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Abstract. Normal embeddings are characterized in terms of an
approximate extension property, whence a generalization of certain
cofibration properties to normal embeddings in the context of strong
shape is deduced. Statements of Mayer-Vietoris type and a descrip-
tion of inclusion maps, which are invertible in the strong shape
category, are presented as examples.
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1. Introduction

Normal embeddings play a particular role in strong shape theory, in fact:
they are shape analogues of cofibrations in ordinary homotopy theory. In this
paper we are going to demonstrate this in four examples, the first three of
which are “Mayer-Vietoris”-arguments. Let us suppose a space X is covered
by two closed subspaces A and B, such that the triad (X; A, B) is “excisive”
in an appropriate sense. If we have some knowledge about A, B, and ANB
we can draw conclusions concerning X. Usually excisiveness is related to the
cofibration property of the inclusion maps, but in our context the normality of
the embeddings is sufficient.

1.1) THEOREM. A topological triad (X; A, B) with X=AUB, such that A
and B are closed and ANB is normally embedded in X, is excisive with respect
to any homology or cohomology functor factoring over the strong shape category.

1.2) THEOREM. Let (X; A, B) be a topological triad satisfying the assump-
tions of theorem 1.1. Then the shape dimension of X has the following upper
bound :

Received March 26, 1990, Revised October 22, 1990.



262 Bernd GUNTHER

sd X <max(sd A, sd B, 14+sd ANB)

We recall that a space X has shape dimension less than or equal to a positive
integer n if and only if every map f: X—P into a polyhedron P is homotopic
to a map, whose full image is contained in the n-skeleton of P (cf. [11] p. 96).
Theorem 1.2 has been proved for strongly paracompact spaces by Nowak and
Spiez (cf. [12] theorem 1.7).

1.3) THEOREM (Lisica, Mardesi¢): If a triad (X; A, B) satisfies the as-
sumptions of theorem 1.1, and if two strong shape morphisms a: A=Y and §:
B—Y to an arbitrary space Y satisfy @ians=pians then there exists a sirong
shape morphism 7: X—Y with y,a=a and 7,5=0.

This is the pasting theorem of Lisica and Marde§i¢, which has been proved
in [8]. In our framework we are able to give a new, simplified proof.

In classical homotopy theory a map of pairs f: (X, A)—(, B) is a homotopy
equivalence if and only if the total map f: X—Y and the relative map f4:
A— B are homotopy equivalences of spaces, provided the inclusion maps A, X
and BGY are cofibrations. This carries over to the strong shape setting for
normal inclusions, but in the present context we can treat only a special case
which is interesting, because for pairs we can get by with ordinary shape:

1.4) THEOREM. Let us suppose that A is normally embedded in the space
X. Then the inclusion map i: AC.X is a strong shape equivalence if and only
if the inclusion map j: (A, A)(X, A) is an ordinary shape equivalence of pairs.

In the compact metric case theorem 1.4 has been proved by Dydak and
Segal (cf. [4] theorem 6.2).

To deal with these subjects we mneed to know only a few basic facts of
strong shape theory, which are recalled here. For a detailed treatment we
refer to [1], [2], [6] and [7].

There is a strong shape category ssh (constructed somehow), whose objects
are all topological spaces and which is related to the homotopy category by
the strong shape functor 7: HTop—ssh. This functor has a right adjoint T':
ssh—HTop, which means the existence of spaces T(Y) and bijections ssh(X, Y)
=~HTop(X, T(Y)), natural with respect to continuous maps in the first variable.
A continuous map f: X—Y induces an isomorphism %(f) if and only if it has
the following two properties :

a) Every map ¢: X—P into an ANR-space P admits a factorization ¢=¢f
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with a suitable map ¢: Y—P.

b) If two maps ¢, ¢: Y—P, P an ANR, and a homotopy H: ¢f =¢f are

prescribed, then we can find a homotopy G: ¢=¢ with G(f Xid;)=H.
(cf. [3] def. 1.1.) Homotopies between homotopies are understood relative to
the boundary. A map of pairs f: (X, A)—(, B) is an ordinary shape equiva-
lence if and only if for every ANR-pair (P, @) the induced map f*: HTop (¥,
B; P, Q)—»HTop(X, A; P, Q) is bijective. If a space X, an inverse system of
spaces Y={g%:Y,—>Y,; 2z=pc A} and an inverse family of maps f={f,: X
—Y ,;} are given, then £ is called strong expansion, if conditions (c)and (d) are
satisfied (cf. [9] def. 1, [6] def. 1.10; [3] def. 4.1 contains a more general
notion) :

