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Introduction.

A principally polarized abelian variety is called reducible if it is isomorphic
to a product of two abelian varieties of positive dimensions. For a principally
polarization L, it is well known that L®? determines a morphism. Itsimage is
called a Wirtinger variety. If a principally polarized abelian variety is ir-
reducible, then the Wirtinger variety coincides with the Kummer variety as-
sociated to this polarized abelian variety. Moreover if an abelian variety is
sufficiently general, then the Wirtinger variety is not contained in any conics.
On the other hand, if a principally polarized abelian variety is reducible, then
the Wirtinger variety is contained in many conics. Our main purpose is to give
conditions for reducibility of an abelian variety in terms of conics which con-
tains the Wirtinger variety associated to the abelian variety.

Notations.

char(k): The characteristic of a field %

k*: The group of all units of a field &

f*: The pull back defined by a morphism f

G”: The character group of a finite group G

L: The invertible sheaf associated to a line bundle L

O(D): The invertible sheaf associated to a divisor D

K(.L): The subgroup of an abelian variety defined as follows, K(.L)={xcA4;
T *.L)=.L} where T, is a translation morphism on A and .£ is an in-
vertible sheaf on A

NS(A): The Néron-Severi group on a variety A

S™V : The n-th symmetric product of a vector space V

Map (A, B): The set of all maps from a set A to a set B

I'(A, .£): The global sections of an invertible sheaf .£ on an abelian variety 4

§1. Review.

Let 2 be a fixed algebraically closed field of char(k)+2, and let A be a g-
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dimensional abelian variety defined over k2. If L is an ample line bundle on A,
then it is well known that K (L) is a finite group and K(L)=GPHG~ where G
is a finite abelian group isomorphic to Z/d,\Z® --- PZ/d,Z with d,| --- |d,.
We take d;>0 for /=1, ---, g. Put 0=(d,, ---, d,). Let G(L) be the theta group

of L defined by {(x, ¢); x&K (L) and ¢: L=T*(L)}. In the following, we as-
sume char (k) } d,.

THEOREM 1. G(L) has a unique irreducible representation I'(A, L) in which
k* acts by its natural character.

PrROOF. See Mumford [3].

Let G(0) be the Heisenberg group, that is G(0)=k*XGXG" as sets with
multiplication

t, x, m)t', x', m")=@{t'm'(x), x+x’', m+m’).

Put V(0)=Map (G, k). V(d) is naturally a vector space over k and is a G(§)-
module by
(¢, x, m)FYw)=tm(u)f(x+u)

where (¢, x, m)G() and fV(0).

THEOREM 2. G(0) has a unique irreducible representation V(0) in which k*
acts by its natural character.

PrOOF. See Mumford [3].

THEOREM 3. G(L) and G(9) are isomorphic to each other as groups.
PrOOF. See Mumford [3].

Let & be the delta function in V(d) where x is in G defined by 6,(y)=0 if
y#x and 0,(x)=1. If a« is an isomorphism from G(L) to G(8), then a induces
the isomorphism f:I'(4, L)-»V (). We put ¢.(x) by the “Nullwerte” (in the
sense of Mumford) of 87'(d,). Now we assume that L is totally symmetric and
choose a symmetric theta structure on (L, L®?) (see Mumford [3]). The sym-
metric theta structure induces B,:I'(4, L)SV(6) and B,: I'(A, L®*)=V(20).
Let s, s’ be elements of I'(A, L). We put f,=p.(s) and f,=p(s"). Let fi*f,=
B2(sQs").

THEOREM 4. (Multiplication formula). In above notations

¥ fo(x)= yeaafl(x%-y)fz(x—y)qmz(y) .
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PrROOF. See Mumford [3].

§2. Examples.

Let 6=(d,, ---, d,) where d,, ---, d, are positive integers with d,| - |d,.
In this section we assume char (k) ) d,. Let G; be the group Z/d\ZP ---PZ/d  Z.

DEFINITION. We define Sp(G;) by

{e=Aut(G;XG5™); For every (x, m), (v, n)=Gs XG5,
((x, m), (¥, n))sp=(a(n, m), a(¥, N)sp},

where ((x, m), (3, N)sp=n(—x)m(y) and o(x, m)=(ax+pm, yx+dm) for o=
a B
(7 5)'

We put <{x, md>=m(x) where x&G; and meG;".

