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COMPACTIFICATION AND FACTORIZATION THEOREMS
FOR TRANSFINITE COVERING DIMENSION

By

Katsuya YOKOI

Abstract. P. Borst introduced a transfinite extension of the cover-
ing dimension. In this paper we obtain compactification and factor-
ization theorems for this dimension function.

1. Introduction.

In this paper we assume that all spaces are normal.

A space X is called weakly infinite-dimensional in the sense of Smirnov,
abbreviated S-w.i.d., if for every sequence {(A4;, B;):/=N} of pairs of disjoint
closed sets in X there is a partition L; in X between A; and B; for each /=N

such that ff\l L;=¢ for some n<N.

P. Borst [2] defined a new transfinite dimension function, trdim, by general-
izing a necessary and sufficient condition of n-dimensionality (in the sense of
covering dimension) to transfinite ordinals and he classified S-w.i.d. spaces by
use of the dimension function.

This paper is concerned with this dimension function. In section 3 we
prove factorization theorem for the above transfinite covering dimension.
Recently T. Kimura [6] showed that every space X has a compactification aX
of X such that trdimaX<trdim X and w(aX)<w(X). He constructed this
space by Wallman-type compactification. In section 4 we give another proof
for the theorem by the standard way in dimension theory. We extend an
earlier result of A.B. Forge [4].

2. Definitions and preliminaries.
We need some preparations for the definition of Borst’s paper.

2.1. DEFINITION. Let L be a set. By Fin L we denote the collection of
all non-empty finite subsets of L. For a subset M of Fin L and an element
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g={¢g}UFin L we put
M’={r<Fin L:¢\UresM and oNrt=¢}.

We abbreviate M* to M* for each a=L.

2.2. DEFINITION. Let L and M be as in Definition 2.1. We define the
ordinal number Ord M inductively as follows,

Ord M=0 iff M=¢,

Ord M<q iff for every a= L, Ord M*<a.

Ord M=¢ iff Ord M<a and Ord<a is not true, and

Ord M=co iff Ord M>a for every ordinal number a.

2.3. DEFINITION. Let X be a space. We put
L(X)={(A, B): A and B are disjoint closed sets in X}.

A collection o={(A;, By): i=1, -+, n}=Fin L(X) is called inessential if
there is a partition L; in X between A; and B; for each /=1, ---, n such that

[n\l L;=¢. Otherwise ¢ is called essential. For arbitrary LC L(X) we set
iz

Mi={c&Fin L: ¢ is essential in X}.

2.4. DEFINITION. For a space X we put

trdlm X:Ord l‘fL(X) o

2.5. REMARK. P. Borst [2] showed that the above dimension function,
trdim, coincides with the covering dimension if the covering dimension is finite.

For more detailed information about transfinite covering dimension, the
reader is refered to Borst’s paper [2].

3. Factorization theorem.

The following Mardesi¢’s factorization theorem [7] is well-known. For
every continuous mapping f: X—Z of a compact space X to a compact space
Z there exist a compact space ¥ and continuous mappings g: X—Y and h:Y—Z
such that dimY <dim X, w@¥)Zw(Z), g(X)=Y and f=hg.

In this section we extend this result to trdim. The idea of the proof is
similar to B. A. Pasynkov’s paper [9, 1].
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3.1. LEmMA [2]. Let L and L' be sets, MCFinL, M'cCFin L', and
@: L—L’ be a function satisfying the following condition (x):

(%) for every o €M, we have ¢(o)=M’ and |a|=|¢(a)].
Then we have Ord M<Ord M.

3.2. LEMMA [2]. Let X be a space and LC L(X). Further assume that for
every (A, B)e L(X) there exists (G, HYE L such that ACG and BCH. Then we
have Ord J\IL:Ol"d A{L(X)-

We shall give a notation.

Let f:X—Z be a continuous mapping from a space X to a space Z and
F,={(As, B.): a=A} be a collection of pairs of disjoint closed sets in Z. Then
we denote by B(f:X—Z, F,) the following set {8=(ay, -, an): {(f 1 (Aq),
S7HBa))i=1, -, n} is inessential in X, ey and n=N.}

3.3. LEmMA [1]. Let f: X—Z be a continuous mapping from a compact space
X to a compact space Z with w(Z)=t. For every collection F, of pairs of dis-
joint closed sets in Z with the cardinality <z, there exist a compact space Y =
Y(fi: X—>2Z, Fz) and continuous mappings g=g(f : X—Z, F,): X—Y and h=
WMf: X=Z,95):Y—=Z such that w¥)Sw(Z), g(X)=Y, f=hg and {(h7(Aq)),
h™Y(Ba)):i=1, -+, n} is inessential in Y for every B=(ay, -, a,)s B=
Bf : X=Z, Fp).