¢) For every map ¢: X—P into an ANR-space P there exist an index A= 4
and a map ¢: Y =P with ¢f,=¢.

d) If two maps ¢, ¢: Y ;—P into an ANR-space P and a homotopy H:
of ;=¢f, are given, then we can find an index p#=2 and a homotopy G: ¢g4
=dg4 with G(f,Xid)=H.

Every space admits a strong expansion in an inverse system of ANR-spaces
or polyhedra; any resolution will do (cf. [9] and [10]).

2. Normal embeddings

We recall that an open covering of a topological space is said to be normal,
if it admits a subordinated, locally finite partition of unity (cf. [11] p. 324).
A subspace A of a space X is normally embedded, if for every normal covering
U of A there is a normal covering <V of X, whose trace on A refines U (cf.
[11] p. 89). For our purpose it is necessary to characterize these embeddings
in terms of an approximate extension property of maps instead of coverings.
We introduce the following convention :

2.1) DEFINITION. A neighborhood U of a subspace A of X is called normal,
if A can be separated from X U by an Urysohn function, i.e. by a map f:
X—1T vanishing outside of U and taking the constant value 1 on A.

This notion is natural in the following sense: If U is a normal neigh-
borhood of A in X with corresponding Urysohn function f, g: ¥Y—X a map
and B a subset of ¥ with g(B)S A, then g *(U) is a normal neighborhood of
B in Y, because fg: Y—I is an Urysohn function separating B and Y \g ' (U).
To give the reader an idea of the techniques applicable to normal neighborhoods
we prove:
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2.2) PROPOSITION. Let us consider subsets ASUS X. The conditions (2)-(c)
are equivalent :

a) U is a normal neighborhood of A in X.

b) {IntU, XNA} is a normal covering of X.

¢) There is a normal covering U of X with St(A, U)EU.

St(A, V) is the star of A with respect to U, i.e. the union of all elements of
U meeting A (cf. [5] p. 376).

Proof of proposition 2.2: 1f (a) holds and f is a corresponding Urysohn
function, then {f, 1—f} is a locally finite partition of unity subordinate to the
covering defined in (b). This covering in turn fulfills (¢). If < is an arbitrary
covering satisfying (c) and {¢.|c=M} a subordinate locally finite partition of
unity, then we define N:={c=M|AN¢;']0, 1]# @} and f:=3l.exp.. [ is an
Urysohn function separating A and X \U, hence (a). g.e.d.

2.3) THEOREM. Let A be a subspace of a topological space X.

a) A is normally embedded in X if and only if for every map f: A—P,
where Pis an ANR, and every open covering U of P there are a normal neigh-
borhood W of A in X and a map g: W— P, whose restriction to A is U-near to f.

b) If A is normally embedded in X, then so is XxDUAXI in XxI.

Proof. At first we want to show that condition (a) is necessary, and we
suppose that a normally embedded subspace A of X, a map f from A into an
ANR P and an open covering U of P are given. By the Kuratowski-Woj-
dislawski embedding theorem (cf. [11] p. 35) we may suppose that P is a
subspace of a normed vector space and that P is closed in its convex hull K.
We choose open neighborhoods U and V of P in K with V SU such that there
is a retraction 7 : U—P. Let v, be an open covering of V consisting of convex
sets and refining » (), and let <V, be a star refinement of <V, (cf. [5] p. 377).
By assumption there is a normal covering % of X, whose trace on A is finer
than f~%(a,), and to 9 corresponds a subordinate, locally finite partion of
unity {¢.|¢c=M}. For each index (=M we choose elements y. eV, eq/, with
ANe7(00, 1) fX(V,). Now we can define a continuous map g: X—K by
g(x):=X¢,(x)y, and I claim:

