}\omega_{j}$ on $U_{i}\cap U_{j}$ . Let $A_{F}^{*}$

be the quotient $A^{*}(M)/I_{F}$ . Let $E$ be the line bundle over $M$ defined by the
transition functions $\{e_{ij}\}$ . Let $\delta$ be a degree $k$ derivation of $A^{*}(M)$ and $\{\gamma_{i}\}$

a family of elements $\gamma_{i}\in A_{F}^{k}(U_{i})$ . We shall say that the couple $(\delta, \{\gamma_{i}\})$ is an
E-derivation if $[\delta(e_{ij})]=e_{ij}(\gamma_{i}-\gamma_{j})$ on $U_{i}\cap U_{j}$ , where $[\delta(e_{ij})]$ means the class of
$\delta(e_{ij})$ modulo $l_{F}$ . We shall denote by $\mathcal{D}^{k}+EA_{F}^{k}$ the space of E-derivations of
degree $k$ . As $d(l_{F})\subset l_{F}$ the exterior derivative $d$ induces a differential $d_{F}$ on
the quotient $A_{F}^{*}$ . If $(\delta, \{\gamma_{i}\})$ is an E-derivation then $(D\delta, \{d_{F}\gamma_{i}\})$ is also an E-
derivation. Let $S^{k_{(1)}}$ be the subbundle of $\Lambda^{k}(CTM)^{*}$ of those $\sigma$ which in an
adapted local chart $(x^{u}, z^{a})$ are expressed by $\sigma=\sum\sigma_{a}\wedge dz^{a}$ . Denote by $S^{k_{(1)F}}$

the quotient bundle $S^{k_{(1)}}/S^{k_{(2)}}$ , where $S^{k_{(2)}}$ has been defined in the subsection 1.1
(the symplectic case). We can think of sections of $S^{k_{(1)F}}$ as families $\{\sigma_{i}\}$ of
sections of $S^{k_{(1)}}|_{U_{i}}$ such that $\sigma_{i}-\sigma_{j}$ is a section of $S^{k_{(2)}}$ on $U_{i}\cap U_{j}$ . Denote by
$S^{k_{(1)F}}(E)$ the vector bundle $S^{k_{(1)F}}\otimes E$ . The sections of $S^{k_{(1)F}}(E)$ are families $\{\sigma_{i}\}$

of sections of $S^{k_{(1)F}}|_{U_{i}}$ such that $\sigma_{i}=e_{ij}\sigma_{j}$ on $U_{i}\cap U_{j}$ . Denote by $\tilde{\mathcal{D}}^{k}+E\tilde{A}_{F}^{k}$ the
sheaf of germs of E-derivations and by $S_{(1)F}^{k}(E)$ the sheaf of germs of sections
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of $S^{k_{(1)F}}(E)$ . Set $\Phi_{\omega}^{k}=(\Phi^{k}+E\tilde{A}_{F}^{k})\oplus S_{(1)F}^{k}(E)$ . As $S_{(F}^{0_{1)}}$ vanishes then $\Phi_{\omega}^{0}=\tilde{\mathcal{D}}^{0}+$

$EA^{0}F$ .
In order to define the differential $D_{\omega}$ : $\Phi_{\omega}^{k}\rightarrow\Phi_{\omega}^{k+1}$ remark that the exterior

differencial $d$ induces a differential $d_{S}$ in the sections of $S^{k_{(1)F}}$ (since $d(l_{F})\subset I_{F}$ ).

$d_{S}$ can be extended to sections of $S^{k_{(1)F}}(E)$ since $de_{ij}\in I_{F}$ and if $\{\sigma_{i}\}$ is a sec-
tion of $S^{k_{(1)F}}(E)$ then $d_{S}\sigma_{i}=e_{ij}d_{S}\sigma_{j}$ . We define now $D_{\omega}$ : $\Phi_{\omega}^{k}\rightarrow\Phi_{\omega}^{k+1}$ by

$D_{\omega}((\delta, \{\gamma_{i}\}), \{\sigma_{i}\})=((D\delta, \{d_{F}\gamma_{i}\}), \{[\delta\omega_{i}]-\gamma_{i}\wedge[\omega_{i}]-d_{S}\sigma_{i}\})$ ,

where $[]$ means here classes modulo $S^{k_{(2)}}$ . Remark that $[\delta\omega_{i}]-\gamma_{i}\wedge[\omega_{i}]$ defines
a section of $S_{(1)F}^{k+1}(E)$ . In fact, as $\omega_{i}=e_{ij}\omega_{j}$ we have $\delta(\omega_{i})=\delta(e_{ij})\wedge\omega_{j}+e_{ij}\delta(\omega_{j})$

and $[\delta(\omega_{j})]=[\delta(e_{ij})]\wedge[\omega_{j}]+e_{ij}[\delta(\omega_{j})]$ , where $[\delta(e_{ij})]$ means the class of $\delta(e_{ij})$

modulo $l_{F}$ and $[\omega_{i}]$ means the class of $\omega_{i}$ modulo $S^{k_{(2)}}$ . So $[\delta(\omega_{i})]=e_{ij}(\gamma_{i}-\gamma_{j})$

$\wedge[\omega_{j}]+e_{ij}[\omega_{j}]$ . That is

$[\delta(\omega_{i})]-\gamma_{i}\wedge[\omega_{i}]=e_{ij}([\delta(\omega_{j})]-\gamma_{j}\wedge[\omega_{j}])$ .

Define the map $c:\hat{\Theta}_{\omega}^{tr}\rightarrow\Phi_{\omega}^{0}$ by $\iota(X)=(L_{x}, \{\lambda_{i}(X)\})$ , where $\lambda_{i}(X)$ are those
functions appearing in the expression $L_{X}\omega_{i}=\lambda_{i}(X)\omega_{i}$ . In this way we have the
sequence

$f$
$D_{\omega}$ $D_{\omega}$

$ 0-\hat{\Theta}_{\omega}^{tr}-\Phi_{\omega}^{0}\rightarrow\Phi_{\omega^{1}}-\cdots$ (4)

Let us prove its exactness. A straightforward computation shows that
$D_{\omega}^{2}=0$ . Suppose now $k\geqq 2$ and let $s$ be an element of $\Phi_{\omega}^{k},$ $s=((\delta, \{\gamma_{i}\}), \{\sigma_{i}\})$ ,

with $D_{\omega}s=0$ . This means

$\left\{\begin{array}{l}D\delta=0\\d_{F}\gamma_{i}=0\\[\delta(\omega_{i})]-\gamma_{i}\wedge[\omega_{i}]-d_{S}\sigma_{i}=0\end{array}\right.$ (5)

Since $D\delta=0$ there is $\delta^{\prime}$ such that $ D\delta^{\prime}=\delta$ . Since $d_{F}\gamma_{i}=0$ there is $\lambda_{i}$ with $d_{F}\lambda_{i}$

$=\gamma_{i}$ . Finally, the last equation of (5) is $[(D\delta^{\prime})(\omega_{i})]-d_{F}\lambda_{i}\wedge[\omega_{i}]-d_{S}\sigma_{i}=0$ . Since
$\omega_{i}\in l_{F}$ we shall have $[(D\delta^{\prime})(\omega_{i})]=[d\delta^{\prime}(\omega_{i})]=d_{S}[\delta^{\prime}\omega_{i}]$ . On the other hand
$d_{F}\lambda_{i}\wedge[\omega_{i}]=d_{S}$ ( $\lambda_{i}$ A $[\omega_{i}]$ ). So

$d_{S}([\delta^{\prime}\omega_{i}]-\lambda_{i}\wedge[\omega_{i}]-\sigma_{i})=0$ .

We can find a representative $\mu_{i}$ of $[\delta^{\prime}\omega_{i}]-\lambda_{i}\wedge[\omega_{i}]-\sigma_{i}$ with $\mu_{i}\in I_{F}$ and such
that its exterior derivative with respect to the coordinates $x,\overline{z}$ vanishes. So
we can find $\tau_{i}\in l_{F}$ such that its exterior derivative with respect to the coor-
dinates $x,\overline{z}$ is $\mu_{i}$ . We shall have

$D_{\omega}((\delta^{\prime}, \{\gamma_{i}\}), \{[\tau_{i}]\})=((\delta, \{\gamma_{i}\}), \{\sigma_{i}\})$ .
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A similar argument applies when $k=1$ and $k=0$ .

1.3. The cohomology spaces $H^{k}(M,\hat{\Theta}_{\omega}^{tr})$

Suppose now that $M$ is compact. Since the resolutions (3) and (4) of $\hat{\Theta}_{\omega}^{tr}$

are fine we have $H^{k}(M,\hat{\Theta}_{\omega}^{tr})=Z^{k}/B^{k}$ , where $Z^{k}$ is the space of global sections
$s$ of $\Phi_{\omega}^{k}$ such that $D_{\omega}s=0$ and $B^{k}$ the subspace of those sections of the form
$D_{\omega}s^{\prime}$ with $s^{\prime}$ a section of $\Phi_{\omega}^{k-1}$ . In the symplectic case the leading part of
$D_{\omega}$ is

$(\delta, \sigma)-(D\delta, -d\sigma)$ .
In the contact case the leading part of $D_{\omega}$ is

$((\delta, \{\gamma_{i}\}), \{\sigma_{i}\})-((D\delta, \{d_{F}\gamma_{i}\}), \{d_{S}\sigma_{i}\})$ .
In both cases the ellipticity of the de Rham complex gives the ellipticity of the
complex of sections of (3) and (4). So $H^{k}(M,\hat{\Theta}_{\omega}^{tr})$ are finite dimensional for
$k>0$ .

2. The bracket of sections of $\Phi_{\omega}^{*}$

Let $s$ and $s^{\prime}$ be two sections af $\Phi_{\omega}^{k}$ and $\Phi_{\omega}^{l}$ respectively. We are going to
define the bracket $[s, s^{\prime}]$ as a section of $\Phi_{\omega}^{k+l}$ in the following way. Suppose
first we are in the symplectic case. Then $s=(\delta, \sigma)$ and $s^{\prime}=(\delta^{\prime}, \sigma^{\prime})$ with $\delta\in \mathcal{D}^{k}$ ,
$\delta^{\prime}\in \mathcal{D}^{\iota},$ $\sigma\in\Gamma(S_{(2)}^{k+1})$ and $\sigma^{\prime}\in\Gamma(S_{(2)}^{t+1})$ . We define

$[s, s^{\prime}]=([\delta, \delta^{\prime}], (-1)^{k}\delta(\sigma^{\prime})-(-1)^{kl}\delta^{\prime}(\sigma))$ . (6)

In the contact case we shall have $s=((\delta, \{\gamma_{i}\}), \{\sigma_{i}\}),$ $s^{\prime}=((\delta^{\prime}, \{\gamma_{i}^{\prime}\}), \{\sigma_{i}^{\prime}\})$ .
We define

$[s, s^{\prime}]=(([\delta, \delta^{\prime}], \{[\delta(\tilde{\gamma}_{i}^{\prime})-(-1)^{kl}\delta^{\prime}(\tilde{\gamma}_{i})])$ ,
(7)

$\{[(-1)^{k}(\delta(\tilde{\sigma}_{i}^{\prime})-\tilde{\gamma}_{i}\wedge\sigma_{i}^{\prime})-(-1)^{kl+l}(\delta^{\prime}(\tilde{\sigma}_{i})-\tilde{\gamma}_{i}^{\prime}\wedge\tilde{\sigma}_{i})]\})$ ,

where $\tilde{\gamma}_{i},\tilde{\sigma}_{i},\tilde{\gamma}_{i}^{\prime}$ and $\tilde{\sigma}_{i}^{\prime}$ are representatives of $\gamma_{i},$ $\sigma_{i},$
$\gamma_{i}^{\prime}$ and $\sigma_{i}^{\prime}$ respectively.