DEFINITION. We define a group N, as follows,

Noz{(o, ); 6=Sp(Gy) and [: GeX G5~ —> k* with f((x, m)+(x’, m’))

[24
=f((x, m)f(x", m)Xax+Bm, yx’'+0m’>/{x, m'> where 0—_—( ﬁ)},
7

as sets. The multiplication of N, ¢s defined by
(e, Na’, fH=(aa’, [")
where f"(w)=f"(cw)f(w), weG;XG; .

As 02(: ‘g)eSp(G(c?)), lax+Bm, yx'+dm’>/{x, m'>=Lax'+pm’, yx+om>/

{x', m)>. Therefore the multiplication of N, is well defined. Now we take an
element (o, f) in N,. We define a map

N, o, x, m)=@f(x, m), a(x, m)).
LEMMA. Via n¢, 5y, No acts on G(0) as a group of automorphisms over k*.

Let n» be an automorphism of G(d) over k*. As G(0) acts on V(d), we can
determine another G(d)-action on V(d) via 7. But in these two actions on V(9),
k* acts by its natural character. Therefore these two actions are isomorphic
to each other by theorem 2 in §1. Therefore » determines a base change of
V(o).

ExaMPLE 1. 0=(2, ---,2) and ¢ is a
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0 1
over char(k)#2. In above notations, let x=%(x,, ---, x,) and m='(n,, -+, my,)
where x; and m; are elements of Z/2Z (i=1, -, g). We define {,>: Gs;XG;"
—k* by

<x’ nl>:_—(-—1)11m1+"'+1'gmg.
In this situation, ¢ is an element of Sp(Gs). Because
(O'(JC, m>, 0.<x/, ml»sp:(_l)rlml’+x2'm2+“~+.rg’mg/(_l)xl'm1+12m2' +tTgmgt
where x'=%x,’, .-, x,/) and m'='(m,", ---, m,). We define a map f: Gs;XGs"
—k* with
flx, m)y=(—1)"1m1,
The pair (g, f) is an element of N,. In fact
F(Gt, m)+(x!, mO)/ f(x, m)fF(x", m'y=(— 1) siemsman j( [ymimy(— 1)1 m
=(_1)zl'm1+xlm1' ,
on the other hand,
(ax—l—‘Bm, 7x'+5m’>/<x, mr>:(_1)zl'm1+x2m2' +'-'+J:gmg'/(_1)xlm1+'"+xgmg'
:(_l)xl'm1+x1m1'

B
3

Now we calculate the base change ol V=V (d) defined by the above (g, f).
Let o, be the base change of V defined by (¢, f). By definition

where oz(? ) Hence (g, f) is an element of N,.

ao((t, x, m)-v)=(tf(x, m), a(x, m))-v
for every element v of V. Let t=1, x=0 and v=4, where 0=%0, ---, 0). As
(1, 0, m)8e=0,, co((1, 0, m)ds)=0,,). Moreover o,(1, 0, m)d,)=(1, a(0, m))c4(do)
and ¢(0, m)=((my, 0, -+, 0), X0, m,, -+, m,)). Weput g,8)= X h(s)d,. By

. . se(Z/22)8
above relations, we obtain

N h(S)as: 3 ("‘1)m2s2+"'+mgsgf(3>5s+m1e1

se(Z/22)8 s€(Z/22)8

where ¢,=!1, 0, ---, 0) and s=%(sy, ---, s;). Therefore

00(50):—6(50—}-531)
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where ¢ is a constant. Similously we obtain

00(561)"_—6(50_561) .
Moreover
Uo(as)zc(as—slel +(— 1)*14,- (sl—l)el>

where s=*'(sy, -+, s,).

ExAMPLE 2. 0=, ---, 4) and ¢ is

. . . .
over char(k)#2. In above notations, let x=%x,, .-, x,) and m="(m,, -, m,)
where x; and m; are elements of Z/4Z (i1=1, -+, g). We define {,>:G;XGs;"
—k* by

<x’ m>:,\/:_1x1m1+---+xgmg .
It is clear that ¢ is an element of Sp)G;). We define a map f: G;XG;"—k*
with

fCx, my=~/—To1m1,

The pair (o, f) is an element of N,. In this situation, thebase change of V(0)
defined by (o, f) is as follows,

0'(53):6'(53_3161 + '\/-_—18153— (sl—l)el+(_ 1)3153— (s;-2de;
+ /=158, (54150,

where s=¥(s,, ---, s,), e,=%1,0, ---, 0), ¢ is constant and +/—1 is an element of

k with v/ —1?=—1.

