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ISOTROPIC MINIMAL SUBMANIFOLDS IN A SPACE FORM

By

Takehiro ITOH

Let M"‘(E) be an m-dimensional space form of constant curvature ¢, that is,
an m-dimensional Riemannian manifold of constant curvature ¢. By the Theorem
in [5], the author determined n-dimensional minimal submanifolds in M™(¢) with
the sectional curvature not less than n¢/2(n-+1). We should pay attention to
the value next to n¢/2(n-+1), so that we could classify minimal submanifolds in
J\ZI’”(E) with the sectional curvature not less than it.

In the present paper, we will classify n-dimensional isotropic minimal sub-

manifolds in M"‘(E) with the sectional curvature not less than some value.
Indeed, we will prove the following

THEOREM A. Let M be a connected compact n-dimensional (n=3) orientable
submanifold isotropically and minimally immersed in an (n-+vy)-dimensional space
form M of constant curvature ¢ If the sectional curvature of M is not less than

né/3(n-+2), then M is of constant curvature T or ni/3(n-+2), or the second funda-
mental form is parallel.

We may assume that 0<¢& by and Remark in §2, that is, M is a
sphere S™(¢) of constant curvature ¢. When M is of constant curvature, by the
results in [2], according as the sectional curvature is & or né/3(n+2), M is a
great sphere of S™(&) or the immersion is the standard minimal one of degree 3
from a shere into a sphere as stated in [2], which we will call the generalized
Veronese submaniolfd in the present paper. When the second fundamental form
is parallel, the above immersion is the planar geodesic one, which is determined

in [8]. As a Corollary to Theorem A, using the results in [2], and [8],
we have the following

THEOREM B. Let M be a connected compact n-dimensional (n=3) orientable
submanifold minimally and isotropically immersed in a sphere S(¢) of constant
curvature ¢, If the immersion is full and the sectional curvature K, satisfies the
inequality : n¢/3(n+2)K,<¢&, then M is a great sphere of S(¢), a Veronese sub-
manifold, or a generalized Veronese submanifold.
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§1. Preliminaries.

Let M be an n-dimensional submanifold immersed in an (n+ p)-dimensional
space form M=M"*?(¢) of constant curvature ¢, (i.e., Riemannian submanifold
with induced Riemannian metric). We denote by V (resp. V) the covariant dif-
ferentiation on M (resp. A7I). Then the second fundamental form (the shape

operator) ¢ of the immersion is given by
o X, V)=VxY—V,Y, where X and Y are tangent vectors,

and it satisfies (X, YV)=0(Y, X). We choose a local field of orthonormal frames
€1, €3, ", Cp, Cnei, ---,e,,ﬁ, in M in such a way that restricted to M, ey, e, -, e,
are tangent to M (and, consequently the remaining vectors are normal to M).
Let B be the set of all such frames in M. With respect to the frame field of
M chosen above, let @, @, -, @n+p be the field of dual frames. Then the
structure equations of M are given by (*)

d@4=2® 45005, @apt+@pa=0,

(1.1)

d@ap=22@acA@cB—CD NGB .

Restricting these forms to M, we have the structure equations of M:

0,=0, wiazzh?jwj, h?j'—‘-hfz‘,
dw;=20;ijz\0;, w;;+w;;=0,
(1.2) 1
dw ;=0 0r;— 215, Qi;Z—Z—ZRi,-“a)Mw, ,
Rijr1=00:205,—0:105:)+2(hhf—hEhE).
1
(L2) da)a,g——Zwamwns—-Qa,s, Qaﬁ—é‘zRaﬁﬁwi/\wir

Rapi=2(h&hE—hihf).
Then, the second fundamental form o can be written as
o(X, Y)=2h{o(X)o Y )ea.
If we define h{,.i,,,n (1=k) by

(14) Zh%’ruik+1mwm ::dh;’,...ik“+2h?l...,-j_lmij+l,..ik+lwm,-j+2h@l...ik“w,ga ,

then we have

(*) We use the following convention on the range of indices unless otherwise stated ;
A B,C,---=1,2,--- .n+p; i,j,k,--=1,2,--- ,n; a,B,7,--- =n+1,n+2,.-- ,n+p. We agree
that repeated indices under a summation sign without indication are summed over the
respective ranges.