g(AsV (1)
f and rg,4 are U-near. (2)
W :=g %(U) is a normal neighborhood of A in X. (3)
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For any point a< A and each index (€M with ¢,(a)>0 the elements y,
and f(a) belong to V,, especially: y,, f(a)=St(f(a), &V,). If V', contains
St(f(a), <v,), then it also contains g(a) and f(a), because ¥V’ does not depend
on the index ¢ and it is convex. (1) follows immediately, and to prove (2) it
suffices to choose U'eU with V/Sr ! (U’); then rg(a) and f(a)=rf(a) both lie
in U’. The neighborhood W of A in X is normal, because the covering {g~*(U),
g (K \V)} of X refines {W, X\A} and is the continuous inverse image of the
normal covering {U, K\V} of K.

To prove that (a) is sufficient we consider a normal covering U of A.
There exist an ANR P, an open covering %’ of P, and a map f: A—P, such
that f~%(9’) refines U, and in addition we choose a star refinement % of 9.
Condition (a) provides us with a normal neighborhood V of 4 in X and a map
g: V—P, whose restriction to A is W-near to f. W:={X\A}Ug (W) is a
normal covering of X, and I claim that its trace on A refines ¥. To an
element W% there are W/ e’ and UeU’ with St(W, W)SW’ and [\ WS
U, and for each point ac ANg™*(W) we can find W,=9% containing f(a) as well
as g(a). Since W, intersects W in g(a) it belongs to St(W, %), and we have:
fl@)eW,sSt(W, w)SW’, hence g {W)INAS fF\W)HEU.

To prove (b) we use the following lemma as a convenient substitute for
the concept of stacked coverings:

2.4) LEMMA. For every ANR-space P and each open covering U of P there
exist an open covering <V of the path space P! and a map ¢: PT—10, 1] with
the following property: If two paths w, ve P! are V-near and two real numbers
s, tel satisfy |s—t|<g(w), then the points w(s) and v(t) are U-near.

Proof of lemma 2.4: Let 9 be a star refinement of . For each finite
sequence a=(W,, ---W,) in 9 we denote by @< P’ the open set of all paths @
with o(UN[(k—1)/n, (k+1)/n])EW, for 0<k<n. By Lebesgue’s theorem the
sets of the form & cover P7; let {f,|c=M} be a subordinate, locally finite
partition of unity. For each index (=M we choose a sequence «, in 9 of
length n,+1 with f7'(J0, 1])&a., and we define:

1
‘P¢=!§v;l“‘f: (4)

The map ¢ and the open covering consisting of the sets & fulfill the require-
ments of lemma 2.4. g.e.d.

Proof of theorem 2.3.b: We want to apply 2.3.a and consider a map f:
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XxIUAXI—P into an ANR-space P and an open covering U of P. Let U,
denote a star refinement of U and U, a refinement of ¥U,, such that any two
qJ,-near maps of an arbitrary space into P are <U,-homotopic (cf. [11] p. 39),
and let U, be a locally finite open covering of P consisting of sets, whose
closures refine 4UJ,. Lemma 2.4 provides us with an open covering <’ of P/
and with a map ¢: P’—]0,1], such that o(s) and u(f) are “Usnear if the
assumptions of our lemma are satisfied. Since P’ is an ANR-space too there
exist a normal neighborhood V’ of A in X and a map h:V'—PI! whose restric-
tion to A is @V-near to the adjoint map f: A—P’. Now I claim the existence
of a normal neighborhood V of A in X contained in V’, such that there are
qJ,-homotopies F: firxw=hvxn a0d G: fircaws=Zhwewn. To see this we con-
sider the maps @,: V'—P X P, defined by @.(x):=(f(x, 1), h(x, 1)) for t=0, 1.
By construction we have:

D (ASUTXTNUeUs}=: MSU{UXU|UEU,}=: N (5)

The set M is closed in P X P, because U, is locally finite, and therefore the
closure of @, A) is contained in the open set N. Since P X P is metrizable
V =03 (N)NP7TYN) is a normal neighborhood of A in V’ and a fortiori in X,
such that fipxu; and Ay, are U, near and therefore U;-homotopic. We take
any map ¢: X—I, 0<¢<1/2, such that:

¢(a)
1-2¢(a)

Then U:=VXIU{(x, t)e XxI|t<(1/2)¢(x) or t>1—(1/2)¢(x)} is a normal
neighborhood of XXI\UAXI in XXI, and we can define a map g: U—P with
restriction U-near to f as follows:

<eh(a) for acA. (6)

(x, 0) ZE[O, %gb(x)]
) el
2 0= (v 1) ST, 1o (7)
6(x, 2(1_;2x)¢(x)) te[1-g(x), 1——¢(x)]
flx, 1) te[l—%gb(x), 1]

q.e.d.
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2.5) COROLLARY. If A is normally embedded in X, then the normal neigh-
borhoods of A in X form a strong expansion of A.