§3. Reducibility of abelian variety.

In this section we consider the canonical map ¢: I'(4, 0(28))2*—1"(A, ©(48))
where A is an abelian variety and 6 is a theta divisor on A. We assume
char(k)#2 and fix a symmetric theta structure (a,, a,) on (©(28), ©(48)) where
@, is a group isomorphism from G(®(26)) to G((2, ---, 2)) over k£* and «a, is a
group isomorphism from G(©48)) to G((4, ---, 4)) over k*. Let 0 be (2, ---, 2).
In this case we obtain a G() module V(d) and a G(26) module V(20) and ¢ induces

B: V()2 —> V(20).
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We write S(a®@b)=a*b. Now the multiplication formula says that

53*5L= 2 q1.®4(§—!+ x>55+5+z

xE(2Z/42)8

where L=0(0), s and ¢t are elements of (Z/2Z)% and s, t are elements of (Z/4Z)%
with s mod 2=s and ¢ mod 2=¢. Let ,_8 be a map

B: SV (8) —> V(20)

induced by 8. We put A,.=(0,®J.-,) where ¢ is an element of (Z/2Z)% and x
runs through a complete set of representative of (Z/2Z)%/{0, c}. Moreover we
put E.=(0.+:+0-c+;) Where x runs through a complete set of representative of
(2Z/4Z)%/{0, 2¢}. With the above notations, the map B is defined by

ﬁ(Ac):—‘Ech

where F, is an element of M,g(%k) if ¢=0 and an element of M,g-1(k) if ¢+0.
As (A.)cecz/2zy¢ are basis of S?V(d), therefore @ is represented by the following

matrix
F .,

Fryg-n

0

where (Z/2Z)¢={0, x,, -+, x:¢_1}. Let G. be a subgroup of (Z/2Z)? satisfying
(Z/2Z2)e=G P(Z/2Z)c in which ¢ is a given non-zero element. Let G&® be the
subgroup of (2Z/4Z)*=(Z/2Z)% corresponding to G.. We fix such notations
Now the multiplication formula says

61*5c-1'= 2 QL®4(27_C—Q+77)59+7]

nEC2Z/42)8

= Z(z)qL®4(2-x—g+77)(5Q+77+5—(_6+n)) .
7EeG;

Therefore we obtain

2 X(x)05%0c-z=( Zz)x(u)qu(u——C))( Zz)x(v)(ag+v+5—(c+v)))

zeGe uch( vEGé
where X is a charactor of G.,. Let X. be the set

XeG:.; 2 X(w)grei(u—c)=0}.

uEGé”

THEOREM. In the above notations, if (Z/2Z)*=G,DG,, and if for every
x€G,, yEG, with x+0 and y+0 the rank of F.., is at most 28~ and every X
contained in Gy, — Xz4y have same value at x, then (A, O(8)) is reducible.

PROOF. By the assumption, the order of G..,”—X,,,=the rank of Fgi,
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<242, Therefore there exists a subgroup H of G,.,” which satisfies X(x)=1

~

for every X H, and some element p=G,;,”, we obtain X,.,Dp+ H. Hence

zeH ueréz-i{y p(u)X(u)qu(u_ J—C_2>:O

and
> X(u)y=2%"?% if u=0 or u=x
xeH
=0 if u#0 and u==x
by the definition of X,.,. Therefore

qre«(x+y)+o(x)gre+«(x—y+u)=0.
Moreover .
gre«(x+y+u)+po(x)gre«(x—y+u)=0

for every u contained in G,+,. Hence

55*62*‘1/—0: > QL®4(21_-7_C—2+u><5§+y+u+5—(£+g+u)>
uGG'va_?_y -
=—p(x) 2 qro1@t+x—y+u)0z+yruT0-czry+ud)
uec®, - B -

Z—P(x)5t+z*5c—y:

especially 00%0,4,=—p(x)0,*0,. Let f(x+y) be —p(x). This f is a function
from {x+y; x=G, and y=G, with x+#0 and y+#0} to {+1}. We fix a sym-
metric theta structure (a,, ;) on (©(40), ©86¢)). We have already obtained

50*5x+y:f<x+y)3x*5y

50*5x'+y’:f(x,+yl)5z'*6y’
for any non-zero x, x'eG, with x#x’ and any non-zero y, y’éGz with y;&y}.
Thér_efore

(50*5x+y)*<5o*5z'+y')=f(x—I—'y)f(xv’+y’)(5z*5y)*(5x'*5y').
by the above symmetric theta structure. On the other hand
(00*00)* (024400 4y )=F(x+x"+ 3+ 3" )(0*00)*(T 24y ¥02r 44 .
Hence we obtain the relation
fx+x"+y+y)=F(x+9)f(x"+y)f (x+3) /(2 +).

