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ON PRIME TWINS

In honorem Professoris Saburd Uchiyama annos LX nati

By

Hiroshi MIKAWA

1. Introduction.

It has long been conjectured that there exist infinitely many prime twins.
There is even the hypothetical asymptotic formula for the number of prime

pairs. Let
U(y, 2k)= X An)A(n—2k)
2k<nsy

where A is the von Mangoldt function, then it is eXpected that
(*) U(y, 2k)~S(2k)y—2k) as y - oo

with

B 1 p—1
sen=211(1- ;=15 ;E’*z(P“Z)'

No proof of these has ever been given.

But it is well known that the above (x) is valid for almost all 2<y/2.
Recently, D. Wolke [4] has refined this classical result. He showed that in
the range

2x <y xb5Te e>0,

the formula () holds true for almost all 2=<x. Moreover he remarked that,
on assuming the density hypothesis for L-series, the exponent 8/5 may be
replaced by 2.

In the present paper we shall improve this exponent beyond 2.

THEOREM. Let ¢, A and B>0 be given and

2x<y<x?E,
Then, except possibly for O(x(log x)™4) integers k<x, we have
U(y, 2k)=(2k)y—2k)+0(y(log y)~%)

where the implied O-constants depend only on ¢, A and B.
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Within the frame work of Wolke [4], we use H.L. Montgomery and R.C.
Vaughan’s technique on Circle method. They applied P.X. Gallagher’s lemma
in Fourier analysis to the major arc. As for the minor arc, we also appeal
to Gallagher’s lemma. Then we utilize C. Hooley’s devices for estimating a
mean square of the trigonometric sums over primes in short intervals.

We use the standard notation in number theory. Especially, #, used in
either #i/n or congruence modulo »n, means that Zim=1(modn). For a real
number ¢, we write ¢(1)=[t]—t+1/2, e(t)=e*"** and ]|t”=r£lél’zl|t—n|. The

convention n~N means that N<n<N’'<2N for some N’. The symbol F de-
notes a positive numerical constant, which is not the same at each occurrence.

2. Lemmas.

LEMMA 1. Let 2<4<N/2. For arbitrary complex numbers a,, we have

[ S anemrapea=(1 = anltdi+Asuplanly.

1Big1/4 n~N t<nst+4/2

with an absolute <« -constant.

LEMMA 2. Define

$@, 0=, 3 (71 S5 amamd

X (mod ¢) nst+qd

where # means that if X is principal then An)A(n) is replaced by A(n)—1. Let
e, A and B>0 be given. If g<(logN)? and N'**<A<N'"¢, then we have

4(q, )< (gd¥*N(log N )™,

where the implied constant depends only on e, A and B.

is a minor modification of [1, Lemma 1]. Lemma 2 is an ana-
logous estimation on primes in almost all short intervals, and easily verified by
using the same tools as that used by Wolke [4, p. 531].

LeMMA 3. For any €0, we have
<Y n 1/2 J1/2+¢ N
(,:‘,%I,V:le k—d)<<(/e, drred (1+d)

where the implied constant depends only on e.

LEMMA 4. Let k be a positive integer. If n<X, then
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Amy= B8 B Gogmng) - e,

ny- anj+1 ngj—k
ESHEN PYEP Sl

is the Hooley’s version of bounds for incomplete Kloosterman sums
[3, Chapter 2]. is the combinatrial identity of D.R. Heath-Brown
[2, Lemma 1].

3. Proof of Theoreml.

Let ¢, D and E>0 be given and x be a large parameter. Define
2NN/ K2N <x%7¢, k<x,
S(a)y= 3  A(n)e(an),

N<ng N’

Q:=(log x)*?, Q=N

M=\ U I Iq.a=[g——,qi@,i+q%}

m=[Q7", 1+Q7']\M.

Furtheremore, we write

-1

{5 1s@te—2earda=( +| .

We shall show that, for any positive constant E,

_ t(q) , i
3.1) f,=3 gy C 2N =N+ O(N (log N)°%),

and

(3.2) = Smr«xNz(log N)F-D

where the implied constants in the symbols O and <« depend only on e, D
and E. Wolke obtained essentially the same inequalities in the range 2x<
N=x%"¢ Hence, following the argument of [4], we may derive
from [(3.1) and [(3.2).

First we consider the major arc M. For a<l, . write a=a/q+p. We
then have, with the convention in that

S(a)= T > 7(TXa) 35 X(n)A(n)e(fn)+0((log N)°)

_ Mg (q)
= olg) 2 e(Bn)+-—+ oq) - Z(/I(n) e(Bn)

l X 2
oty g KD, Z M) Almbe( )+ O((log N
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_ g
OE ( ) %

=a—+b+0((log N)?), say.