Remark. It follows from theorem 2.3 that the normal neighborhoods of A
form a resolution, and therefore corollary 2.5 follows from a general theorem
of Mardesi¢ (cf. [10]). But in the present, special situation a direct proof is
simpler :

Proof. 1) We want to show that condition (¢) of the introduction holds
and consider a map ¢: A—P into an ANR-space P. Taking ¥ as an open
covering of P, such that any two ¥U-near maps are homotopic, we apply theorem
2.3.a and get a normal neighborhood W of A in X and a map ¢: W—P with
Dra=o.

il) Now condition (d) is to be proved. We consider a normal neighborhood
U of Ain X, two maps ¢, ¢: U—P into an ANR-space P and a homotopy H:
0ia=¢ 4. Again we take U as an open covering of P, such that ¥U-near maps
are homotopic, and we define a map g: UXI\UAXI—P as follows:

¢(x) tg%
1 2
glx, 0y:={ H(x, 3i=1) Z=sti=% (8)
d(x) t=%

By theorem 2.3.b UxI\JAXI is normally embedded in UXI, and 2.3.a provides
us with a normal neighborhood VEU of A in X and with a map h: VXI—P,
whose restriction to VX/\UAXI is U-near to g. Let @ : gyujouaxs=hyrivirs
be a connecting homotopy. The homotopy G: ¢r=¢ we are looking for is
defined as follows:

D(x, 0, 31) z‘g%
1 2
Glx, Byi={ hix,3=1)  F=t<s (9)

O(x, 1,3(1-1) t=

A connecting homotopy ¥: G4, =H is given by ¥(a, s, t):=0(a, os, 1)),
where w: I?—1? is subject to the following boundary conditions:
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0, 35) sg—é—
os, 0):i=) Bs—1,1) —L=s<Z (10)
0 ’ 3=5=73
(1, 31-s) 522
s, D=( 123 ,0) o0, 0=(5,0) @l H=(1-7,0) (11)
q.e.d.

The next theorem displays that for the application of “Mayer-Vietoris”
arguments normal embeddings are as good as cofibrations:

2.6) THEOREM. We suppose that a space X is given as the union of two
closed subspaces A and B, whose intersection is normally embedded in X. Then
the inclusion map

AX{ONJ(ANB)XIUBX{1} & X XI

is a strong shape equivalence.
The proof requires the following lemma:

2.7y LEMMA. If the triad (X; A, B) satisfies the assumptions of theorem
2.6, then

a) A and B are normally embedded in X, and

b) [M:=AX{0NJ(ANB)XI\UBX {1} is normally embedded in XXI.

Proof of theorem 2.6, assuming lemma 2.7. We have to show that condi-
tions (a) and (b) of the introduction are satisfied, and we start by considering
a map ¢: ['—P into an ANR P. Corollary 2.5 provides us with a normal
neighborhood U of I" in Xx[I and with a map ¢’: U—P, whose restriction to
I’ is homotopic to ¢. Let f: X XI—I be an Urysohn function separating I’
from the complement of U and define a continuous map g: X—I by g(x):=
inf{f(x, t)|tcI}. On ANB g equals 1, and if g(x) does not vanish, then (x, )
belongs to U for all t</. Therefore we can define a map ¢: XX I—P as follows:

¢'(x, tg(x)) xeA

o(x, 1) ::{ 12)
¢'(x, 1-1—-t)glx)) x=B

On [” the map ¢ coincides with ¢’, and condition (a) is proved. The proof of
(b) follows exactly the same pattern. qg.e.d.
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Proof of 2.7.a: Let a map f: A—P into an ANR-space P and an open
covering U of P be given. We choose a refinement ¥, of U, such that any
two U;-near maps are U-homotopic, and a locally finite covering U,, such that
the closures of the sets of U, form a refinement of U,. By assumption there
exist a normal neighborhood W of ANB in X and a map g: W— P, whose
restriction to ANB is U.near to fi4~z. Now we consider the map ¢: ANW
—PXP given by ¢(x):=(f(x), g(x)); since ¢(ANB) is contained in \U{T xT|U
CU} S\ U{UXU|U=U,} there is a normal neighborhood W’ of ANB in ANW,
such that f and g are U,-near and consequently <-homotopic on W’. Let us
take such a U-homotopy H: fw-=gw- and Urysohn functions %: X—I and ¢:
ANW—I separating ANB from X\W respectively ANWW’. We define r:
A—1I and h: AUW—P as follows:

0 X(a)g%
r(a):= ) (13)
(2Xa)—1)¢d(a) X(a)_z_f
_ 1
[f(x) xEA, r(x)gf
h(x):= 1 (14)
2

1 Hix, 2¢(x)—1) x=A, r(x)=
g(x) xeBNW

Then &4 and f are U-near, and AUW is a normal neighborhood of A4 in X,
because we can set up the following Urysohn function:

1 x=A

= 15
o(x) {X(x) eB (15)

Proof of 2.7.b: Again we consider a prescribed map f: ['--P into an
ANR-space P and an open covering U of P, but now we need four consecutive
refinements U, --- U, of U: U, shall be a star refinement of U, any two U,-
near maps shall be ¢U,-homotopic, the closures of the sets of ¥, are required
to be a locally finite refinement of ¢, and U, is taken as a star refinement of
U,. At last we choose an open covering < of P’ and a map ¢: P’—]0, 1]
by applying lemma 2.4 to U,.

Since A, B and ANB are normally embedded in X we can find normal
neighborhoods U, of A, U, of B and U, of ANB in X and maps g,: U,—P,
gi: Ui—Pand g.: U,—P7, such that gy and fiax. respectively g,z and
fisxiy are Ugnear and Zyu~p IS <V-near to the adjoint map f: ANB—PI.
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Then goians and gz14nzxw0) respectively giians and gaiunpx«m are Us-near, and
this implies the existence of a normal neighborhood V' of ANB in X contained
in U,NU,NU,, such that goy and gsivxo respectively g.» and Zoivxuy are Us-
near. Therefore we can find U,-homotopies @ : gow = Zayniy and & gy
Zaivxuy, and surely we can find a map ¢: X—1 with 0<¢<1/2 and:
l—jb%<@g2(95) for x=ANB (16)

W:=VxIU{(x, t)e AxI|t<1/2)px)}U{(x, ) e BxI|t >1—(1/2)f(x)} is a
normal neighborhood of I" in XxI, and the restriction of the following map
h: W—P to I' is U-near to f:

24(x) 16[0, %gb(x)]
o(x Z2ED)  ie[ge00, gi0)]
W i= (v {hyrsy) =L, 140 a7)
¥(x, 3(1—_9%_)‘/’&) te[l-—gb(x), 1——%¢(x)]
gi(x) L‘E[l—%gb(x), 1]

g.e.d.

Proof of theorem 1.1: Instead of (X; A, B) we may consider (X'; A’, B")
with X' :=I", A :=Ax {0} (ANB)XIand B’ :=Bx{1}\U(ANB)xI. This triad
is excisive because the interiors of A’ and B’ cover X'. g.e.d.

Proof of theorem 1.3: Theorem 2.6 permits us to replace the triad (X;
A, B) by (X'; A", B’) with X :=I, A:='NXx[0,1/2] and B :=I'NXX
[1/2, 1], so that the inclusion map A’N\B’C.4’ is a cofibration. Using the right
adjoint T of the strong shape functor the statement of 1.3 may be rephrased
as follows: If two maps a: A'—T(¥) and B: B'->T(Y) with @i4ne=Bianp
are given, then there is 7: X'~ T(Y) with y.x =« and 7,5 =p. But this follows
from the cofibration property. g.e.d.