If $s\in\Gamma(\Phi_{\omega}^{k}),$ $s^{\prime}\in\Gamma(\Phi_{\omega}^{l})$ and $s^{\prime\prime}\in\Gamma(\Phi_{\omega}^{m})$ then one can prove the following facts:
1. $[s, s^{\prime}]=(-1)^{kl+1}[s^{\prime}, s]$ .
2. $(-1)^{km}[s, [s^{\prime}, s^{\prime\prime}]]+(-1)^{kl}[s^{\prime}, [s^{\prime\prime}, s]]+(-1)^{ml}[s^{\prime\prime}, [s, s^{\prime}]]=0$ .
3. $D_{\omega}[s, s^{\prime}]=[D_{\omega}s, s^{\prime}]+(-1)^{k}[s, D_{\omega}s^{\prime}]$ .

3. The integrability condition

3.1. The symplectic case
Fix $(\mathcal{F}, \omega)$ a transversely holomorphic foliation on a compact manifold $M$
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with a transversely symplectic structure $\omega$ . Denote by $F$ its associated bundle
(defined in the introduction). We are going to associate a section of $\Phi_{\omega}^{1}$ to
each couple $(\mathcal{F}^{\prime}, \omega^{\prime})$ , where $\mathcal{F}^{\prime}$ is a transversely holomorphic foliation close
enough to $\mathcal{F}$ and $\omega^{\prime}$ a transversely symplectic structure on $\mathcal{F}^{\prime}$ close enough to
$\omega$. Here close enough will mean that $(\mathcal{F}^{\prime}, \omega^{\prime})$ is such that all the steps in the
construction we are going to give make sense.

Denote by $N^{1.0}=^{c}TM/F$ the normal bundle of type $(1, 0)$ of $\mathcal{F}$ . Choose a
splitting $cTM=F\oplus N^{1.0}$ . Let $F^{\prime}$ be the bundle corresponding to $\mathcal{F}^{\prime}$ . Suppose
that $F^{\prime}$ is close enough to $F$ in such a way that $F^{\prime}$ is the graphic of a mor-
phism $\theta$ : $F\rightarrow N^{1.0}$ of vector bundles. That is $F^{\prime}=$ { $X+\theta(X)$ with $X\in F$ }. $\theta$

can be extended to a morphism $cTM\rightarrow^{C}TM$ with the condition $\theta|_{N1,0}=0$ . Let
$\varphi$ be the vector form on $M$ defined by $\varphi=id+\theta$ . In each local chart $(U, x^{u}, z^{a})$

of $M$ adapted to $\mathcal{F}$ set $\varphi_{u}=\varphi(\partial/\partial x^{u}),$ $\varphi_{a}=\varphi(\partial/\partial z^{a}),$ $\varphi_{\overline{a}}=\varphi(\partial/\partial\overline{z}^{a})$ . Suppose that
$\varphi$ is close enough to the identity in order that $\varphi_{u},$ $\varphi_{a},$ $\varphi_{\overline{a}}$ is a basis of $cT_{x}M$

at each point. We shall have $[\varphi_{\lambda}, \varphi_{\mu}]=\sum C_{\lambda\mu}^{\nu}\varphi_{\nu}$ , where the indices $\lambda,$

$\mu,$ $\nu$

denote all the indices $a,\overline{a}$ and $u$ . Let $\delta$ be the derivation whose first com-
ponent is $\varphi$ and whose action on $dx^{\lambda}$ is

$\delta(dx^{\lambda})=-\frac{1}{2}\sum C_{\nu\mu}^{\lambda}dx^{\nu}$ A $dx^{\mu}$ , (8)

where $x^{\lambda}$ means $z^{\alpha}$ or $\overline{z}^{a}$ when $\lambda=a$ or $\lambda=\overline{\alpha}$ .
As $F^{\prime}$ is an integrable distribution (it corresponds to the foliation 9‘) one

has $C_{\alpha\beta}^{a}=0$ when $\alpha,$ $\beta\in\{u,\overline{a}\}$ . So $\delta\in \mathcal{D}^{1}$ . $\delta$ fulfils $[\delta, \delta]=0$ (see [8]). Define
$\tilde{\delta}=d-\delta$ . Then the condition $[\delta, \delta]=0$ is equivalent to $D\tilde{\delta}-(1/2)[\tilde{\delta},\tilde{\delta}]=0$ .
Define the 2-form $\epsilon$ on $M$ by

$\epsilon(X, Y)=\omega^{\prime}(\varphi(X), \varphi(Y))$ .

Set $\sigma=\epsilon-\omega$ . We shall prove that $\sigma\in\Gamma(S_{(2)}^{2})$ and that the couple $s=(\tilde{\delta}, \sigma)$ fulfils
the equation

$D_{\omega}s-\frac{1}{2}[s, s]=0$ . (9)

When $X\in\Gamma(F)$ then $\varphi(X)\in\Gamma(F^{\prime})$ so $\epsilon(X, Y)=0$ when $X\in\Gamma(F)$ . So $\epsilon\in\Gamma(S_{(2)}^{2})$ .
As $\omega$ is also a section of $S_{(2)}^{2}$ then $\sigma\in\Gamma(S_{(2)}^{2})$ . Equation (9) is equivalent to
the two equations

$D\tilde{\delta}-\frac{1}{2}[\tilde{\delta},\tilde{\delta}]=0$ (10)

$\tilde{\delta}(\omega+\sigma)-d\sigma=0$ . (11)

The first one being satisfied, we have to prove only (11). As $\omega$ is closed (11)
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is equivalent to $(d-\tilde{\delta})(\omega+\sigma)=0$ , that is $\delta(\omega+\sigma)=0$ . Given the above local
chart $(U, x^{u}, z^{a})$ adapted to $\mathcal{F}$ let $\{\theta^{\lambda}\}$ be the dual basis of $\varphi_{\lambda}$ . Since $\theta^{a}\in l_{F^{\prime}}$

then $\omega^{\prime}$ will be expressed
$\omega^{\prime}=\sum\omega_{ab}^{\prime}\theta^{a}\wedge\theta^{b}$ .

Then
$\epsilon=\sum\omega_{ab}^{\prime}dz^{a}\wedge dz^{b}$

since $\epsilon((\partial/\partial z^{a}), (\partial/\partial z^{b}))=\omega^{\prime}(\varphi_{a}, \varphi_{b})=\omega_{ab}^{\prime}$ . Let us write now the condition $d\omega^{\prime}=0$ .
$0=d\omega^{\prime}=\sum\varphi_{\lambda}(\omega_{ab}^{\prime})\theta^{\lambda}\wedge\theta^{a}\wedge\theta^{b}+\omega_{ab}^{\prime}d\theta^{a}\wedge\theta^{b}-\omega_{ab}^{\prime}\theta^{a}\wedge d\theta^{b}$ .

But $d\theta^{\lambda}=-(1/2)\sum C_{\mu\nu}^{\lambda}\theta^{\mu}\wedge\theta^{\nu}$ . So

$0=\sum(\varphi_{\lambda}(\omega_{\mu\nu}^{\prime})-\frac{1}{2}\omega_{\rho\nu}^{\prime}C^{\rho_{\lambda\mu}}+\frac{1}{2}\omega_{\lambda\rho}^{\prime}C_{\mu^{\nu}}^{\rho})\theta^{\lambda}\wedge\theta^{\mu}\wedge\theta^{\nu}$

where $\omega_{\mu\nu}^{\prime}=0$ when one of the two indices $\lambda$ or $\mu$ is an $u$ or an $\overline{a}$ . On the
other hand

$\delta(\epsilon)=\sum\delta(\omega_{ab}^{\prime})dz^{a}\wedge dz^{b}+\omega_{ab}^{\prime}\delta(dz^{a})\wedge dz^{b}-\omega_{ab}^{\prime}dz^{a}\wedge\delta(dz^{b})$

$=$ ( $by$ definition of $\delta$ )

$=\Sigma\varphi_{\lambda}(\omega_{ab}^{\prime})dx^{\lambda}\wedge dz^{a}\wedge dz^{b}-\frac{1}{2}\omega_{ab}^{\prime}C_{\lambda\mu}^{a}dx^{\lambda}\wedge dx^{\mu}\wedge dz^{b}$

$+\frac{1}{2}\omega_{ab}^{\prime}C_{\lambda\mu}^{b}dz^{a}\wedge dx^{\lambda}\wedge dx^{\mu}$

$=\Sigma(\varphi\lambda(\omega_{\mu\nu}^{\prime})-\frac{1}{2}\omega_{\rho\nu}^{\prime}C^{\rho_{\lambda\mu}}+\frac{1}{2}\omega_{\lambda\rho}^{\prime}C_{\mu\nu}^{\rho})dx^{4}\wedge dx^{\mu}\wedge dx^{\nu}=0$

So $\delta(\omega+\sigma)=\delta\epsilon=0$ , proving (11).

Reciprocally, given a section $s=(\tilde{\delta}, \sigma)$ of $\Phi_{\omega^{1}}$ close enough to the zero
section and fulfilling the integrability equation (9) we are going to associate a
couple $(\mathcal{F}^{\prime}, \omega^{\prime})$ to it, where $\mathcal{F}^{\prime}$ is a transversely holomorphic foliation with a
transversely symplectic structure $\omega^{\prime}$ .

Equation (9) is equivalent to (10) and (11). Let $\delta$ be the derivation $d-\tilde{\delta}$ .
Then (10) is equivalent to $[\delta, \delta]=0$ . Let $\varphi$ be the first component of $\delta(\varphi$ is a
vector l-form). Given a local chart $(U, x^{u}, z^{a})$ adapted to $\mathcal{F}$ set $\varphi_{u}=\varphi(\partial/\partial x^{u})$,
$\varphi_{a}=\varphi(\partial/\partial z^{a}),$ $\varphi_{\overline{a}}=\varphi(\partial/\partial\overline{z}^{a})$ . As $\varphi$ is close to the identity (since $\delta$ is close to $ d\rangle$

$\{\varphi\lambda\}$ is a basis at each point of $U$ . Set $[\varphi\lambda\varphi_{\mu}]=\Sigma C_{\lambda\mu}^{\nu}\varphi_{\nu}$ . Condition $[\delta, \delta]=0$

is equivalent to (8) (see [8]). Since $\delta\in \mathcal{D}^{1}$ one has $C_{\alpha\beta}^{a}=0$ when $\alpha,$ $\beta\in\{u,\overline{\alpha}\}$ .
Set $F^{\prime}=\varphi(F)$ . One has $[F^{\prime}, F^{\prime}]\subset F^{\prime}$ . This integrability condition leads (by

Newlander-Nirenberg theorem) to the existence of a transversely holomorphic

foliation $\mathcal{F}^{\prime}$ whose associate bundle (in the sense of the introduction) is $F^{\prime}$ .
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Condition (10) is equivalent to $\delta(\omega+\sigma)=0$ . Set $\gamma=\omega+\sigma$ . Let $\omega^{\prime}$ the 2-form
given by

$\omega^{\prime}(X, Y)=\gamma(\varphi^{-1}(X), \varphi^{-1}(Y))$ .
From the condition $\delta(\gamma)=0$ one proves easily $i_{X}\omega^{\prime}=L_{X}\omega^{\prime}=0$ when $X\in\Gamma(F^{\prime})$

and $d\omega^{\prime}=0$ . So $\omega^{\prime}$ is a transversely symplectic structure on $\mathcal{F}^{\prime}$ .