2 e(fn)+—— ZT(X)X(a)LX(n)A(n)e(ﬁn)+0((10gN)2)

We write gmlalzdazA2 and SMIbI’da=Bz. By Cauchy’s inequality, we have

(3.3) SM=SM la|2e(—2ka)da+O(A(B+(log N)®)+ B2 +(log N ).
By the familiar method, we have that

[,al"a—2karda= 5 £49) = em)|e(~ (5+8))as

95Q, lsasq SlﬁlSI/QQ 90(4)

=3 ”zgqi e —2E)(N' = N)+0(k)+0(qQ)}

— ﬂ(Q) _ r__ -E
(3.4) = B, i) k2N —N)+O(N(log NY°),

since Q<x and x!'**<N. Simply,
(3.5 A%« N log log N.
We proceed to estimate B. By Lemma 1, we have

B=3 = S
gsQ, lsasq 1B1s1/9Q

i ) B Amepn)| 'dp

1

qs%l wz(q)glﬁngquu@l r@)! ¢(q)| 2 x(")A(")e(‘B”)\ dg

<q§%1#x q){<qQ) S ‘z nquﬂX(n)A(n)\2dt+qQ(logN)z}

< 2 ?(—) (g@)*4(g, Q/2)+Q.°Q(log N)*.

where 4(q, 4) is defined in Since ¢=(log N)** and Q=N'*, we may
apply to #(g, Q/2). Thus, by we have

B?«log log N- q§ (qQ)24(g, Q/2)+Q.,°Q(log N)?
(3.6) &« N(log N *P-&, E'=2FE+1.

In conjunction with (3.3), (3.4), (3.5) and (3.6), we get the required estimation

for (3.1

Next we consider the minor arc m.

I=3
kszx

Sm ‘ 2<<Smgml S(a1)|*1S(a;)|*min (x, _——I-Zzz—ll>dalda2 .

las
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In case of ||a;—a:||>x""(log N)P=1/24, the corresponding integral is

< x(log N)‘D<S1+Q—1|S(a)lzda)2

Q—I

«xN?*log N2,

In another case, we write a;—a,=pf. Thus,

3.7) I<<x§m|S(a)Iz<S | S(ar+B)1%dB)da+xN*(log N)~2.

1Bls1/24
a+BEm
We note that S(a) has the period 1. By Lemma 1, the inner integral is

<<g|ﬁ151/2415(a+,8)[2d‘8

2N

(3.8) <<A'2S |, 3, Ametan)*di+4(log N,

N

Here we use the following lemma. We postpone the proof of until
the final section.

LEMMA 5. For a real number a, define
2N
J=J@, H={1 2 Ametan)|dt.

Suppose that |\a—a/q|<q™* with (a, q)=1. Then, for any small ¢>0, we have
J «(log NYF{AN(N*/*+4g™ 12 4+(4g)"*)+ 2 N*~*+ £°)

where the implied constant depends only on s.
Now, for any a=m, there exist ¢ and ¢ such that

la.__g_léq'z, (a,q):‘l and Q1<q.—/EQ

Since
Q:<g=Q=N"*<x(log N)"*?<4/Q;,

N<x* " <x(log N)™*P<(4/Q.),
we have, by Cemma 5, that
J(a, )< L2N(log N)FQ, /2
uniformly for a=m. Combining this with [3.7) and [3.8), we get

I<<xSm[S(a)]2da-A'2 sup J(a, 4)+xN*(log N)*~?

L xN?*(log N)F-P,
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This gives and, apart from the verification of Lemma 5, completes our
proof of [Theorem.

4. Proof of Lemma 5, preliminaries.

In this section we provide for the proof of Throughout this
section we assume that

“.1) la—%léq‘z with (a, ¢)=1, and g<A<N/2.

Let f and g be arbitrary sequences such that |f(n)|=logn and |g(n)| <ts(n)-
log n. Moreover, let U and V be parameters and define

2N
=1, 2, gmdanm)dt,
2N
Jhow={1, = (S gmieadddt,

sV

s

msU,

and

ij:S2N| Y fim)g(n)e(amn)|®dt.

N t<mnst+4
m~U

In order to estimate the above integrals we use the elementary lemma; If
1<XLY, then

(4.2) py min(g, L )<<(% +X+q> loggX.

msx |am|]
LEMMA 6.