For the proof of theorem 1.2 we need the following lemma, which corres-
ponds to the well known fact that homotopic cellular maps between CW-com-
plexes can be connected by cellular homotopies.

2.8) LEMMA.
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a) Let f, g: X—P be two maps from a space X, whose shape dimension sd
X does not exceed a given number n, to a polyhedron P, and suppose that the full
images of f and g are contained in the n-skeleton P, of P. Then every homo-
topy G: f=g in P is homotopic (relative boundary!) to a homotopy H: f=g in
P(n+1)-

b) Let (X, A) be a topological pair with closed cofibre subspace A and let
f 1 X—P be a map into a polyhedron with f(AYS Pn_1y, max(sd X, 1+sd A)<n.
Then there exist a map g : X— P with g(X)S Py and a homotopy g= f relative A.

Proof. a) We take a strong expansion {p;}: X—{=x4: Q,—Q;} of X in
an inverse system of polyhedra. There exist an index 4, maps f’, g’: Q=P
and homotopies @: f=f'p, and ¥: g=g'p; in P, and for a suitable index
pz2 we can find a homotopy G': f'r4=g’'n¥in P with G'(p,Xid)=P -G~ V.
The condition sd X <n implies the existence of a polyhedron Q’ with dim Q’'<
n, an index v=g, of maps a: Q'—Q, and b: @,—Q’ and of a homotopy A:
ab=nr*. Since the maps f’m4a and g'm4a: Q'— P, are homotopic to cellular
maps and since the composition of these homotopies with G’(a Xid,) is homotopic
to a cellular homotopy these maps can be connected by a homotopy G”: f'w4a
=g'rha in Py with G7=G’(axid;). This gives rise to a homotopy H’:
fimi=g'm4 in Py defined by H’:=f'm4A G"(bXid;)-g'n4A, and this in
turn leads to H:=@-H'(p,Xid;)-¥™*: f=g. H connects f and g in P, and
is homotopic to G in P, because A and G’ commute (cf. [13] lemma 1, the
“Godement interchange law”).

b) Since the inclusion map A, X is a cofibration and because of the rela-
tions sd X <n and sd A<n—1 we can surely find a homotopy H: f=g’, where
g’ satisfies g'(X)S Py and g’(A)S P,_yy, but a priori H need not be stationary
on A. By part (@) Hiax; is homotopic to @: f,=g" 4 with O(AXDE P,y A
second application of the cofibration property provides us with a map g: X— P,
and a homotopy ¥ g=g’ in Py with ¥4.,=@. Then the restriction of
G:=H-¥"': f=g to AXI is homotopic to a stationary homotopy, and by a
third cofibration argument (b) is proved. g.e.d.

Proof of theorem 1.2: By the same trick as in the proof of 1.3 we can
reduce the general case to the special situation, where the inclusion maps are
cofibrations. We set n:=max(sd A, sd B, 14-sd ANB) and consider a map f:
X—P into a polyhedron P. Because of the cofibration property and the relation
s ANB=n—1 we are able to replace / by a homotopic map f’ with f/(ANB)
S Piop. Lemma 2.8.b ensures the existence of maps and homotopies fla=o
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and f{p=¢ relative ANB with im¢, im$S Py, Then the map g: X— P with
giu=¢ and g p=¢ is homotopic to f and its full image is contained in Pe.
q.e.d.

Proof of theorem 1.4: At first we deal with the special case, in which
the subspace A is closed and the inclusion map 7 is a cofibration. Let us sup-
pose that 7 is a strong shape equivalence; we have to show that j*: HTop(X,
A; P, Q)—HTop(A, A; P, Q) is bijective for every ANR-pair (P, Q). For a
map ¢: (4, A)—=(P, Q) condition (a) of the introduction ensures the existence
of a map ¢: X—Q with ¢ 4=¢, hence j* is surjective. If two maps ¢, ¢:
(X, A—(P, Q) and a homotopy H: ¢4=¢ 4 in Q are given, then (b) provides
us with a homotopy G: ¢=¢ in P with G ,=H. Since XxIUAXI is a
cofibre subspace of XxI we can now construct G': ¢=¢ with G4 ,=H, s0 ¢
and ¢ are homotopic as maps of pairs and j* is injective.