3.2. The contact case
Fix $(\mathcal{F}, \omega)$ a transversely holomorphic foliation $\mathcal{F}$ on a compact manifold

$M$ with a transversely contact structure $\omega$ given by a family $\{\omega_{i}\}$ of l-forms
at each adapted local chart $(U_{i}, x_{i}^{u}, z_{i}^{a})$ . Let us associate a section of $\Phi_{\omega}^{1}$ to
each couple $(\mathcal{F}^{\prime}, \omega^{\prime})$ , where $\mathcal{F}^{\prime}$ is a transversely holomorphic foliation close
enough to $\mathcal{F}$ and $\omega^{\prime}$ a transversely contact structure on $\mathcal{F}^{\prime}$ close enough to $\omega$ .
Let $\{U_{i}\}$ be a covering of $M$ such that each $U_{i}$ is the domain of an adapted

local chart $(U_{i}, x_{i}^{u}, z_{i}^{a})$ of $\mathcal{F}$ and domain of an adapted local chart $(U_{i}, y_{i}^{u}, \zeta_{i}^{a})$

of $\mathcal{F}^{\prime}$ . Suppose $\omega_{i}=e_{ij}\omega_{j}$ and $\omega_{i}^{\prime}=e_{ij}^{\prime}\omega_{j}^{\prime}$ on $U_{i}\cap U_{j}$ , with $X(e_{ij})=0$ if $X\in\Gamma(F)$

and $X^{\prime}(e_{ij}^{\prime})=0$ if $X^{\prime}\in\Gamma(F^{\prime})$ . As in the symplectic case we associate to $\mathcal{F}^{\prime}$ a
derivation $\delta$ fulfilling $[\delta, \delta]=0$ . Set $\tilde{\delta}=d-\delta$ . Then $[\delta, \delta]=0$ is equivalent to
(10). We can find a family $\{\mu_{i}\}$ of functions on each $U_{i}$ such that $\mu_{i}-\mu_{j}=$

$\log(e_{ij}^{\prime}/e_{ij})$ on $U_{i}\cap U_{j}$ . Remark that as the $e_{ij}^{\prime}$ are close to $e_{ij}$ then the quotients
$e_{ij}^{\prime}/e_{ij}$ are close to 1, so we can choose a well-defined determination of the
logaritm. Then the $\mu_{i}$ can be defined by

$\mu_{i}=\sum_{k}h_{k}\log(e_{ik}^{\prime}/e_{ik})$ ,

where $\{h_{k}\}$ is a partition of unity. Set $\gamma_{i}=(d-\tilde{\delta})\mu_{i}=\delta\mu_{i}$ . Let us prove that
the couple $(\tilde{\delta}, [\gamma_{i}]\})$ is an E-derivation with respect to te bundle $E$ with transi-
tion functions $\{e_{ij}\}$ . We have

$\gamma_{i}-\gamma_{j}=\delta(\mu_{i}-\mu_{j})=\delta(\log e_{ij}^{\prime}-\log e_{ij})$ .
But $\delta e_{ij}^{\prime}=\varphi\overline{\wedge}de_{ij}^{\prime}=\varphi^{\lambda}(\partial e_{ij}^{\prime}/\partial z^{\lambda})$ , where $\varphi$ is the first component of $\delta$ . As $\varphi(F)=$

$F^{\prime}$ we have $[\delta(e_{ij}^{\prime})]=0$ because for $\alpha\in\{u,\overline{a}\}$ one has

$\sum\varphi_{\alpha}^{\lambda}\frac{\partial e_{ij}^{\prime}}{\partial_{Z^{\lambda}}}=\varphi_{\alpha}(e_{ij}^{\prime})=0$

(since $X^{\prime}(e_{ij}^{\prime})=0$ if $X^{\prime}\in\Gamma(F^{\prime})$). So we have

$[\gamma_{i}]-[\gamma_{j}]=-[\delta(\log e_{ij})]=[(d-\tilde{\delta})(\log e_{ij})]=[\tilde{\delta}(\log e_{ij})]$ ,

because $d\log e_{ij}\in l_{F}$ . So $([\gamma_{i}]-[\gamma_{j}])e_{ij}=[\tilde{\delta}(e_{ij})]$ showing that $(\tilde{\delta}, [\gamma_{i}])$ is an
E-derivation.

Set $\nu_{i}=\exp\mu_{i}$ and $c_{i}=(1/\nu_{t})\omega\text{{\it \’{i}}}$ . Let $\epsilon_{i}$ be the l-form on $U_{i}$ given by
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$\epsilon_{i}(X)=c_{i}(\varphi(X))$ .

Set $\sigma_{i}=\epsilon_{i}-\omega_{i}$ . One has $\sigma_{i}=e_{ij}\sigma_{j}$ on $U_{i}\cap U_{j}$ . So $s=((\tilde{\delta}, \{[\gamma_{i}]\}), \{[\sigma_{i}]\})$ is a
section of $\Phi_{\omega}^{1}$ . Let us prove that $s$ fulfils equation (9). One can see that (9)

is equivalent to (10) and the two following equations

$[(d-\tilde{\delta})\gamma_{i}]=0$ (12)

$[\tilde{\delta}(\omega_{i}+\sigma_{i})-d\sigma_{i}]=[\gamma_{i}\wedge(\omega_{i}+\sigma_{i})]$ , (13)

where the classes in (12) are classes modulo $l_{F}$ but the classes in (13) are classes
modulo $l_{F}\wedge l_{F}$ .

(12) is fulfilled because $\gamma_{i}=(d-\tilde{\delta})\mu_{i}=\delta\mu_{i}$ and $\delta^{2}=0$ since $[\delta, \delta]=0$ . Since
$d\omega_{i}\in l_{F}\wedge l_{F}$ one has

$[\tilde{\delta}(\omega_{i}+\sigma_{i})-d\sigma_{i}]=[(d-\delta)(\omega_{i}+\sigma_{i})-d\sigma_{j}]=-[\delta(\omega_{i}+\sigma_{i})]=-[\delta\epsilon_{i}]$ .

As in section 3.1 denote by $\{\theta^{\lambda}\}$ the dual basis of $\{\varphi_{\lambda}\}$ , where $\varphi_{\lambda}=\varphi(\partial/\partial x^{\lambda})$ .
If $\omega_{i}^{\prime}$ is expressed by

$\omega_{i}^{\prime}=\Sigma(\omega_{i}^{\prime})_{a}\theta^{a}$

and
$\epsilon_{i}=\Sigma(\epsilon_{i})_{a}dz^{a}$

one has, by definition of $\epsilon_{i},$
$(\epsilon_{i})_{a}=((\omega_{i}^{\prime})_{a}/\nu_{i})$ . So

$\epsilon_{i}=\sum\frac{(\omega_{i}^{\prime})_{a}}{\nu_{i}}dz^{a}$ .

But, as $\nu_{i}=\exp\mu_{i},$ $\delta(1/\nu_{i})=\delta(\exp(-\mu_{i}))=-\exp(-\mu_{i})\delta(\mu_{i})=-(1/\nu_{i})\gamma_{i}$ . So

$[\tilde{\delta}(\omega_{i}+\sigma_{i})-d\sigma_{i}]=-[\delta\epsilon_{i}]=[\gamma_{i}\wedge\epsilon_{i}]-\frac{1}{\nu_{i}}[\delta(\sum(\omega_{i}^{\prime})_{a}dz^{a})]$ .

To prove (13) it suffices to prove that $[\delta(\Sigma(\omega_{i}^{\prime})_{a}dz^{a})]=0$ . But

$\delta(\Sigma(\omega_{i}^{\prime})_{a}dz^{a})=\Sigma\varphi_{\lambda}((\omega_{i}^{\prime})_{a})dx^{\lambda}\wedge dz^{a}+(\omega_{i}^{\prime})_{a}\delta(dz^{a})$

$=by(8)$

$=\sum\varphi\lambda((\omega_{i}^{\prime})_{a})dx^{\lambda}$ A $dz^{a}-\frac{1}{2}(\omega_{i}^{\prime})_{a}C_{\lambda\mu}^{a}dx^{\lambda}\wedge dx^{\mu}$ .

If we are only interested in classes modulo $l_{F}\wedge I_{F}$ we shall have

$[\delta(\Sigma(\omega_{i}^{\prime})_{a}dz^{a})]=$ [ $\sum\varphi_{\alpha}((\omega_{i}^{\prime})_{a})dx^{\alpha}$ A $dz^{a}$ ] $-$ [ $\Sigma(\omega_{i}^{\prime})_{a}C_{\alpha\mu}^{a}dx^{\alpha}$ A $dx^{\mu}$],

where $\alpha\in\{u,\overline{a}\}$ . But as $\varphi_{\alpha}$ is a section of $F^{\prime}$ we have

$0=L_{\varphi_{\alpha}}\omega_{i}^{\prime}=\sum L_{\varphi_{\alpha}}((\omega_{i}^{\prime})_{a}\theta^{a})=\sum\varphi_{\alpha}((\omega_{i}^{\prime})_{a})\theta^{a}-C_{\alpha\mu}^{a}(\omega_{i}^{\prime})_{a}\theta^{\mu}$ .
Proving that

$\varphi_{\alpha}((\omega_{i}^{\prime})_{\mu})-\sum C_{\alpha\mu}^{a}(\omega_{i}^{\prime})_{a}=0$
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(when $\mu\neq a$ then $(\omega_{i}^{\prime})_{\mu}$ is zero). So $[\delta(\sum(\omega_{i}^{\prime})_{a}dz^{a}]=0$ .
Reciprocally, given a section $s=((\tilde{\delta}, [\gamma_{i}]), [\sigma_{i}])$ of $\Phi_{\omega}^{1}$ close enough to zero

and fulfilling (9) one can associate a couple $(\mathcal{F}^{\prime}, \omega^{\prime})$ to it close enough to $(\mathcal{F}, \omega)$ .
We do not give here this construction explicitily, but we remark that, as in
the symplectic case, the Newlander-Nirenberg theorem must be used to associate
a foliation $\mathcal{F}^{\prime}$ to $\tilde{\delta}$ .

4. Deformations of the structure parametrized by a non-reduced analytic
space

Given a (non-reduced) analytic space $S$ denote by $\Lambda_{s}^{tr}$ the pseudogroup of
local $C^{\infty}$ automorphisms of $S\times R^{p}\times C^{q}$ of the form

$(s, x^{u}, z^{a})-(s, f^{v}(s, x, z), f^{b}(s, z))$ ,

where $u,$ $v\in\{1, \cdots, p\},$ $a,$ $b\in\{1, \cdots q\}$ and the functions $f^{a}(s, z)$ are holo-
morphic. A family of transversely holomorphic foliations parametrized by $S$

is nothing but a topological space $X$ , a continuous map $\pi;X\rightarrow S$ , a structure
of $\Lambda_{S}^{tr}$-manifold on ec given by an atlas $(V_{i}, \psi_{i})$ , where $V_{i}\subset X$ is open and $\psi_{i}$

is a homeomorphism from $V_{i}$ onto an open subset of $S\times R^{p}\times C^{q}$ , and a collec-
tion $\{\phi_{ij}\}$ of elements of $\Lambda_{s}^{tr}$ verifying $\pi_{S}\circ\psi_{i}=\pi$ (where $\pi_{S}$ is the projection on
$S),$ $\phi_{ti}=id,$ $\phi_{ij}\circ\phi_{jk}=\phi_{ih}$ and $\psi_{i}=\phi_{ij}\circ\psi_{j}$ , where in the last condition $\phi_{ij}$ is
regarded only as a continuous map. For any $s\in S$ the fibre $M_{s}=\pi^{-1}(s)$ inherits
a $\Lambda^{tr}$ -structure, that is, we have $(M_{s}, \mathcal{F}_{s})$ where $\mathcal{F}_{s}$ is a transversely holomor-
phic foliation on $M_{s}$ .

Given $(M, \mathcal{F})$ a transversely holomorphic foliation on a compact manifold
$\pi$

and an analytic space $S$ with a distinguished point $0\in S$ , a family $X\rightarrow S$ of
transversely holomorphic foliations parametrized by $S$ is called a deformation
of $(M, \mathcal{F})$ if there exists a $\Lambda^{tr}$ -isomorphism $c;(M, \mathcal{F})\rightarrow(M_{0}, \mathcal{F}_{0})$ . Such a de-
formation is denoted by (X, $\pi,$ $S,$ $0,$ $\iota$ ).