Isotropic minimal submanifolds

(1'5) h‘?l---iklm—-hgl---ikml:Zhgl---ij_.lTij+1--~ikRTijlm+2hé:1-~ikRﬁalm'
If M is of constant curvature ¢, then we have

(1.6) Rijkm::c(aikajm_aimajk)-
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The vector ¢(X, X) is called the normal curvature vector in the direction of a
unit vector X. If the normal curvature vector has the same length 2 for any

unit tangent vector to M, then the immersion is said to be A-isotropic.

The

immersion is called minimal if 3342 ,=0 for all a. We easily see that the im-
mersion is A-isotropic if and only if the components of the second fundamental

form satisfy the following relations ([7));
(L.7) 2 hGhin+ 2 hinhGi 2 h A =2%(0:;04m+0imb;x+0:40;m) .
Now, we consider the functions on M defined by
S:=le|*=Xhfhg, Ly :=3h§hinhlihin,
KNZZERaﬁinaﬁij=2(h?kh%j—h@khfj)(hﬁher“hézh?;‘)-
Then we know the following differential equation ([17);

1

(1.8) 2AS=”(73”2+77»ES_‘LN_KN, where |I0'3||2:=2h§’jkh?jk.

§ 2. The proof of Theorems.

We suppose that M is a A-isotropic and minimal submanifold in a space form

form M of constant curvature ¢ Then, from [1.7), we have

(2.1) 3 hgnhs,= ("‘2*2) 25y,

that is, M is an Einstein manifold. If »=3, as is well known, A is constant on

M. From (1.2) and we have
(2.2) 3D hGhs=(A2—28)0:;08, + (A4 E)0:201+0:110;2)— Riypi— Rints,s

which implies
3
(2.3) Zhngikmj:(/12+€)hgj-?Ehgmh‘%mh/%j-

Since 4 is constant, from [1.7), for all 7, 7, # and /, we have

Zhmhti+Shnhfi+ ZhGnhii=—{Zhfihfin+2hEhSin+2hGAGR}

which implies

QCl)ijmrr DhGmhti—2hGhan=2h G hEn+ 2 h G hn+ 2 hEn G+ 2 hEnh).
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Making (2-4)ijmkl+(2-4)klmijy we have

(2.5) 2himhfut 2 himhii+ 2 hinhis i+ 2 hinhi e =0.
It follows from (2.4);;,n, and that we have

(2.6) 2 hhiim—2himhti =2 hinhi+ 2t hise .
Since M is minimal, from we get

2.7) 2 hinhsmr=0.

Furthermore, from we get
©.8) Shhgimhbhim =2 hs mhg h b+ 23 hgm h hh R
BhGhgmhbihl = —Zhgnh hf b= —hash hE, hE
whcih imply
(2.9) 83X hghginhuhjn =2 hhg mhEhhm .
Letting Ah8,=3 h#;,nm, from we have
ZhE ARG —S(ARE)RG =Wk jim+ S hE ke,
which implies that
(2.10) Shhgh b8, ,=0.
It follows from [1.5) and that we have
ShEhghfmhbin=—ShGhG e by =—2hGhE A h jim
+2hgjhglh%m{hijpilm+h§iRlem+hz"erﬁlm} ,
which, together with (1.2), (1.3), [1.7), and [2.9), implies

2
@1 Shyhahbhta={"EE L pmer2ms
+2Trace (H*HPHTH*HEHY)
:{ n—|2—10 ZZ—E}LN—nlz(E——XZ)S—— % Trace A®

—23(Trace H*HPH")(Trace H*HFH?),

where A=(Zh%&h4;) and H*=(h$). By means of (1.2), [1.5), [2.1) and [2.3), we
have

(2.12) A= h§mm=n(—A)h§—2Zhgnhb . hE;.

Since S=31h{hf=n(n+2)A%/2 is constant on M, using [1.7), we rewrite (1.8) as
(2.13) loal?=2L y—n(é—a%S.