If on the other hand j* is bijective, then (a) follows immediatly when we
consider pairs of the form (P, P). To prove (b) we assume that maps ¢, ¢:
X—P and a homotopy H: ¢,4=¢ 4 are given; using the cofibration property
we can find a2 map ¢’ : X—P with ¢{,=¢ 4 and a homotopy G’: ¢=¢’ with
Gl =H. Now it suffices to construct a homotopy G: ¢’=¢ relative A. The
maps «, B: X—PxP with coordinates a=(¢’, ¢) and f=(p, ¢) map A to the
diagonal AS PX P; therefore they may be considered as elements a, B€ HTop (X,
A; PXP,A) with j*a=j*B8. Consequently a and § are homotopic as maps of
pairs, and the projections @, ¥ of such a connecting homotopy are homotopies
9: ¢'=¢ and U : o= with @, 4;=¥ 4x;. Then the restriction of G” :=0-¥*:
¢'=p to AXI is homotopic to a stationary homotopy, and we can construct G
from G” by an application of the cofibration property.

Now the general case follows from lemma 2.9, which says that in the
ordinary shape category every pair with normally embedded subspace is equi-
valent to a pair with closed cofibre subspace.

2.9) LEMMA. We assume that A is normally embedded in a space X and
set X =XX{OVWWAXISXXI, A :=Ax{1}S X" and denote by p: (X', A)—(X,
A) the natural projection. Then p is an ordinary shape equivalence of pairs.

Proof. We consider an ANR-pair (P, Q) and the induced map p*: HTop (X,
A; P, Q)—HTop(X', A’; P, Q).

a) p*issurjective: Let f: (X', A")—(P, Q) be given; we want to construct
a normal neighborhood U of A in X and a map f': (XX {0} WU X/, UX{1l})—
(P, Q), whose restriction to (X', A’) is homotopic to f. Once f’ is constructed
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we can choose an Urysohn function ¢: X—I separating A from X\U and define
a map g: (X, A)-(P, Q) and a homotopy H: gp=f/x. 4 by:

g(x):=f"(x, ¢(x)) (18)
H(x, s; t):=f"(x, ts+(1—t)p(x)) (19)

Corollary 2.5 implies the existence of a normal neighborhood V of 4 in X, of
a map f”:V—Q and of a homotopy G”: f 4+ =f/, in Q. Applying corollary
2.5 again we can find a closed normal neighborhood U of A in X contained in

V and a homotopy G: [y =fy with Giax1=f14x1°G” In P. Then our map
f’ is defined as follows:

f(x,0) s=0
f'(x,s) ;:{ (20)
G(x,s) x€U
b) p* is injective: Let two maps f, g: (X, A)—(P, Q) and a homotopy
H: fp=gp as maps of pairs be given. We may assume the existence of a
normal neighborhood U of A in X with f(U), gU)SQ, because otherwise we
could replace f by pf and g by pg, where p: P—P is a map with o=id
relative Q and p(U’)SQ for a suitable neighborhood U’ of Q in P. Corollary
2.5 implies the existence of a normal neighborhood V of A in X contained in
U and of homotopies G: fiy=gyy and ¥ : H 4.01,x1=Gax; in Q relative AX[.
Now we define a map @: XX {0} xIUV XI[*UAXI>-P as follows :

f(x) tgé—
Hx, 35, 3-1)  3stss, sst
O(x, s, t):=) ¥(x, 3t—1, 3s—1) %été—g—, %§s§-§— (21)
Glx, 3t—1) ssisl 22
g(x) tg%

The division of I® into so many parts is necessary to ensure the continuity of
O if Ais not closed. We observe: @(V X {1} xI)SQ. Since VXI2UAXI® is
normally embedded in V XI® there are a normal neighborhood W of A4 in X
contained in V and a map @': V xXI*UW xI*—P, whose restriction to V xIry
AX1I* is homotopic to @, and since the inclusion map V X2V XI2UW XI? is
a cofibration, we may assume @y,;»=®y,;2. We choose an Urysohn function

¢ X—I separating A from X\W and define a homotopy I": f=g as follows:
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1
O'(x, 20(x)—1, 1) elx)z%
I(x,t):= ) (22)
O(x,0,1) @(X)éf
g.e.d.
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