A complex vector bundle $\mathcal{E}$ of rank $k$ over ec can be described as the object

obtained by glueing together the open sets $V_{i}\times C^{k}$ by means of transformations
of the form

$G_{ij}(s, \chi_{i}^{u}z_{i}^{a}, t)=(s, \phi_{ij}^{v}(s, x_{j}^{u}, z_{J}^{b}), \phi_{ij}^{a}(s, z_{j}^{b}), g_{ij}(s, x_{j}^{u}, z_{j}^{b})\cdot t)$ ,

where the $\phi_{ij}$ are the coordinate changes of X and $g_{ij}$ are $C^{\infty}$ functions with
values in $GL(k, C)$ depending holomorphically on $s$ and fulfilling the cocycle

conditions $g_{ii}=1,$ $g_{ik}=g_{ij}\cdot g_{jk}$ . If $\mathcal{E}\rightarrow X$ is such a vector bundle, a section of
$\mathcal{E}$ can be defined as a $C^{\infty}$ morphism $X\rightarrow \mathcal{E}$ which in each local chart is given by
$(s, x, z)\mapsto(s, x, z, t(s, x, z))$ . We shall denote by $\Gamma_{S}(\mathcal{E})$ the space of sections
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of $\mathcal{E}$ .
When $k=p+2q$ and $g_{ij}$ is the jacobian matrix

$\ovalbox{\tt\small REJECT}^{\frac{\partial\phi_{ij}^{v}}{\partial_{X_{j}^{u}}}\frac{\partial\phi_{ij}^{v}}{\partial\overline{z}_{j}^{a}}}00\frac{\partial_{\overline{\phi}_{ij}^{b}}}{\partial\overline{z}_{j}^{a}}0\frac{\frac{\partial\phi_{ij}^{v}}{\partial\phi_{ij}^{j}\partial_{Z_{b}^{a}}}}{\partial_{Z_{j}^{a}}}0\ovalbox{\tt\small REJECT}$

we obtain the bundle $cTX$ called the complex tangent bundle of Ee along the
$\pi$

fibres of $X\rightarrow S$ . If $k=p+q$ and $g_{ij}$ is the jacobian matrix

$(\frac{\partial\phi_{ij}^{v}}{\partial_{X_{i}^{u}}}]$

whe obtain the bundle $F_{x}\rightarrow X$ associated to the natural transversely holomorphic

foliation on se.
We can define the space $A_{S}^{r}(X)$ of complex-valued r-forms on X as

$\Gamma_{S}(\Lambda^{r}(CTX)^{*})$ . A natural exterior derivative $d:A_{S}^{r}(X)\rightarrow A_{S}^{r+1}(X)$ is obtained
derivating only with respect to the variables $x,$ $z,\overline{z}$ but not with respect to the
parameter $s$ .

Given a transversely holomorphic foliation $(M, \mathcal{F})$ and a transversely sym-

plectic structure $\omega$ on $\mathcal{F}$ , a deformation of $(M, \mathcal{F}, \omega)$ is a couple $((X, \pi, S, 0, c)$ ,
$\omega_{s})$ , where (X, $\pi,$ $S,$ $0,$ $f$ ) is a deformation of $(M, \mathcal{F})$ and $\omega_{s}\in A_{S}^{2}(X)$ fulfilling
$c^{*}(\omega_{0})=\omega,$ $i_{X}\omega_{s}=L_{X}\omega_{s}=0$ when $X\in\Gamma_{s}(F_{S}),$ $\omega_{s}^{q^{\prime}}\neq 0$ and $d\omega_{s}=0$ . In an analogous
way we can define the notion $o^{\prime}f$ deformation of $(M, \mathcal{F}, \omega)$ when $\omega$ is a trans-
versely contact structure on $\mathcal{F}$ .

Two deformations of $(M, \mathcal{F}, \omega),$ $((X, \pi, S, 0, c), \omega_{s})$ and $((X^{\prime}, \pi^{\prime}, S, 0, c^{\prime}), \omega_{s}^{\prime})$

parametrized by the same $(S, 0)$ , are called equivalent if there is an open
neighbourhood $S$ “ of $0$ in $S$ and an isomorphism $f$ : $X|_{S^{\nu}}\rightarrow X^{\prime}|_{S^{\prime}}$ of $\Lambda_{S}^{tr_{\nu-}}$

manifolds over the identity of $S^{\prime\prime}$ such that $f^{*}(\omega_{s}^{\prime})=\omega_{s}$ in the symplectic case
and $f^{*}(\omega_{s}^{\prime})=e\omega_{s}$ in the contact case, where $e$ is a transversely holomorphic
function on $X|_{S^{\prime}}$ .

5. Relation between deformations of $(M, \mathcal{F}, \omega)$ and families of sections
of $\Phi_{\omega^{1}}$ fulfilling the integrability condition

Let $(M, \mathcal{F}, \omega)$ be a transversely holomorphic foliation on a compact manifold
$M$ with a transversely symplectic or contact structure $\omega$ . It is not difficult to
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prove the existence of a vector bundle $E^{1}$ on $M$ whose space of sections $\Gamma(E^{1})$

coincides with $\Gamma(\Phi_{\omega^{1}})$ , where $\Phi_{\omega}^{1}$ has been intruced in section 1. Given an
analytic space $S$ take the trivial family $X=S\times M\rightarrow S$ and the trivial vector
bundle $\mathcal{E}=S\times E^{1}$ over X. We shall denote by $\Gamma_{S}(\Phi_{\omega^{1}})$ the space $\Gamma_{S}(\mathcal{E})$ introduced
in section 4. By putting parameters in the construction given in section 3,
given a deformation $((X, \pi, S, 0, c), \omega_{s})$ of $(M, \mathcal{F}, \omega)$ we can find an open neigh-
bourhood $S$ “ of $0$ in $S$ such that the construction of section 3 works in $S^{\prime\prime}$ ,

that is, we are able to associate an element of $\Gamma_{S},(\Phi_{\omega}^{1})$ fulfilling the integrability
condition to the couple $(X|_{S}., \omega_{s})$ . Nevertheless, to associate (as in section 3)

a family of deformations (X, $\omega_{s}$ ) over a suitable neighbourhood $S^{\prime\prime}$ of $0$ to each
element of $\Gamma_{S}(\Phi_{\omega^{1}})$ fulfilling the integrability condition we must use a New-
lander-Nirenberg theorem with parameters (see section 3.) But such a theorem
only works in the $C^{\infty}$ case. So we are lead to suppose that the initial manifold
$M$ is $C^{\omega}$ and that the initial foliation $\mathcal{F}$ on $M$ is also $C^{\omega}$ . With these assump-
tions we are able to associate to every element of $\omega\Gamma_{S}(E^{1})$ fulfilling the in-
tegrability condition a family of deformations (EEr, $\omega_{s}$ ) of $(M, \mathcal{F}, \omega)$ over a
suitable neighbourhood $S^{\prime\prime}$ of $0$ . We may suppose without lost of generality
that $(M, \mathcal{F})$ is $C^{\omega}$ because any transversely analytic foliation is isotopic to a
real analytic foliation ([9]).

6. Versality theorem

Let $(M, \mathcal{F}, \omega)$ be a transversely holomorphic foliation $\mathcal{F}$ on a compact mani-
fold $M$ endowed with a transversely holomorphic symplectic or contact structure
$\omega$ . Let $((X, \pi, S, 0, c), \omega_{s})$ be a deformation of $(M, \mathcal{F}, \omega)$ parametrized by an
analytic space $S$ with a distiguished point $0$ (we shall abbreviate such a de-
formation by $(X|_{S}, \omega_{s}))$ . Given another analytic space $S^{\prime}$ with a distinguished
point $0^{\prime}$ and a morphism $f:S^{\prime}\rightarrow S$ of analytic spaces with $f(0^{\prime})=0$ , let $X_{f}$ be
the fibre product $X_{f}=S^{\prime}\times s^{X=}\{(s^{\prime}, u)\in S^{\prime}\times X|f(s^{\prime})=\pi(u)\}$ . We shall have

natural projections
$f$

$x_{f}-x$
$\pi^{\prime}\downarrow$

$f$

$\downarrow\pi$

$S^{\prime}\rightarrow S$

If $\{(V_{i}, \psi_{i})\}$ is a $\Lambda_{S}^{ir}$-atlas of X with coordinate changes $\{\phi_{ij}\}$ we take the
structure of $\Lambda_{S}^{tr,}$ -manifold on $X_{f}$ given by the atlas $\{(\tilde{f}^{-1}(V_{i}), \varphi_{i})\}$ , where $\varphi_{i}$ :
$f^{-1}(V_{i})\rightarrow S^{\prime}\times(R^{p}\times C^{q})$ is the map defined by $\varphi_{i}=\pi^{\prime}\times(\pi_{R^{P}\times C^{q}}\circ\psi_{i}\circ\tilde{f})$ , and the
coordinate changes $\phi_{ij}^{\prime}$ given by



Deformations of transversely 495

$\phi_{ij}^{\prime}$ : $(s, x, z)-(s^{\prime}, \phi_{ij}^{u}(f(s), x, z),$ $\phi_{ij}^{a}(f(s), z))$ .

Then $f$ restricted to $\pi^{;-1}(0)$ gives an isomorphism of $\Lambda^{tr}$ -manifolds between

$M_{0^{\prime}}=\pi^{\prime-I}(0^{\prime})$ and $M_{o}=\pi^{-1}(0)$ . Denote by $c^{\prime}$ the composition $(M, \mathcal{F})\rightarrow^{f}M_{o}^{\tilde{f}}\rightarrow^{-1}M_{o^{\prime}}$ .
Then the couple $((X_{f}, 0^{\prime}, S^{\prime}, \prime^{\prime}), f*(\omega_{s}))$ is a deformation of $(M, \mathcal{F}, \omega)$ para-
metrized by $(S^{\prime}, 0^{\prime})$ , called the inverse image of $((X, 0, S, c), \omega_{s})$ .

DEFINITION. A deformation $(X|_{S}, \omega_{s})$ of $(M, \mathcal{F}, \omega)$ parametrized by $(S, 0)$

is called versal if the two following conditions are fulfilled:
1. Given any other deformation $(X^{\prime}|_{S^{\prime}}, \omega_{s^{\prime}})$ of $(M, \mathcal{F}, \omega)$ parametrized by

the analytic space $(S^{\prime}, 0^{\prime})$ there is a neighbourhood $S^{\prime\prime}$ of $0^{\prime}$ in $S^{\prime}$ and a mor-
phism $f:S^{\prime\prime}\rightarrow S$ of analytic spaces, with $f(0^{\prime})=0$ , such that the inverse image
$(X_{f}|_{S^{\nu}}, f^{*}(\omega_{s}))$ is equivalent to (X’ $|_{S^{\prime}},$

$\omega_{s^{\prime}}$ ) (see the end of section 4 for the
definition of equivalent).

2. The differential $d_{O^{\prime}}f$ at $0^{\prime}$ of the above morphism $f$ is unique (among

those morphisms fulfilling condition 1).

THEOREM. (versality) Let $(M, \mathcal{F}, \omega)$ a transversely holomorphic foliation on
a compact manifold endowed with a transversely holomorphic sympletic or contact
structure. Then there exists a versal deformation $(X|s, \omega_{s})$ of $(M, \mathcal{F}, \omega)$ para-
metrized by a pair $(S, 0)$ , where $0$ is the origin of the finite dimensional complex

vector space $H^{1}(M, \Theta_{\omega}^{tr})$ and $S$ is an analytic subspace of this cohomology space
defned by an equation $f(s)=0$ , where $f$ is a holomorphic map from a neigh-
bourhood $U$ of the origin $0$ of $H^{1}(M, \Theta_{\omega}^{tr})$ into $H^{2}(M, \Theta_{\omega}^{tr})$ whose jet of order 2
at $0$ is the quadratic form $s\rightarrow[s, s]$ .

We shall not give here a detailed proof of this theorem. Simply we men-
tion that the discussions in the preceding sections allows to translate here the
standard construction of Douady [1] (see also [4]). We shall describe, however,

how the versal family is built in order to use this construction in the com-
putations of examples of the following sections.