PrROOF. We shall give an outline of the proof. For each f=(ay, -+, az)
=@ there exists a partition L; in X between S (Ae,) and f7Y(B,,) for each
i=1, -+, n such that é L;=¢. We construct continuous mappings Qo X—1;
=[0, 1] for each /=1, ---, n such that ©a;(f (A ))=0, ¢a,(fTHBs))=1 and
¢a(L:)=1/2. Then we may assume L,=¢,, '(1/2). Now we put

gﬁzAgoai:X—»Ig:ﬁ]i and
a;e8 i=1

g=fAA gs: X—>Zx I I;.
fes

BeB
Moreover we put Y=g(X) and h=przly:Y—Z; where pry: Zx II Is-7 is
pes

the natural projection. Then the conditions are satisfied. ]

Let X be a compact space with w(X)=rz. Then there is a large base Uy
for X such that [Uyx|=r. We put
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Wx={(ClxU, CixV): U, VeUy and CIxUNCixV=¢}.

3.4. THEOREM. For every continuous mapping f:X—Z from a compact
space X to a compact space Z there exist a compact space Y and continuous
mappings g: X—Y and h:Y—Z such that trdim Y <trdim X, wY)=w(Z), g(X)
=Y and f=hg.

Proor. Let be Y,=Z, go=/ and Fy,=Vy,. By Lemma 3.3 we can con-
struct compact spaces Y;, continuous mappings g:: X—Y: and A -1t Y=Y,
and collections Fy, of pairs of disjoint closed sets in Y; inductively satisfying
the following conditions:

) Y. =Y(gi: XY, Fv,)

Q) gi=g(gi1: XoYiy, Ty, ): X=V,,

@) hii=h(gisy: X=Y iy, Ty, ) Y=Y,

@) Fy=Vy,Jhi i (Fy,o),

B) wl H=w(l iy,

6 g«(X)=Yy

@) gi-i=hii18: and

®8) {(hiic (Asy), hiis7(Bay): k=1, -, n} is inessential in V'; for every
B=(ay, =+, an)E B:i=B(gi-1: X>Y i1, Fy, )

Now we put Y=Um{Y;, hs 1}, g=lim g;: X—Y and h=pr,: Y —Y,, where
pri: Y=Y, is the natural projection. Then the conditions are satisfied. We
can easily prove that w(Y)Sw(Z), g(X)=Y and f=hg. So, we shall show
trdim Y <trdim X.

By Lemma 3.2 it is sufficient to prove that Ord Ma,<Ord M;(x,. For each
(Aa, B.)=Vy there exists k(a)eNU{0} such that D7k (ANDPT kcar(Bo)=0.
So we can select an element (Crcary Drca)) EVy,(,, Such that D7 rcar(Aa)TCray
and prsc(Ba)TDjycay. Then we find an element (E;cw, Fy))EVx such that
27 (DT ke (Crear)TE yeay and g7 (07 ecar (Drcar DT Fycar-

Let ¢: Vy— L(X) be the function defined by

S0(<Au> Ba»:(Eﬂ(a)y Fﬂ(a))

for every (Aa, B.)=Vy. Then we can show that the function ¢ has the prop-
erty (x) of Lemma 3.1.

Suppose {(E s Foap): i=1, =, n} is inessential for some ¢((A4;, Ba;))
=(E ycap> Fyeap) and i=1, -, n. We put

m=max{k(a;): i=1, -, n}+1.
Then we have



Compactification and factorization theorems 393

&P kap (Creap)=8""p¥n W him, tap (Creap))

=gn M hm, by (Creap)),
and similarly

&7 07 keap \Diap)=8m *(hm. rap (Drcayp)).

Therefore by the above hypothesis and the constructions,

{(hm+1,m_l(hm.k(ai)-l(CT(ai)»: hm+1.m-1<hm,k(ai)_l(Dr(ai)))): 1=1, - ’ n}

is inessential in ¥ ..
On the other hand, we have

Aaic.b?’k(ai)—l(cr(ai))=177’m+1_1<h m+1, m—l(hm. k(ai)<l(cr(ai))))
and similarly
Ba¢Cprm+l—l(hm+1. n” (Am, rap (Drap)).