Let 6.4, be f(x+¥)dz4, if x is a non-zero element of G, and y is a non-zero
element of G, and let §, be §, if z is an element of G, or G,. The above rela-
tion says that '

0$+y*5x’+y' =5x+y'*5.r’+y
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for x, x'€G,— {0} with x#x" and y, y'€G,—{0} with y+y’. We denote ¢: A
—P*%-! by a morphism defined by L®*=®(20). The above relations say that
@¢(A) is contained in some Segre variety embedded in P?4-! which is isomorphic
to P2*'-1x P***-1 where g, is a dimension of G, as a vector space over Z/2Z
(=1, 2). Let ¢; be a morphism from A to p2¥i-t (=1, 2) which is a composi-
tion of ¢ and the projection on Pfl-1c p2®-1 and let H; be a hyperplane of
Pt 5=1,2). We put B;=the connected component of K (O(¢;*H,)) containing
0 ¢=1, 2). It is clear that B; is an abolian subvariety of A; (=1, 2). Let A;
be the abelian variety A/B;, let p: A—A,X A, be the canonical morphism and
let 7; be the morphism from A; to P***-' defined by ¢; i=1,2). As ¢(—x)=
¢.(x) for every x€A (z=1, 2), hence n,(—x)=7xx) for every x€A; (=1, 2).
Therefore »;*H; is totally symmetric. This implies %;*H; is linearly equivalent
to 2D; for some divisor D; on A; (/=1, 2). In this situations,

dim I'(A;, O(n:*Hy)) =25
(=1, 2). As p*(n.*H, XA+ A, X79.*H,) is linearly equivalent to 26,
2¢=dim I'(A, 0(28))

=dim I'(A,, O(n,*H))) dim I'(A,, O(7.* Hy()
>081082=28

Hence dim I'(A;, O(y:*H,))=2%t (i=1, 2). Therefore n;*H; is linearly equivalent
to 20; where @, is a principally polarization of A; because 7;*H; is linearly
equivalent to 2D; for some divisor D; on A; (=1, 2). So we obtain that dimen-
sion of A; is g; and p is a finite surjective morphism (=1, 2) (see Ohbuchi [4]).
As 28 is linearly equivalent to p*(n,*H, X A.-+ A, X 5.*H,), therefore 26 is linearly
equivalent to 2p*(0,xA,+A,X8,;). Hence 6 is algebraically equivalent to
p*¥(0, X A+ A, X80, because NS(A) is a torsion free module for any abelian
variety A. Hence 6 is linearly equivalent to p*(T,*0,XA,+A,XT,,*8,) for
some z;€A; (=1, 2). Therefore p is an isomorphism and (A4, ©(8)) is reducible
polarized abelian variety (see Ohbuchi [4]). Thus we prove the theorem.

§4. Reducibility of 3-dimensional abelian variety.
In this section we prove the following theorem.
THEOREM. Let A be a 3-dimensional abelian variety defined over algebraically

closed field k of char(k)+#2. Let I be a kernel of S:I'(A, ©(20)—I'(A, ©(40)).
If dimension of I over k=5, then (A, O(8)) is reducible.
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We put L=0(0). We fix smmetric theta structures (a,, @,) and (a,, a;) on
(L®?, L®*) and (L®*, L®®) respectively. Let 0 be a delta function contained in
V(28 2¢, 2%) and let G,i=G 1,121,265 be a group (Z/2'Z)* (i=1, 2, 3). Especially
we dente 8, by 0%. For every c¢ contained in G,:;, we take ¢ which is an

element of G,i+1 with ¢ mod 2¢=c¢ and take ¢ which is an element of G,i+» with
¢ mod 2i*'=¢ (=1, 2). And for every ¢ contained in G,i+:, we take ¢° which
is an element of G,; with 2¢=2c¢°. Let A be an element of G,” and let a, b be
elements of G; with ¢ mod 2=b mod 2.

DEFINITION. In above notations, we define T(A; a, b) by

T; a, b= 2 Au)0&p+24™0F2u
uEGg - -
where ¢ is an element of G, with 2c=a—b.