Fix a large enough real positive number $r$ and denote by $r\Gamma(\Phi_{\omega}^{k})$ the r-
Sobolev’s completion of the space $\Gamma(\Phi_{\omega}^{k})$ of sections of the sheaf $\Phi_{\omega}^{k}$ introduced
in section 1. Choose a real analytic riemannian metric on $M$ (by the reasoning
at the end of section 5 we can suppose $M$ real analytic as well as $\mathcal{F}$ ). This
metric induces real analytic scalar products in each $r\Gamma(\Phi_{\omega}^{k})$ . Let $D_{\omega}^{*}$ be the
adjoint of $D_{\omega}$ : $r\Gamma(\Phi_{\omega}^{k})\rightarrow^{r-1}\Gamma(\Phi_{\omega}^{k+1})$ with respect to these products. Set $\Sigma=$

{ $s\in r\Gamma(\Phi_{\omega}^{1})$ such that $D_{\omega}^{*}(D_{\omega}s-(1/2)[s,$ $s])=0$ }. $\Sigma$ is a Banach submanifold of
$r\Gamma(\Phi_{\omega}^{1})$ in a neighbourhood of the origin whose tangent space $ T_{0}\Sigma$ is $kerD_{\omega}$ .
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Set $\tilde{H}=\Sigma\cap kerD_{\omega}^{*}$ . Then $\tilde{H}$ is a (finite dimensional) submanifold of $\Sigma$ in a
neighbourhood of $0$ with tangent space $T_{0}\tilde{H}=kerD_{\omega}\cap kerD_{\omega}^{*}\cong H^{1}(M, \Theta_{\omega}^{tr})$ . One
can prove that $\tilde{H}$ can be defined alternatively as the set of those $s\in r\Gamma(\Phi_{\omega}^{1})$

satisfying the elliptic equation

$D_{\omega}^{*}(D_{\omega}s-\frac{1}{2}[s, s])+D_{\omega}D_{\omega}^{*}s=0$ .

This implies that the elements $s\in\tilde{H}$ belong to $\infty\Gamma(\Phi_{\omega}^{1})$ . Let $S$ be the analytic

subspace of $\tilde{H}$ of those $s$ fulfilling the integrability equation $D_{\omega}s-(1/2)[s, s]=0$ .
In a neighbourhood of the origin each $s\in S$ defines (because of the integrability
condition) a transversely holomorphic foliation $\mathcal{F}_{s}$ endowed with a tranversely

holomorphic symplectic or contact structure $\omega_{s}$ . Then $(\mathcal{F}_{s}, \omega_{s})_{s\in S}$ is the versal
family of deformations.

It is well known (see for example [9]) that an alternative decription of $\tilde{H}$

and $S$ is the following:

$\tilde{H}=\{s\in\Gamma(\Phi_{\omega}^{1})$ such that $s=Hs+\frac{1}{2}D_{\omega}^{*}G[s, s]\}$

where $Hs$ means the harmonic part of $s$ and $G$ denotes the Green’s operator.

$S=$ { $s\in\tilde{H}$ with $H[s,$ $s]=0$ }

where $H[s, s]$ means the harmonic part of $[s, s]$ .
We mention here the uniqueness (up to ismorphisms) of the versal space

(see for example [4]) and the following extremely useful corollary of the
versality theorem.

COROLLARY. (see [4]) Let (X’ $|_{S^{\prime}},$
$\omega_{s^{\prime}}$ ) be a deformation of $(M, \mathcal{F}, \omega)$ para-

metrized by $(S^{\prime}, 0^{\prime})$ . If $S^{\prime}$ is smooth (that is, a neighbourhood of the origin of a
complex vector space) and if the Kodaira-Spencer’s map

$\rho:T_{o^{\prime}}S^{\prime}\rightarrow H^{1}(M, \Theta_{\omega^{r}}^{t})$

is an isomorphism then $(X^{\prime}|_{S^{\prime}}, \omega_{s^{\prime}})$ is versal.

The Kodaira-Spencer’s map is defined as follows. If

$\phi_{ij}(s^{\prime}, x, z)=(s^{\prime}, \phi_{ij}^{u}(s^{\prime}, x, z), \phi_{ij}^{a}(s^{\prime}, z))$

are the coordinate changes of $X^{\prime}$ and if $v\in T_{o^{\prime}}S^{\prime}$ then the vector fields

$X_{ij}=\Sigma v(\phi_{ij}^{a})\frac{\partial}{\partial z_{i}^{a}}+\Sigma v(\phi_{ij}^{u})\frac{\partial}{\partial x_{i}^{u}}$

give a l-cocycle with values in $\Theta_{\omega}^{tr}$ whose cohomology class is $\rho(v)$ .



Deformations of transversely 497

7. The versal family of deformations of the examples given in the
introduction

7.1. The Hopf fibration $S^{4n+3}\rightarrow CP^{2n+1}$

The versal space of the transversely holomorphic foliation $\mathcal{F}$ on $S^{4n+3}$ whose
leaves are the fibres of the Hopf fibration is described in [3] and [4]. It is
smooth, that is, a neighbourhood of the origin in the vector space $H^{1}(S^{4n+3}, \Theta_{\omega}^{lr})$

whose dimension is $(2n+2)^{2}-1$ . We are now interested in the versal space and
the versal deformation of the same foliation with the additional transversely

contact structure $\omega$ described in the introduction. Our first aim is the computa-
tion of $H^{1}(S^{4n+3}, \Theta_{\omega}^{lr})$ . Denote by $\Theta$ the sheaf of germs of holomorphic vector
fields on $CP^{2n+1}$ , by $\Theta_{\omega}$ the sheaf of germs of holomorphic vector fields $X$ on
$CP^{2n+1}$ fulfilling $L_{X}\omega_{i}=\lambda_{i}\omega_{i}$ . Let $\mathcal{O}$ be the sheaf of germs of holomorphic
functions on $CP^{2n+1}$ and $\tilde{\Theta}$ the sheaf of germs of pairs (X, $\{\mu_{i}\}$ ), where $X$ is
a holomorphic vector field and the $\mu_{i}$ are holomorphic functions on each one
of the $U_{i}$ fulfilling $\mu_{i}-\mu_{j}=X(e_{ij})/e_{ij}$ on $U_{i}\cap U_{j}$ . Finally, let $\Omega^{1}(E)$ be the sheaf
of families of holomorphic l-forms $\{\sigma_{i}\}$ , each $\sigma_{i}$ being defined on $U_{i}$ , and ful-
filling $\sigma_{i}=e_{ij}\sigma_{j}$ on $U_{i}\cap U_{j}$ . We have the following two exact sequences

$0-\mathcal{O}\rightarrow\tilde{\Theta}-\Theta\rightarrow 0$

$0\rightarrow\Theta_{\omega}\rightarrow\tilde{\Theta}\rightarrow\Omega^{1}(E)\rightarrow 0$

where the projection $\tilde{\Theta}\rightarrow\Omega^{1}(E)$ is the map induced by

(X, $\{\mu_{i}\}$ ) $\rightarrow\{L_{x}\omega_{i}-\mu_{i}\omega_{i}\}$ .

Since $H^{i}(CP^{2n+1}, \Theta)=H^{i}(CP^{2n+1}, \mathcal{O})=0$ for $i>0$ , we deduce from the first exact
sequeuce that

$\dim H^{0}(CP^{2n+1},\tilde{\Theta})=\dim H^{0}(CP^{2n+1}, \Theta)+\dim(CP^{2n+1}, \mathcal{O})=(2n+1)^{2}$

and $H^{1}(CP^{2n+1},\tilde{\Theta})=0$ . One can compute easily from the definitions the follow-
ing dimensions:

$\dim H^{0}(CP^{2n+1}, \Theta_{\omega})=(2n+2)^{2}-(1+2+\cdots+(2n+1))$

$\dim H^{0}(CP^{2n+1}, \Omega^{1}(E))=1+2+\cdots+(2n+1)$

Since, moreover, $H^{i}(CP^{2n+1}, \Omega^{1}(E))=0$ for $i>0$ we deduce from the second
exact sequence the vanishing of $H^{1}(CP^{2n+1}, \Theta_{\omega})$ and $H^{2}(CP^{2n+1}, \Theta_{\omega})$ . By virtue
of the Leray’s spectral sequence of the Hopf fibration $\pi:S^{4n+3}\rightarrow CP^{2n+1}$ we
have the following exact sequence:
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$\cong$

$0\rightarrow H^{I}(CP^{2n+1}, \Theta_{\omega})\rightarrow H^{1}(S^{4n+3}, \Theta_{\omega}^{tr})\rightarrow H^{0}(CP^{2n+1},$ $\mathcal{H}^{1}(S^{1}, \Theta_{S1})$

$\Vert$

$0$

$\rightarrow H^{2}(CP^{2n+1}, \Theta_{\omega})$ ,
$\Vert$

$0$

where $\mathcal{H}^{1}(S^{1}, \Theta_{S1})$ is the sheaf over $CP^{2n+1}$ associating to $U$ the group
$H^{1}(\pi^{-1}(U), \Theta_{\omega^{r}}^{t}|_{\pi^{-1}(U)})$ . When $U$ is small enough this group is isomorphic to
$H^{0}(U, \Theta_{\omega}|_{U})\otimes H^{1}(S^{1}, R)$ .

So $\mathcal{H}^{1}(S^{1}, \Theta_{S1})$ is isomorphic to $\Theta_{\omega}$ . Thus we have $ H^{1}(S^{4n+3}, \Theta_{\omega}^{tr})\cong$

$H^{0}(CP^{2n+1}, \Theta_{\omega})$ . That is

$\dim H^{1}(S^{4n+3}, \Theta_{\omega}^{tr})=(2n+2)^{2}-(1+2+\cdots+(2n+1))$ .
Following the ideas of [4] (the construction of the versal family for the

transversely holomorphic foliation without contact structure) we want to built
now a deformation of $(S^{4n+3}, \mathcal{F}, \omega)$ parametrized by $H^{0}(CP^{2n+1}, \Theta_{\omega})$ . First of
all remark that the fibres of the Hopf fibration are the intersection with $S^{4n+3}$

of the (complex) integral curves of the radial vector field $\xi$ of $C^{2n+2}$ :

$\xi=\Sigma z^{i}\frac{\partial}{\partial z^{i}}$ .

Denote by $p$ the canonical projection $p:C^{2n+2}\rightarrow CP^{2n+1}$ . For each $\eta\in$

$H^{0}(CP^{2n+1}, \Theta_{\omega})$ take a holomorphic vector field $\tilde{\eta}$ on $C^{2n+2}$ whose projection
by $p_{*}$ is $\eta$ and such that $[\tilde{\eta}, \xi]=0$ . For $\eta$ small enough the (complex) integral
curves of $\xi+\tilde{\eta}$ define a new foliation on $C^{2n+2}-\{0\}$ . Denote by $\mathcal{F}_{\eta}$ the folia-
tion that it induces in $S^{4n+3}$ . We want to endow $\mathcal{F}_{\eta}$ with a transversely con-
tact structure $\omega_{\eta}$ .

The holomorphic vector fields $X$ on $C^{2n+2}$ conmuting with the radial vector
field $\xi$ are linear. That is, of the form $X=\sum X^{i}(\partial/\partial z^{i})$ with $X^{i}=\Sigma X_{j}^{t}X^{j}$ ,

where $X_{j}^{i}\subset-C$ .
If $\alpha$ is now a l-form on $C^{2n+2}$ of the form $\alpha=\Sigma\alpha_{ij}z^{i}dz^{j}$ with $\alpha_{ij}\in C$ , the

Lie derivative $ L_{x}\alpha$ is given by

$L_{X}\alpha=\Sigma(X_{j}^{k}\alpha_{ki}+X_{i}^{k}\alpha_{jk})z^{j}dz^{i}$

We see, thus, that $ L_{X}\alpha$ is also linear with coefficients $(L_{X}\alpha)_{ij}\in C$ given by

$(L_{X}\alpha)_{ij}=\Sigma(X_{j}^{k}\alpha_{ki}+X_{i}^{k}\alpha_{jk})$ .

This suggests the use of the matrix notation. Denote also by $X$ the matrix
$(X_{i}^{j})$ and by $\alpha$ the matrix $(\alpha_{ij})$ . The above equality is written
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$L_{X}\alpha={}^{t}X\alpha+\alpha X$ .
If $\alpha$ is a linear form on $C^{2n+2}$ and $X$ a linear vector field, condition $\alpha(X)=0$

is written in matrix notation

${}^{t}\alpha X+{}^{t}X\alpha=0$ .
Let $\omega$ be the linear l-form on $C^{2n+2}$

$\omega=(z^{1}dz^{2}-z^{2}dz^{1})+\cdots+(z^{2n+1}dz^{2n+2}-z^{2n+2}dz^{2n+1})$ .