Thus {(As;, Ba,): i=1, -, n} is inessential in V. This completes the proof of
Theorem 3.4. d0

Now we can prove the following corollary by the similar way [7].

3.5. COROLLARY. For every compact space X such that trdim X<a there
exists an inverse system S={X,, Ta,pr 2}, where | 2| S w(X), consisting of metriz-
able compact spaces of dimensions <a whose limit is homeomorphic to X.

4. Compactification theorems.

Let X be a space such that the covering dimension dim X has a finite.
Then the following facts are well-known [3].

(a) The covering dimension of the Stone-Cech compactification fX of X
coincides with the covering dimension of X.

(b) There exists a compactification aX of X such that dim e X<dim X and
w(a X)) w(X).

In this section we extend these results (c.f. [6]).

4.1. THEOREM. For every space X we have
trdim B X=trdim X .

PrROOF. Let ¢: L(X)—L(BX) be the function defined by

(4, B))=(Clsx A, ClgxB)
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for every (4, B)e L(X). Then it is obvious that ¢(o)&MLsx, for every o€
Mrixs. By Lemma 3.1, we have trdim X<trdim 8X.

Conversely, we shall show that trdim fX<trdim X. For every (4, B)e
L(BX) we can select open sets Uy, Up in BX such that AcU,, BcCUjp and
ClsxUsnClsxUp=6¢. Let ¢: L(BX)—L(X) be the function defined by

o((A, B)=(ClgzUNX, ClgxUsNX)

for every (4, B)e L(BX). Then we can easily see that o(e)=EMrx, for every
6=Mysx>. By Lemma 3.1 we have trdim X<trdim X. O

4.2. THEOREM. Every space X has a compactification aX of X such that
trdim aX<trdim X and w(aX)<w(X). Further assume that fo: X—I1,=[0, 1] be
continuous mappings for a=A, where |A|Zw(X). Then each fq is extendable

to a continuous mapping fo:aX—Ie.

PROOF. We can suppose that trdim X exists and w(X)=r. There exists a
homeomorphic embedding 7: X—I° of the space X into the Tychonoff cube I
of weight =. We put

F= A fAi: X— LI XI".
acd acd

Then we note that F is the homeomorphic embedding and w( Hdlaxlf)zz'.
ac
Let BF: BX— HJ‘IGXIT be the extension of F over 8X. By virtue of Theorem
ae

3.4 there exist a compact space Y and continuous mappings g:SX—Y and
h:Y— II I.xI° such that trdim Y <trdim X, w(Y)<r, g(fX)=Y and BF=hg.

ac A
Now we put aX=Y and f,=pr.h:aX—1,, where pry: l‘gﬂlaxlf—»],, is the
ac
natural projection. Then by Theorem 4.1 and the construction, the conditions
are satisfied. O

In particular, we have the following.

4.3. THEOREM. For every metrizable separable space X and every sequence
{fi: X—1:i=N} of continuous mappings, there exists a metrizable comacti fication
aX of X such that trdim aX<trdim X and each f. is extendable to a continuous
mapping fFi: aX—I.

In the same way of the proof of Theorem 4.2 we can show the following
Corollary.
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4.4, COROLLARY. Let fqo: X—X, be continuous mappings from a space X to
compact spaces X, such that w(X)Sw(X), asd and | A Sw(X). Then there
exists a compactification aX of X such that trdim aX<trdim X, o(aX)Sw(X)
and each f, is extendable to a continuous mapping Fo:aX—X,.

5. Comments.

The following fact is well-known [3].

For every non-negative integer n and every infinite cardinal number 7
there exists a compact universal space Pn, t for the class of all normal spaces
whose covering dimension is not larger than n whose weight is not larger
than 7.

We can see this fact by use of the factorization theorem. DBut we can not
apply this theorem to the transfinite covering dimension with infinite value.
We should consider the space ng I™. Thus the next question is natural.

QUESTION. For every infinite ordiral number a and every infinite cardinal
number t does there exist a universal space Pa, 7 for the class of all normal
spaces whose transfinite covering dimension is not larger than « and whose
weight is not larger than z?
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