DEFINITION. For A=G,” abd c=G;, we define g:(4, ¢) by

¢4, ¢)= > Nu)qres(c-+4u).
UEGy
To prove the theorem, we prepare the following lemmas.

LEMMA 1. For every A contained in G,” and every a in Gg, there exists some
bEGz with ql(l, a—I—4Q)¢0.

PRrOOF. See Mumford [3].

LEMMA 2. The kernel of S*V ({4, 4, 4)-V (8, 8, 8) is generated by
q:1(4, ¢)T(4; a, b)—q:(4, b)T(4; a, c)

where a, b, ¢ are elements of Gs and a mod 2=b mod 2=c¢ mod 2.
PrOOF. By Lemma 1 and Igusa [2] p. 167 theorem 5, this lemma is clear.

PrROOF OF THEOREM. By the notation of § 3, the homomorphism

B: SV, 2, 2) —> V(4, 4, 5)

is denoted by @(AC)ZECFC where ¢ is an element of G,. Therefore @ is re-
presented by the following 36X36 matrix,
Fu,

F={ g

Fy

with respect to (Ao)cee,, (Ec)ece, Where Go={x,, -+, x4, 0}, F, is an element of
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M,(k) if ceG, is not 0 and F, is an element of My k). The assumption says
that the rank of F<31. Therefore there exists at most 5 ¢’s contained in G,
with determinant of F,.=0. By the example in §2, we may assume that at least
2 of these ¢+#0. We prove this theorem in two steps.

STEP 1; If there exists some ¢ contained in G, with ¢#0 and the rank of
F.<2, then the theorem is true. '

We take a ¢’+#c¢ which satisfies det F.,=0. Let X, and X, be element of G,"
with X(¢)=1 and '

Xi(u)gqre+(2u—c)=0
ueGy/ (0, c)
where 71=1, 2. We put
XeG,”; Xe)=1}={X1, X3, X3, X4} .

Let H, be a kernel of XX,. As H, contains ¢ and dimension of H, as a vector
space over Z/2Z is 2, therefore there exists some ¢ contained in H. and ¢{+c¢
with

(M) 00%0.==%0,%0c4:
and H.={0, c, t, c+t}. Now we take a, b=G,. By the definition,
T(Z; 2a, 2b)= 2 Au)0Z o420 0 p+2
UGy - -

for every A contained in G,”. Therefore the Nullwerte of T'(1; 2a, 2b) is

) Au)gres(a-+b+2u)grei(a—b+2u).
ucsGy

Especially the Nullwerte of T'(4; 2d, 0) is
2 Au)gres(d—+2u)*
ucly

for every d contained in G, and fixed d. If X is an element of H,, then
22 X(w)gres(c+2u)’=2 >3 X(u)gres(c+2u)
uclGy

ueGy/10,c)

=2 2 X (1+X(B)qres(c+2u),

because g es(c+2u)+qre1(c+2u-+2¢)=0 by the relation (*).. Hence for X€H,
with %(#)=-—1, the Nullwerte of T(X; 2¢, 0)=0. Moreover we can take this X
with %(¢’)=1. Lemma 2 says that

gi(X, DYTX; 2¢, 0)=q:(X, 0)T(X; 2¢, b)
where e=G, and b=G,; with b mod 2=0. Now we prove that

(*)c’ 60*50’ ==+ 5t*6c'+c .
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The proof of (*). is done in two cases.

case 1). ¢,(X, 0)=0.

As there exists b= G, with b mod4=0 by Lemma 1, T(X; 2¢, 0)=0. In this
case, we take e=c¢’. Then T(X; 2¢’, 0)=0. Therefore we obtain

> X(u)gres(c +2u)—qres(c’+2u+26)")=0.

uEGo/H,
This equation and the relation given by det F,,=0 gives
gres(c’+2u)+qrea(c’+2u+20=0.

Hence we obtain (*),.

case 2). ¢,(X, 0)=+0.
By this condition,

TX; 2e, by=(q:(X, b)/q:(X, OHTX; 2¢, 0).
We put e=c¢. In this case, the Nullwerte of T'(X; 2¢, 0)=0. Hence the Nul-
Ilwertw of T(X; 2¢, b)=0 for any beG, with b mod 2=0. We take b=2¢ —2c.
This implies

2 X(w)gres(c'+2u)qre«(—c +2¢+2u)=0.

UEGo
Hence

EG X(u)gre(c'+2u)gre4(c’+2¢+2u)=0.

ucsty
In this situation,

2 Hw)gres(c'+2ugrei(c’+2¢+2u)
uety -

=2 > Xw)gres(c'+2u)gres(c’'+2¢+2u)

uesGq/(0,C}

=4 D ,X(u)qu(g’-{—Zl_t)qu(Q’+29+2u>

usGa/(0,c,¢,c+c’
=4(qre1(c’+2u)qree(c’ +2¢+2u)—qrei(c’+2u)gres(c’ +2¢+2u))
Therefore this equation and relation given by det F,=0 give '
qres(c’+2u)tqre(c’+2t+2u)=0.