One has $\omega(\xi)=0$ and $ L_{\xi}\omega=2\omega$ (where $\xi$ is the radial vector field). For every
$\eta\in H^{0}(CP^{2n+1}, \Theta_{\omega})$ (small enough) set $X=\xi+\tilde{\eta}$ . We shall have $ L_{X}\omega=K\omega$ (with
$K$ constant). In matrix form we shall write this

${}^{t}X\omega+\omega X=K\omega$ .

Find now a linear l-form $\sigma$ fulfilling $\sigma(X)=0$ and $ L_{X}\sigma=c\sigma$ . In matrix nota-
tion this conditions will be written

$\left\{\begin{array}{l}{}^{t}X\sigma+\sigma X=c\sigma\\{}^{t}\sigma X+{}^{t}X\sigma=0\end{array}\right.$

Set $\mu={}^{t}\sigma X$. These equations (in terms of $\mu$ ) become

$\left\{\begin{array}{l}\mu X+{}^{t}X\mu=c\mu\\\mu+{}^{t}\mu=0\end{array}\right.$

which are fulfilled by $\mu=-\omega$ and $c=K$. So $\sigma={}^{t}X^{-1}\omega$ fulfils the desired con-
ditions (remark that $X$ has an inverse because $X=\xi+\tilde{\eta}$ with $\eta$ small).

At each small enough neighbourhood $U$ of a point of $C^{2n+2}-\{0\}$ take a
non-vanishing function $f_{U}$ fulfilling the equation $X(f_{U})+cf_{U}=0$ . Then $\alpha_{U}=f_{U}\sigma$

will be a l-form on $U$ such that $\alpha_{U}(X)=0$ and $L_{X}\alpha_{U}=0$ . So it will be a basic
l-form on $U$ with respect to the foliation induced on $C^{2n+2}$ by the vector field
$X=\xi+\tilde{\eta}$ . The restrictions of the $\alpha_{U}$ to the sphere $S^{4n+3}$ (for those $U$ in-
tersecting $S^{4n+3}$ ) will give a transversely contact structure $\omega_{\eta}$ for the foliation
$\mathcal{F}_{\eta}$ . In this way we have a deformation $(S^{4n+3}, \mathcal{F}_{\eta}, \omega_{\eta})$ of the foliation $(S^{4n+3}$ ,
$\mathcal{F},$ $\omega$ ) parametrized by a neighbourhood of the origin of $ H^{0}(CP^{2n+1}, \Theta_{\omega})\cong$

$H^{1}(S^{4n+3}, \Theta_{\omega}^{tr})$ . The same argument of [4] applies now to show that the
Kodaira-Spencer’s map of this deformation is an isomorphism. So by virtue of
the corollary of the theorem of versality, this deformation is versal.

7.2. Other examples of transversely contact structures
Let $M$ the projective cotangent bundle of $CP^{2n+I}$ (that is, the projectiviza-
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tion of the cotangent bundle). The foliation given by the bundle $M\rightarrow CP^{2n+1}$

admits a natural transversely contact structure (from the contact structure of
$CP^{2n+1})$ . The Leray’s spectral sequence of this bundle gives easily $H^{1}(M, \Theta_{\omega}^{tr})$

$=0$ , so that this structure is rigid.
The following example corresponds to a foliation with transversely contact

structure whose versal family of deformations is parametrized by a nonsmooth
analytic space. In the product manifold $M=T^{n}R\times CP^{3}$ take the foliation
whose leaves are the submanifolds $T^{n}R\times\{p\}$ with the natural transversely

contact structure induced by the contact structure $\omega$ of $CP^{3}$ . One has $\Theta_{\omega}^{tr}=$

$ C\otimes\Theta_{\omega}\wedge$ , where $C$ denotes the constant sheaf with stalk $C$ over $T^{n}R$ and $\Theta_{\omega}$ is
the sheaf over $CP^{\theta}$ of germs of holomorphic vector fieldr $X$ fulfilling $L_{X}\omega_{i}=$

$i_{i}\omega_{i}$ . As $H^{1}(CP^{3}, \Theta_{\omega})=0$ one has

$H^{1}(M, \Theta_{\omega}^{tr})=H^{1}(T^{n}R, C)\otimes H^{0}(CP^{3}, \Theta_{\omega})$

wich is a space of complex dimension $10n$ .
In order to compute the versal space let us endow the space of sections of

the sheaf $\Phi_{\omega}^{k}$ (of section 3.2) with a hermitian product in the following way.
Take in $M$ the product of the Fubini’s metric of $CP^{3}$ by the flat riemannian
metric of $T^{n}R$ . If $\delta,$ $\delta^{\prime}\in \mathcal{D}^{k}$ are expressed by the pairs of global vector forms
$\delta=(\varphi, \eta),$ $\delta^{\prime}=(\varphi^{\prime}, \eta^{\prime})$ we define the hermitian product $\langle\delta, \delta^{\prime}\rangle$ by

$\langle\delta, \delta^{\prime}\rangle=\langle\varphi, \varphi^{\prime}\rangle+\langle\eta, \eta^{\prime}\rangle$

where $\langle\varphi, \varphi^{\prime}\rangle$ and $\langle\eta, \eta^{\prime}\rangle$ mean the usual products of vector forms. Let $E$ be
the line bundle on $M$ defined by the transition functions $\{e_{ij}\}$ . (Recall that $e_{ij}$

are the functions on $U_{i}\cap U_{j}$ such that $\omega_{i}=e_{ij}\omega_{j}$). Take a hermitian metric $h$

in the bundle $E$ . If $s=(\delta, \{\gamma_{i}\}, \{\sigma_{i}\}),$ $s^{\prime}=(\delta^{\prime}, \{\gamma_{i}^{\prime}\}, \{\sigma_{i}^{\prime}\})$ are sections of $\Phi_{\omega}^{k}$ (see

section 3.2) we define the product

$\langle s, s^{\prime}\rangle=\langle\delta, \delta^{\prime}\rangle+\langle\delta(\omega_{i})-\gamma_{i}\wedge\omega_{i}, \delta^{\prime}(\omega_{i})-\gamma_{i}^{\prime}\wedge\omega_{i}\rangle_{h}+\langle\sigma_{i}, \sigma_{i}^{\prime}\rangle_{h}$

Remark that $\delta(\omega_{i})-\gamma_{i}\wedge\omega_{i}$ is a (global) element of $S_{(1)F}^{k+1}(E)$, with the nota-
tions of section 3.2. Remark also that $\langle s, s\rangle=0$ implies $\delta=0,$ $\sigma_{i}=0$ and $\gamma_{i}\wedge\omega_{i}$

$=0$ . But as $\{\gamma_{i}\}\in S_{(1)F}^{k+1}(E)$ this implies $\gamma_{i}=0$ . This proves that the hermitian
product is non-degenerate.

Take a basis $\{X_{a}\}_{a=1\ldots..10}$ of $H^{0}(CP^{3}, \Theta_{\omega})$ and denote by $\{dx^{u}\}_{u=1\ldots..n}$ the
l-forms on $T^{n}R$ induced by the canonical l-forms $dx^{u}$ of $R^{n}$ . Denote by $\delta_{au}$

the element of $\mathcal{D}^{1}$ given by the pair of global vector forms $(dx^{u}\otimes X_{a}, 0)$ . Let
$(\lambda_{a})_{i}$ be the holomorphic function on $U_{i}\subset CP^{3}$ such that $L_{x_{a}}\omega_{i}=(\lambda_{a})_{i}\omega_{i}$ . Denote
by $s_{au}$ the section of $\Phi_{\omega}^{1}$ given by
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$s_{au}=(\delta_{au}, \{(\lambda_{a})_{i}dx^{u}\}, \{0\})$

One can prove that each $s_{au}$ is harmonic. The bracket $[s_{au}, s_{bv}]$ is given by

$[s_{au}, s_{bv}]=([\delta_{au}, \delta_{bv}], \{(X_{a}(\lambda_{b})_{i}-X_{b}(\lambda_{a})_{i})dx^{u}\wedge dx^{v}\}, \{0\})$

where $[\delta_{au}, \delta_{bv}]$ is the derivation given by the pair of global vector forms
$((dx^{u}\otimes dx^{v})\otimes[X_{a}, X_{b}], 0)$ . One sees that the brackets $[s_{au}, s_{bv}]$ are also harmonic.
According to section 6 the versal space will be (in this case) the analytic sub-
space of $C^{10n}$ defined by the equation $[s, s]=0$ , where $s$ is expressed in the
basis $\{s_{au}\}$ of harmonic elements of $\Gamma(\Phi_{\omega}^{1})$ by $s=\sum k^{au}s_{au}$ with le au complex
numbers.

If $n=1$ then $u=v=1$ and in this case the brackets $[s_{au}, s_{bv}]=0$ so that
(only in this case) the versal space is smooth.

7.3. The suspension of $T^{2n}C$ by an element of $Sp(2n, Z)$

Let $T^{2n}C$ be the complex torus $C^{2n}/(Z+iZ)^{2n}$ . Given $A\in Sp(2n, Z)$ we
take the quotient manifold $M$ of $R\times T^{2n}C$ by the equivalence relation identify-
ing $(t, z)$ with $(t+1, A(z))$ . Take the transversely holomorphic foliation $\mathcal{F}$ on
$M$ whose leaves are induced by the lines $R\times\{z\}$ . As $A$ preserves the sym-
plectic 2-form $\omega=dz^{1}\wedge dz^{2}+\cdots+dz^{2n-1}\wedge dz^{2n}$ on $T^{2n}C$ then $\mathcal{F}$ is transversely
symplectic. We want to construct the versal family of deformations of $(M, \mathcal{F}, \omega)$ .

We have a natural projection $\pi;M\rightarrow S^{1}$ whose fibres are transverse to $\mathcal{F}$ .
We can then use the Leray’s spectral sequence of $\pi$ to compute the cohomology
space $H^{1}(M, \Theta_{\omega}^{lr})$ . We shall have the following exact sequence

$0\rightarrow H^{1}(S^{1}, \pi(\Theta_{\omega}^{tr}))\rightarrow H^{1}(M, \Theta_{\omega}^{tr})\rightarrow H^{0}(S^{1}, \mathcal{H}^{1}(T^{2n}C, \Theta_{\omega}^{tr}))$

$\rightarrow H^{2}(S^{1}, \pi(\Theta_{\omega}^{tr}))$

As $S^{1}$ can be covered by two contractible open sets with contractible intersec-
tions and as $\pi(\Theta_{\omega}^{tr})$ is a locally constant sheaf we obtain easily that
$H(S^{1}, \pi(\Theta_{\omega}^{tr}))=0$ .