J Ly<(log NYY{AN(dq~*+(qd)""*)+ AX(N/UY +4°}

PROOF. Since N=t<mn<t+4<3N, we may attach the condition N <mn
=3N. We widen the range of integral to [0, 3N]. Expanding the square, we
interchange the order of summation and integration. Thus,

0=t<3N
JIik > g(n)g(ng)elal(myn,—meony))-meas.it: mn;—A<t<m;n;
N<myng, monassN =1, 2

my, moalU re
If |mn,—msn,| >4, then meas.{ }=0. Since mn,—4>N—4>0 and m.;n;<3N,
the condition 0<t<3N is weaker than max(m;n,, m.n,)—4<t<min(m,n,, msn,).
Hence, we see

[ IA

I

meas.{ }=max(0, 4—|mn,—msn,|).

The diagonal terms, m;n,—=m,n,, contribute to /I at most
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(4.3) AN (log N)*.
For the non-diagonal terms, say S, we write |m,n,—m.n,|=r. Then,

S=2Re 3 (d—r)e(ar) = g(n.)g(n,) > 1
o<rsd ni. Ny miny—mang="r
N<miny, mangs3N
my, mgalU

The condition on the innermost sum is equivalent to
N@)=max(n,U, n,U-+r, N+r)<mn, <3N

mn,=r(modn,).

This congruence is soluble if and only if (n,, n.)|r. Write n,*=n;/(n,, n,) and
r*=vr/(n,, n,). Then the innermost sum is equal to

#{m : N(r) 3N

<m=
1 1

, m=n,*r*({mod nz*)}

_ 3N—N(0) 0 | N(0O)—N(r)|
— [n, ns] [y, ns]

=0+@’, say.

+1)

Here we note that N(0) is independent of ». Changing the order of summation,
@ contributes to J I

P Al N

L (nzl'nz)zsld | g(n1)g(ns)| Tro na] I (T?i%fw(d-—r)e(ar)l
2 75(n)’ . (4 1
\<N(logN)FnZS}A——n -4 mm(-’;—, Tanl )

1 A 1 1/2
F A1/2 —min(—, ———
<4N(log NY™ 4 2 — mm(n " len| ))

(4.4) L AN(log N )Y (dg="2+(qd)'?),

by partial summation, Cauchy’s inequality and Since |N(@#r)—NQO)|<r<4
and n;<3N/m;<3N/U, the contribution of @’ is

€d 3 3 lsmisml{ L1} 1

(7Ln [n., na] (71, n2)
2
<2 (s8R L sy giny)
n n n
L(log NYF(L+43(N/U)Y).
Combining this with [4.3) and [4.4), we get the required bound for J1I.

LEMMA 7.

J Oy v<log NYF{AN(Ag=1 24+ (qd)'1*)+ A3} + A* (N~ N"U*/*V*).
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Proor. Put
a(d)= I g(n).

msU,nsV
By the similar argument to that in we have
4.5) J I L(log N {AN(dq™**+(dg)*)+ L} +R
where

R=4 DY a(dl)a(d2)w(dl*9 dy*, r¥)|

0rsd (dy.ddiT
with

3N Ek N+r d,*
* *  pk)— % - —p%
v, ar =4z g~ e )N ag aE )
We proceed to estimate R. write
(d, ds)=0, d,=mn,=0mn, d.*=d, r¥=k,

m,=am, n,=bn, o0=ab.
Then,
(mn, d)=1,

ald)=_ =  gbn),  ald)=a(dd),

w<dl*) dz*, r*)zw(mn; d» k)-

Next, we decompose the range of variables d and m into the sum of [27, 27+!]
type intervals. Let D, M run through powers of 2, and DUV, M<U. We
then obtain O((log N)?) sums of the sum with d~D, m~M. If DM N2y -1,
then we use the trivial estimation || <1. Thus, we see

1-2ep-1  d~D m~M d
DMZ>NZ"2FV ™2 (T ay=1  (m, d)=1

where the supremum is taken over D, M, T, r and n such that DUV, M<U,
T<3N,r<4 and n<V.
Here we use the well known lemma; For arbitrary real numbers x, and
H>2, we have
M L 1
| B HEn)l < g+ B o1 T, ethxn)l.

0<hsH
Now, we choose H=DMV N?**~*, Then H>2, since DMV >N'2%,_ Thus,

DM 1 hT
S EIZ¢I<_—+ ‘Eyz(ddguﬂ}(%%lee(dmn hk—)l

=N“3‘V“+§%S(h), say.
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Furthermore, by partial summation and Lemma 3, we see

rT

s« (1+ pyzy

)She, d)l/zd”2+e(1+%4)

<<VN5${D3/2+MD1/2}
(4.8) KN U3 RYSI2,
In conjunction with [(4.5), (4.6), (4.7) and we get the required bound for JII.