Hence we obtain the relation (*)..

Now it is clear that ¢’#¢ by the definition of ¢’, ¢t and ¢. Let co=c-+¢ and
co=c'+t. The relations (*), and (*),, say that

50*50*5cb*5cb+c0+t: = 50*50*5“”05*500*'66
= i 50*506*55*500.{.06 o

Hence 00*0cy+cp+t=10:%0c+c,- 1herefore we obtain the relations
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60*5£+60: ial*at‘o
60*5t+cb: iat*acb
50*5z+c0+c2)= iaz*acoﬂb .

Hence we obtain this theorem by the theorem of § 3.

STEP 2; General case.
First, we show in the case of which det F,,=0 (=1, ---,5) and ¢;#0 for
every 7. In this case, there exists some X; contained in G,~ with X;(¢;)=1 and

2 xi(u)au*aci—uzo

ueGg/10, c4)

for =1, ---, 5. We prepare the following Lemma.

LEMMA 3. In above notations, there exists some ¢ and j with i#j and 1, j
{1, ---, B} which satisfies X(c;)=X;(c;). Moreover if %;=0 and cs=0, then there
exists some i and j with i#j and i, j= {1, ---, 4} which satisfies X;(c;)=X;(c}).

PrOOF. If there exists some 7 and j with 7+ and X;=X;, then this lemma
is clear. And if there exists some ; with X;=0, then this lemma is again clear.
So we assume that X, ---, Xs are all distinct and not equal to 0. We also as-
sume that ¢,, ---, ¢; are all distinct and not equal to 0. We put the set E, and
E_ by

E.={@, j); i#;j and Xi(c,)=1}
E_={G, j); i#;j and X,X,)=—1}.

As Xi(c)=1 and ¢;#0 for every 7, j=1, ---, 5, therefore the order of £,<7 and
the order of £_=13. Hence the first part of this lemma is clear. Moreover in
the case of X;=0 and ¢;=0 we put the set E}\, E. by

EL={G, 7); i#J,1¢, j=1, ---, 4 and X;(c;)=1}

E.={G, 7); i+7,14, j=1, ---, 4 and X;(c;)=—1}.
If the order of E%=6, then there exists some X;, X; (# ) with the order of
Ti={cp; Xi(cr)=1, k=1, --- , 5} and T,;={c,; Xj(ck)=1, k=1, ---, 5} are both 4.
As T; and T, are subgroup of G, and T, T;C{cy, -+, ¢4, ¢s=0}, hence T;=T;.
This is a contradiction. Therefore the order of E;<5. Hence this lemma is

clear.

Now we continue the proof of the theorem. By Lemma 3, we take ¢, j
with 77 and X;(c;)=X;(c;). Therefore



Some criteria for reducible abelian varieties 519

2 X(u)d0,*0e;-u=00%0c;HAi(c )¢ 0circ; T Xi(0)0p*Oc 40

ucGg/10, ¢4}

+xi(cj+v)5u+cj*5v+ci+c]- ’
E Xj(u>5u*5c]~—u:50*5c]-+xj(ci)aci*5cj+ci +xj<v)5v*5ci+v

uer/(O,cﬁ

+xj(ci +v>5v+ ci*5v+ cjteg e

In this, this v is an element of G, with ¢ mod{0, ¢;, ¢j, ¢;+0;}#0. Therefore
we obtain

(5ci+6cj)*<50+$5ci+cj)+ 7](5ci+v+5cj+v)*(av+55v+c,;+cj)=()

where &, n{+1}. By the examples of §2, we obtain the theorem.

Finally, we show this theorem in general case. If % X(u)o0,*0,=0 implies
uchGy

X=0, then these cases arereduced in Step 1 or the first case of this step, by the

examples in §2. Now we assume that ZG 0.%0,=0 and the rank of F,=7.
ueGy

In this case, let ¢;=0 and let X;=0. By lemma 3, we also obtain this theorem.
Therefore we prove this theorem.
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