Let us compute $H^{1}(S^{1}, \pi(\Theta_{\omega}^{tr}))$ . Set $U_{1}=$ ] $0,1[\subset R, U_{2}=]1/2,3/2[\subset R,$ $V_{1}=$

$p(U_{1}\times T^{2n}C),$ $V_{2}=p(U_{2}\times T^{2n}C)$ , where $p:R\times T^{2n}C\rightarrow M$ is the canonical projec-
tion. On each $V_{i}$ we can take coordinates

$\varphi_{i}$ : $V_{i^{-}}U_{i}\times T^{2n}C$

$x-(t_{i}, z_{i}^{1}, \cdots, z_{i}^{2n})$

with $p(t_{i}, z_{i}^{1}, \cdots, z_{i}^{2n})=x$ . In $V_{1}\cap V_{2}$ we shall have
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$t_{2}=t_{1}+1$ $t_{2}=t_{1}$

if $ t_{1}\in$ ]$0,1/2$ [ $\}$ if $ t_{1}\in$ ] $1/2,1[$
$z_{2}=A(z_{1})$ $z_{2}=z_{1}$

Let $\tilde{U}_{1},$ $O_{2}$ be the open sets in $S^{1}$ given by $U_{1}$ and $U_{2}$ . In the \v{C}ech cohomology

of the covering $\{\tilde{U}_{1},\tilde{U}_{2}\}$ with values in the sheaf $\pi(\Theta_{\omega}^{lr})$ the O-cohains are the
couples $(s_{1}, s_{2})$ with

$s_{1}=\sum\alpha^{a}\frac{\partial}{\partial z_{1}^{a}}$

$s_{2}=\sum\beta^{a}\frac{\partial}{\partial_{Z_{2}^{a}}}$

where $\alpha^{a}$ and $\beta^{a}$ are constants. The l-cochains are sections $s_{12}$ of $\pi(\Theta_{\omega}^{tr})$ on
$0_{1}\cap\tilde{U}_{2}$ given by

$s_{12}(t)=\left\{\begin{array}{l}\Sigma x^{a}\frac{\partial}{\partial z_{1}^{a}}\\\Sigma y^{a}\frac{\partial}{\partial_{Z_{2}^{a}}}\end{array}\right.$ $whenwhen$

$ t\in$ ]
$0,1/2[t\in]1/2,1[$

with $\chi^{a}y^{a}$ constants. As $(\partial(s_{1}, s_{2}))_{12}=s_{2}-s_{1}$ we deduce easily that the degree
1 cohomology is the quotient of the global holomorphic vector fields on $T^{2n}C$

by the image of the morphism $l-A_{*}$ , where $I$ is the identity and $A_{*}$ is the
morphism induced by $A$ on the vector fields, because the cocycle $s_{12}$ given by
$X_{1}=\sum X_{1}^{a}(\partial/\partial z_{1}^{a})$ when $ t\in$ ] $0,1/2$ [ and by $X_{2}=\Sigma X_{2}^{a}(\partial/\partial z_{2}^{a})$ when $ t\in$ ] $1/2,1[defines$

the same cohomology class that the cocycle given by $\sum(X_{1}^{a}-X_{2}^{a})(\partial/\partial z_{1}^{a})$ when
$t\in]0,1/2$ [ and by $0$ when $ t\in$ ] $1/2,1$ [ (since the difference is $\partial(0,$ $X_{2})$). So
$H^{1}(S^{1}, \pi(\Theta_{\omega}^{tr}))$ is isomorphic to the vector space of holomorphic vector fields on
$T^{2n}C$ invariant by $A_{*}$ .

Let us compute now $H^{0}(S^{1}, \mathcal{H}^{1}(T^{2n}C, \Theta_{\omega}^{tr}))$ . Denote by $\Theta_{\omega}$ the sheaf of
germs of holomorphic vector fields $X$ on $T^{2n}C$ such that $L_{X}\omega=0$ . First of all
compute $H^{1}(T^{2n}C, \Theta_{\omega})$ . The condition $ L_{X}\omega$ is equivalent to the fact that the
l-form $\sigma_{X}=X^{2}dz^{1}+X^{1}dz^{2}+\cdots$ is closed (that is, locally exact). This gives a
natural exact sequence of sheaves

$0\rightarrow C\rightarrow \mathcal{O}\rightarrow\Theta_{\omega}\rightarrow 0$

where $C$ is the constant sheaf with stalk $C$ and $\mathcal{O}$ the sheaf of germs of holo-
morphic functions. From the associated cohomology sequence (by using the
fact that the morphism $H^{2}(C)\rightarrow H^{2}(\mathcal{O})$ is the projection of the space of 2-forms
into the space of $(0,2)$-forms) we deduce that

$\dim H^{1}(T^{2n}C, \Theta_{\omega})=(2n)^{2}+\left(\begin{array}{l}2n\\2\end{array}\right)$ .
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In terms of the resolution of $\Theta_{\omega}$ given in 1.1 (corresponding to the foliation on
$T^{2n}C$ whose leaves are the points) a basis of $H^{1}(T^{2n}C, \Theta_{\omega})$ can be given by
the sections of $\Phi_{\omega}^{1}$ given by $s_{a}^{b}=(\delta_{a}^{b}, 0),$ $a,$ $b\in\{1, \cdots, 2n\},$ $s_{ab}^{\prime}=(0, dz^{a}\wedge dz^{b}),$ $a$ ,
$b\in\{1, \cdots , 2n\}$ with $a<b$ , where $\delta_{a}^{b}$ is the l-derivation given by the couple
of global vector forms $(d\overline{z}^{\alpha}\otimes(\partial/\partial_{Z^{b}}), 0)$ .

Let us give now a basis of $H^{1}(M, \Theta_{\omega}^{tr})$ (which is the direct sum of $H^{1}(S^{1}$ ,
$\pi(\Theta_{\omega}^{tr}))$ and $H^{0}(S^{1}, \mathcal{H}^{1}(T^{2n}C, \Theta_{\omega}^{lr}))$ . If $X$ is a holomorphic vector field on $T^{2n}C$

invariant by $A$ , let $\delta_{X}$ be the l-derivation on $M$ given by the couple of global
vector forms $(dt\otimes X, 0)$ , where $t$ is the coordinate of $S^{1}$ . Let $s_{X}$ be the (closed)

section of $\Phi_{\omega}^{1}$ given by $s_{X}=(\delta_{X}, 0)$ . If $\varphi$ and $\epsilon$ are matrices fulfilling $\varphi A=A\varphi$

and ${}^{t}A\epsilon A=\epsilon$ , denote by $s_{\varphi}$ and $s_{\epsilon}$ the (closed) sections of $\Phi_{\omega}^{1}$ given by the
couples $s_{\varphi}=(\sum\varphi_{b}^{a}\delta_{b}^{a}, 0),$ $s_{\epsilon}=(O, \sum\epsilon_{ab}dz^{a}\wedge dz^{b})$ . Let $X_{k},$

$\varphi_{l},$ $\epsilon_{m}$ be bases of the
spaces of vector fields on $T^{2n}C$ invariant by $A$ , of the matrices $\varphi$ fulfilling $\varphi A=$

$ A\varphi$ and of the matrices $\epsilon$ such that ${}^{t}A\epsilon A=\epsilon$ . Then the classes of the sections
$s_{X_{k}},$ $s_{\varphi\iota},$ $s_{\epsilon_{m}}$ are a basis of $H^{1}(M, \Theta_{\omega^{r}}^{t})$ .

As the brackets of each couple of linear combinations of these sections
vanish then the following family of sections of $\Phi_{\omega}^{1}$ parametrized by $H^{1}(M, \Theta_{\omega}^{tr})$

$H^{1}(M, \Theta_{\omega}^{lr})\rightarrow\Gamma(\Phi_{\omega}^{1})$

$\sum(C^{k}s_{X_{k}}+C^{l}s_{\varphi\iota}+C^{m}s_{\epsilon_{m}})\rightarrow\sum(C^{k}s_{X_{k}}+C^{\iota}s_{\varphi\iota}+C^{m}s_{\epsilon_{m}})$

is an integrable family. As the Kodaira-Spencer’s morphism of this family is
the identity then this family is vesal by the corollary of the versality theorem.

8. Examples of transversely symplectic foliations with versal families
of deformations parametrized by non-smooth analytic spaces

Let $T^{2n}C$ be the complex torus $C^{2n}/(Z+iZ)^{2n}$ with its symplectic form
$\omega=dz^{1}\wedge dz^{2}+\cdots+dz^{2n-1}\wedge dz^{2n}$ . Let $\pi;M\rightarrow T^{2n}C$ be a principal $S^{1}$-bundle over
$T^{2n}C$ . We shall suppose that the Euler class $e(M)$ of $M$ belongs to $H^{1.1}(T^{2n}C$ ,
$C)$ . This is equivalent to the existence of a holomorphic line bundle $L\rightarrow T^{2n}C$

with a hermitian metric $h$ such that the principal $U(1)$-bundle of unitary vectors
of $L$ is isomorphic to the bundle $M\rightarrow T^{2n}C$ .

Let $\mathcal{F}$ be the foliation on $M$ whose leaves are the fibres of $\pi$ . $\mathcal{F}$ is en-
dowed with the transversely symplectic structure given by $\omega$ . Our purpose is
to describe the versal family of deformations of $(M, \mathcal{F}, \omega)$ . Take a connection
$\rho^{\prime}$ on $M$ ( $\rho^{\prime}$ is a global l-form taking imaginary values on real vectors). We
can choose $\rho^{\prime}$ such that its curvature $d\rho^{\prime}$ is harmonic in $T^{2n}C$ . Set $\rho=$

$(1/2\pi i)\rho^{\prime}$ . Then $\Omega=d\rho\in H^{1.1}(T^{2n}C)$ is the harmonic representative of $e(M)$ .
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We have $\int_{S^{1}}\rho=1$ , where $\int_{S^{1}}$ means the integral along the fibres.

From the Leray’s spectral sequence of $M\rightarrow T^{2n}C$ we have

$0-H^{1}(T^{2n}C, \Theta_{\omega})-H^{1}(M, \Theta_{\omega}^{tr})-H^{0}(T^{2n}C, \Theta_{\omega})\rightarrow^{\Delta}H^{2}(T^{2n}C, \Theta_{\omega}^{lr})$

To compute $H^{1}(M, \Theta_{\omega}^{tr})$ from this sequence we need the dimension of the kernel
of $\Delta$ . To this end we prefer to describe the above exact sequence from a
differential point of view instead of obtaining it from the Leray’s spectral

sequence. Let us begin by introducing resolutions of the sheaves $\Theta_{\omega}^{tr}$ and $\Theta_{\omega}$

different from the general resolution introduced in section 1.1. If $z^{1},$
$\cdots,$

$z^{2n}$

are the coordinates in (an open set) $T^{2n}C$ induced by the canonical coordinates
of $C^{2n}$ then $\{dz^{a}\}$ are global l-forms and $\{dz^{a}, d\overline{z}, \rho\}$ is a basis of the space

of vector l-forms at each point of $M$. Let $\{Z_{a},\overline{Z}_{a}, (\partial/\partial t)\}$ its dual basis. Then

$Z_{a}=\frac{\partial}{\partial_{Z^{a}}}-\rho(\frac{\partial}{\partial_{Z^{a}}})\frac{\partial}{\partial t}$

is the horizontal lift of $(\partial/\partial z^{a})$ . Every vector form $\varphi$ is expresed in the basis
$\{Z_{a},\overline{Z}_{a}, (\partial/\partial t)\}$ by

$\varphi=\sum\varphi^{a}Z_{a}+\sum\varphi^{\overline{a}}Z_{a}+\varphi^{t}\frac{\partial}{\partial t}$

where $\varphi^{a},$ $\varphi^{\overline{a}}$ and $\varphi^{t}$ are ordinary forms. We shall say that $\varphi$ is horizontal of
type $(1, 0)$ if $\varphi^{a}=\varphi^{t}=0$ . Denote by $\mathcal{D}^{;p}$ the space of degree $p$ derivations given
by couples of global vector forms $(\varphi, \eta)$ with $\varphi$ and $\eta$ horizontal of type $(1, 0)$ .
Remark that if $\delta\in \mathcal{D}^{\prime p}$ then $D\delta\in \mathcal{D}^{\prime p+1}$ . Let $\Phi_{\omega}^{\prime p}$ be the sheaf of germs of
elements of $\mathcal{D}^{\prime p}\oplus S_{(2)}^{p+1}$ when $p\neq 0$ . Let $\Phi_{\omega^{0}}^{\prime}$ be the sheaf of germs of elements
of $\mathcal{D}^{;0}$ . We shall have the following fine resolution of $\Theta_{\omega}^{tr}$ :

$ 0-\Theta_{\omega}^{tr}-\Phi_{\omega^{0}}^{\prime}\underline{D_{\omega}}\Phi_{\omega^{1}}^{\prime}\underline{D_{\omega}}\ldots$

where $D_{\omega}$ is the differential introduced in section 1.1. When we take the trivial
foliation in $T^{2n}C$ whose leaves are the points we obtain a resolution of $\Theta_{\omega}$

$0-\Theta_{\omega}\rightarrow\Phi_{\omega^{0}}^{\prime}\underline{D_{\omega}}\Phi_{\omega^{1}}^{\prime-}$

(we denote by $\Phi_{\omega^{*}}^{\prime}$ the resolution of $\Theta_{\omega}$ as the resolution of $\Theta_{\omega}^{tr}$ ).