LEMMA 8. If U<, then we have

4 4
J Iy < AN(log N>F(U+;+l7+q).

PrRoOOF. We may impose the restriction N/2U <n<3N/U. Then we extend
the interval of integral to [0, 6N]. Moreover, by Cauchy’s inequality, the in
tegrand is

PIRSMFCHI NI
(4.9) =mZ.~Ulf(m’)lz- S 2 3 gln)glng)elam(n,—n,)).

N/2U<ny,ng<8N/U m~U
t<mny, mngst+d

Now, we perform the integration. If m|n,—n,|>4, then the integral vanishes.

Since mn;<2U-3N/U=6N and mn;—A4>U-N/2U—4>0, the end points of the

integral have no effect on. Hence, the value of integral is exactly equal to
max(0, d—m|n,—n,|).

The diagonal terms, »n,=#,, contribute at most

(4.10) > Z}/Ug(n)2 - A< AN(log N)¥.

m~U n~N

As to the non-diagonal terms, S say, we write |n,—n,|=r, getting

S=2Re 3 P g(n)gn—r) ZU elamr)d—mr).

Ld
[ 4 N j2ULn, n=-r<8N U ~
Srad N 2U<n. nor<aiy o<msdlT

Since U<m=4/r in the innermost sum, we see r<4/U. Thus, by partial
summation and we have

. ¢4 1
S<o<§4,0n§,u | g(n)g(n—r)|-4 mln(7, ——“ar”>

N 4, 4
<47 (0g NY (+77+4)-

Combining this with [4.9) and [4.10), we get
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5. Proof of

Unless
(G.1) N'"*<4/2 and ¢<4<N/2,

then is trivial. So we may assume (5.1). Since n<3N, we appeal
to Lemma 4 with X=8N and £2=3. A(n) is decomposed into a linear combina-
tion of O(1) sums

A*(n)= > (log ny)p(n)pu(ns)u(n,).
MINgNgNYNNg=N
Ny, N, 71652N1/3

It is sufficient to show with A* in place of A. Moreover, we may
assume min(n,, n,, ns)=n, for the other cases are similarly treated. We then

see that
n;<(@3N)3 for /=3,4,5,6.

Put n’=nsn,nsne. Let v>2 be a parameter, and z=v*. We divide the integrand
of J according to the following three cases.

1) n'<z and n, >N,

2) n'<z and n, SNV,

3) n'>z.

Let 2(i) denote the corresponding sum to case (1i).
In case (1), we may write

AXn)= 3 (log ni)g(n’)
nyn'=n
n1>N1/21)
with [g(n)|=rs(n). By partial summation and Cauchy’s inequality, we have

[ 1mrdt<aog Ny sup T 1.

uzN1i/2y

In case (2),

A¥m)=_ 3 (log nig(n’)

nyngn’=
= 22 ( > (log n,)g(n’))
Non"'=n nin'=n*

n1sN1/2p, nt s2=04
with |g(n)|<z.n). Hence,

[ 1=@rat<og Ny sup T,

usN1/2p
In case (3), since
Vi=z<n'=ngnmsn,=( max n;)*,
1=3,4,5,6
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there exists an index 7 such that

v<n; (BN
So we may write
A¥m)= 3 f(nogn”)
v<n i G 1/3

with | f(n)|£1, |gn)| Zrs(n)log n. Decomposing this interval into the sum of
[27, 27*'] type intervals, we see

2N

S |2(3)1°dt<(log Ny _sup JII,.

N v<u<2N1/8

By the above argument, we have

J<Hd sup, ]Iu+ sup JII, 4+ sup ]III }(log N ).

u>N1/ usN2p v<u<e N1/

Because of (5.1), all of the assumptions in [(4.1) and Lemma & are satisfied. We
choose v=N? with any 0<<e<1/200. Thus, by Lemmas 6,7 and 8, we get

J<(log NYF{AN (dq='*+(dq)'*)+ 4%}
+Az(log N)F(N/Nl/zv)z+A2N1—e+AzN7e(N1/2v)3/2(v4)4

4 4
F =z 1=
1 AN(log N) (N”3+ ot +q)

<(log N)F{AN(Ag~*124-(dq)"*+ N V%) 42N 1= 43} ,

as required.
This completes our proof.
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