We define the integration along the leaves

$\}_{S^{1}}$ : $\Gamma(M, \Phi_{\omega}^{;p})\rightarrow\Gamma(T^{2n}C, \Phi_{\omega}^{;p- 1})$

in the following way. If $\alpha=(\delta, \sigma)\in\Gamma(M, \Phi_{\omega}^{\prime p})$ with $\delta=(\varphi, \eta)\in \mathcal{D}^{\prime p},$ $\varphi=\sum\varphi^{a}Z_{a}$ ,
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$\eta=\sum\eta^{a}Z_{a}$ , then $f_{S^{1}}\alpha=(\int_{S^{1}}\delta,$ $f_{S^{1}}\sigma)$ where $\int_{S^{1}}\delta$ is the degree $(p-1)$ derivation

given by tha pair of global forms

$(\sum(f_{S^{1}}\varphi^{a})\otimes\frac{\partial}{\partial z^{a}},$ $\sum(\}_{S^{1}}\eta^{a})\otimes\frac{\partial}{\partial_{Z^{a}}})$

The morphism $\int_{S^{1}}$ : $\Gamma(M, \Phi_{\omega}^{\prime p})\rightarrow\Gamma(T^{2n}C, \Phi_{\omega}^{\prime p-1})$ is onto. Denote by $K^{p}$ its

kernel. We have the following exact sequence of differential complexes

$0\rightarrow K^{p_{-}}\Gamma(M, \Phi_{\omega}^{\prime p})-\Gamma(T^{2n}C, \Phi_{\omega}^{\prime p-1})-0$

leading to the following cohomology sequence
$\Delta^{\prime}$

$...\rightarrow H^{p}(K^{*})\rightarrow H^{p}(M, es^{r})-H^{p-1}(T^{2n}C, \Theta_{\omega})-H^{p+1}(K^{*})\rightarrow\cdots$

If $\delta=(\varphi, \eta)\in \mathcal{D}_{\tau^{p_{2n_{C}}}}^{\prime},$ $\varphi=\sum\varphi^{a}(\partial/\partial z^{a}),$ $\eta=\sum\eta^{a}(\partial/\partial z^{a})$ , denote by $\lambda(\delta)$ the element
of $\mathcal{D}_{M}^{rp}$ given by the pair $(\Sigma\pi^{*}(\varphi^{a})Z_{a}, \Sigma\pi^{*}(\eta^{a})Z_{a})$ . Denote also by $\lambda$ the map

$\lambda:\Gamma(T^{2n}C, \Phi_{\omega}^{\prime p})\rightarrow K^{p}\subset\Gamma(M, \Phi_{\omega}^{\prime p})$

$(\delta, \sigma)-(\lambda(\delta), \pi^{*}\sigma)$

$\lambda$ is a morphism of complexes which induces an isomorphism in cohomology.
The morphism $\Delta=\lambda_{*}^{-1}\circ\Delta^{\prime}$

$\Delta:H^{0}(T^{2n}C, \Theta_{\omega})\rightarrow H^{2}(M, \Theta_{\omega}^{tr})$

is given by $X\rightarrow class$ of $(0, -\Omega\wedge i_{X}\omega)$ . So $X$ will belong to $ker\Delta$ if $(0,$ $-\Omega\wedge$

$i_{X}\omega)=D_{\omega}(\delta, \sigma)=(d\delta, \delta(\omega)-d\sigma)$ . As $D\delta=0$ then $\delta$ is a pair $(\varphi, 0)$ and $\delta(\omega)=$

$-d(\varphi\overline{\wedge}\omega)$ . So $\Omega\wedge i_{X}\omega=d(\varphi\overline{\wedge}\omega-\sigma)$ . As $\Omega$ is harmonic this is equivalent to
$\Omega\wedge i_{X}\omega=0$ . So

$ker\Delta=$ { $X$ holomorphic vector fields on $T^{2n}C$ fulfilling $\Omega\wedge i_{X}\omega=0$ }

From the exact sequence

$0-H^{1}(T^{2n}C, \Theta_{\omega})-H^{I}(M, \Theta_{\omega}^{lr})-ker\Delta-0$

we deduce

$\dim H^{1}(M, \Theta_{\omega}^{lr})=(2n)^{2}+\left(\begin{array}{l}2n\\2\end{array}\right)+\dim ker\Delta$

To compute the versal family of deformations of $(M, \mathcal{F}, \omega)$ let us define
hermitian products in $\Gamma(M, \Phi_{\omega}^{rp})$ . We define a riemannian metric $g$ on $M$ by

$g(Z_{a},\overline{Z}_{b})=\delta_{ab}$

$g(\frac{\partial}{\partial t},$ $\frac{\partial}{\partial t})=1$
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$g(Z_{a},$ $\frac{\partial}{\partial t})=g(\overline{Z}_{a},$ $\frac{\partial}{\partial t})=g(Z_{a}, Z_{b})=0$

If $\varphi$ and $\psi$ are horizontal vector forms of type $(1, 0)$ , $\varphi=\Sigma_{\varphi^{a}}Z_{a},$ $\psi=\Sigma\psi^{a}Z_{a}$ ,

we define their hermitian product $\langle\varphi, \psi\rangle$ by

$\langle\varphi, \psi\rangle=\int_{M}\sum\varphi^{a}\wedge\overline{*\psi^{b}}g(Z_{a},\overline{Z}_{b})$

where $*means$ the Hodge’s operator associated to $g$ . We define a hermitian
product $\langle, \rangle$ in $\mathcal{D}^{\prime p}$ in the following way. If $\delta_{1},$ $\delta_{2}\in \mathcal{D}^{\prime p}$ are represented by

couples of global forms $\delta_{1}=(\varphi_{1}, \eta_{1}),$ $\delta_{2}=(\varphi_{2}, \eta_{2})$ then

$\langle\delta_{1}, \delta_{2}\rangle=\langle\varphi_{1}, \varphi_{2}\rangle+\langle\eta_{1}, \eta_{2}\rangle$ .
Finally we define a hermitian product $\langle, \rangle$ in $\Gamma(M, \Phi_{\omega}^{\prime p})$ in the following way.
If $\alpha_{1},$

$\alpha_{2}\in\Gamma(M, \Phi_{\omega}^{\prime p})$ are represented by couples $\alpha_{1}=(\delta_{1}, \sigma_{1}),$ $\alpha_{2}=(\delta_{2}, \sigma_{2})$ where
$\delta_{1}=(\varphi_{1}, \eta_{1}),$ $\delta_{2}=(\varphi_{2}, \eta_{2})$ then

$\langle\alpha_{1}, \alpha_{2}\rangle=\langle\delta_{1}, \delta_{2}\rangle+\langle\sigma_{1}-(-1)^{p}\varphi_{1}\overline{\wedge}\omega, \sigma_{2}-(-1)^{p}\varphi_{2}\overline{\wedge}\omega\rangle$

Now denote by $\varphi_{ab}$ the vector l-form $d\overline{z}^{a}\otimes Z_{b},$ $a,$ $b\in\{1, \cdots, 2n\}$ . Let $\delta_{ab}$

be the (closed) derivation given by the couple of global forms $\delta_{ab}=(\varphi_{ab}, 0)$ . Let
$\alpha_{ab}$ be the section of $\Phi_{\omega^{1}}^{\prime}$ given by the couple $\alpha_{ab}=(\delta_{ab}, 0)$ . Denote by $\beta_{cd}$ the
element of $\Gamma(M, \Phi_{\omega^{1}}^{\prime})$ given by the couple $\beta_{cd}=(0, dz^{c}\wedge dz^{d})$ with $c<d$ and $c$ ,
$d\in\{1, \cdots , 2n\}$ . Take now a basis $\{X_{i}\}$ of $ker\Delta\subset H^{0}(T^{2n}C, \Theta_{\omega})$ (vector fields
fulfilling $\Omega\wedge i_{X_{i}}\omega=0$ ). Denote by $\tilde{X}_{i}$ the horizontal lift of $X_{i}$ . Set $\varphi_{i}=\rho\otimes\tilde{X}_{i}$ .
Let $\delta_{i}$ be the (closed) derivation given by the pair $\delta_{i}=(\varphi_{i}, 0)$ . Let $\gamma_{i}$ be the
section of $\Phi_{\omega^{1}}^{\prime}$ given by the couple $\gamma_{i}=(\delta_{i}, 0)$ . It is not difficult to see that
$\{\alpha_{ab}, \beta_{cd}, \gamma_{i}\}$ is a basis of the space $H^{1}$ of harmonic elements of $\Gamma(M, \Phi_{\omega^{1}}^{\prime})$ .
An easy computation shows that

$[\alpha_{ab}, \alpha_{cd}]=0$

$[\alpha_{ab}, \beta_{cd}]=0$

$[\alpha_{ab}, \gamma_{i}]=((d\overline{z}^{a}\wedge i_{\partial/\partial z^{b}}\Omega)\otimes\tilde{X}_{i}, 0)$

$[\beta_{ab}, \beta_{cd}]=0$

$[\beta_{ab}, \gamma_{i}]=(0, \Omega\wedge i_{\tilde{x}_{i}}\sigma_{ab})$

$[\gamma_{i}, \gamma_{j}]=(((\rho\wedge i_{z_{i}}\Omega)\otimes Z_{j}+(\rho\wedge i_{Z_{j}})\otimes Z_{i}, 0),$ $0$)

All these brackets are also harmonic sections of $\Phi_{\omega^{2}}^{\prime}$ .
As the Kuranishi’s space $S$ is defined by

$S=$ { $s\in\tilde{H}$ such that $H[s,$ $s]=0$ }
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and $\tilde{H}$ is the space

$\tilde{H}=\{\alpha\in\Gamma(M, \Phi_{\omega^{1}}^{\prime})$ with $\alpha=H\alpha+\frac{1}{2}D_{\omega}^{*}[\alpha, \alpha]\}$

we see that (in this case) $S=$ { $s\in H^{1}$ such that $[s,$ $s]=0$ }. If $s$ is expressed by

$s=\Sigma s^{ab}\alpha_{ab}+s^{lm}\beta_{lm}+s^{i}\gamma_{i}$

then the equation $[s, s]=0$ is equivalent to

$\sum 2s^{ab}s^{j}[\alpha_{ab}, \gamma_{i}]+2_{S^{lm}}s^{j}[\beta_{lm}, \gamma_{i}]+s^{i}s^{j}[\gamma_{i}, \gamma_{j}]=0$

We see that $S$ contains always the submanifold given by the equations $s^{j}=0$

for $j\in\{1, \cdots, \dim ker\Delta\}$ , corresponding to the deformations of the complex and
the symplectic structure of $T^{2n}C$ . When $\dim ker\Delta=0$ then $S$ is smooth. But,
in general, $S$ is not.

For example, suppose that $n=1$ and that the Euler class of $M\rightarrow T^{2n}C$ is
$\Omega=Adz^{1}\wedge d\overline{z}^{1}+Bdz^{2}\wedge d\overline{z}^{1}-\overline{B}dz^{1}\wedge d\overline{z}^{2}+Cdz^{2}\wedge d\overline{z}^{2}$

with $A$ and $C$ complex numbers with vanishing real part and $B$ any complex
number. In this case $ker\Delta$ is the space of vector fields $X=X^{1}(\partial/\partial z^{1})+X^{2}(\partial/\partial z^{2})$

with $X^{1}$ and $X^{2}$ complex numbers fulfilling

$\left\{\begin{array}{l}AX^{1}+BX^{2}=0\\\overline{B}X^{1}-CX^{2}=0\end{array}\right.$

When $AC+B\overline{B}\neq 0$ then $ker\Delta=\{0\}$ . But when $AC+B\overline{B}=0$ then $ker\Delta$ is
not trivial. Suppose, for example, $A\neq 0$ . Then $ker\Delta$ is the l-dimensional
space generated by the vector field $X=(B/A)(\partial/\partial z^{1})-(\partial/\partial z^{2})$ . In this case the
dimension of $H^{1}(M, \Theta_{\omega^{r}}^{t})$ is 6 and $S$ is given by the equations

$s^{\prime\prime}s^{\prime}=0$

$s^{\prime\prime}(Bs^{11}+(B\overline{B}/A)s^{12}+As^{21}+Bs^{22})=0$

where $s^{11},$ $s^{12},$ $s^{21},$ $s^{22},$ $s^{\prime}$ and $s^{\prime\prime}$ are the coordinates associated to the basis $\{\alpha_{11}$ ,
$\alpha_{12},$ $\alpha_{21},$ $\alpha_{22},$ $\beta,$ $\gamma$ } described above.
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