Isotropic minimal submanifolds 501

Making use of [(L.5), and [2.12), we have

Eh?jmzm—Zh?jmmzzzh%ijpum+2h?mepjzm+2h?ijpmzm+2h@ijﬁazm
Shimm— DG min=hEimRpint D imRpsim+ 2 m R garn
+ S hh kb — S hE R hm
S mm=n(C— =2 heimhmh? =25 hgn himhf =28 hen him bl
Summing up these equations and making use of (2.2)~(2.11), we have

Allos|* =22 hf emhien+22 ARG =1{22n+3)0—3(n—2)2"} | 0, |

+2|042—62hEhemhb hl m— 18 hGhE hE s h
that is,

(2.14) Alosl*=2| 0.2+ {2@n+3)¢—3(n—2)2%} | 05| —6 S hEhgimhi 1A%
—18{ﬁ1—0-,12~5}LN+18n12<c~—22>5
2
+9Trace A*+363)(Trace H*HFH")(Trace H*HPHY),
where |64?=3h%imh%Gen. On the other hand, using and [2.12), we have
(2.15) T ALy="3 Shejhfinhishdnt+ Szl k-t ne—2)Ly—2 Trace A°.

Now, we consider the function f=(2/9)|¢:l|?*+(1/4)Ly. Making use of (2.14)
and (2.15), we have

(2.16) Af= —g—(ll 04]l2+{(2n+3)5— -:3(—71—2:2)—22} [ osl|2>+4n22(c~—12)8

‘ n-+10 N N
+ S b g bl — (47— 2=} —n(E—2%)) Ly
+83(Trace H*HBH")(Trace H*HP HT).
On the other hand, from (1.2) and we have

. A 3
(2.17) n(6—)S— 5 Ly=ShishinRsijm+ ShGAER emin-
2 2
For each a. let h%, hg, ---, h% be the eigenvalues of H®. Then we have
1
; jZk m(h?jh?mRkijm"f‘h?jh?iRkmjm)zfizk(h{f—hﬁ‘)zRikik
= 7 3 (hi—hgYe=nc S (hg)=nc Trace (HY,

where ¢ is the minimum of the sectional curvature of M and the equality holds
only when the sectional curvature is constant. This, together with [2.17), implies
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71(6—272)5—-%L‘vgnc5,

that is,

(2.18) LNg%{zw—c)—zZ}S,
where the equality holds only when the sectional curvature is constant.

PEMARK. It follows from our assumption n¢/3(n+2)<Zc that

(2.19) 0=se.

When M is simply connected and complete, since M is a compact minimal snbmani-
fold of M, & must be positive.

It follows from and nLy=Ky (see [4]) that we have

nA®
n—1

(2.20) S<Ly,

where the equality holds only when the sectional curvature is constant. From

(2.18) and [2.20) we have

e o _ 3(nt2)
T =1 = 5nt2) {2tn+3e— 2n—1)

Since S is constant on M, if S=3h$h=0, then M is totally geodesic. There-
fore, from now on we may assume that S+#0. Let us now find the lower bounds
for hGhGhe b n, 2(Trace H*HPH)(Trace H*HFH") and |l¢,|> when S=0,
that is, we will prove the following.

(2.21) 0<Ly 12}5.

LEMMA. If S#0, then we have the following inequalities

3(n+2) (n+l., 6(n+2) n&’
} 2 2 2 et S 2 —
@2 otz {2 w—ctal g LA AR i
22 .. 1 . 4
223 Shihfhimhlinz T o+ —< los|*{Ly— s}
(2.24) 23 (Trace H*HPH")(Trace H*HfH™)= (n;(i)gll-;@ FLy
(n+4) nA?
A

PrROOF OF LEMMA. Taking the length of the tensors
K&im=htem—hGmet+20imhS+0imhs—0;2himn—0:1hsn)

and
Lyim=hem—x(0:ihm+0:irhim~+0hin)+Y(0rmh+0imh&+0inhs),
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where z=|g;]|>°/nS, x=2y/(n+2) and y=(n-+2)|0;l*/n(n+4)S, we have (2.22)

and (2.23), because we have D(A&im—A%me) hikm—Afime)=8ZhEhEhE jmhiym—

4(2+2)|as)|? from (1.2), (1.3), [1.5), and (2.11). Next, taking the length of

the tensor

Pic;kmzzhéljh%rhgm_l_Zhérhgmhgj_a(ajkh?m‘}_zaikhgm_"aimh?k)
+b<5ijh}?m+5kmhgj)-

we have

(2.25) 2X(Trace H*HPH")(Trace H*HPH") = —2(3n+4)a’S+2a{(3n+8)22S— L )}
+16abS—2b*nS—4bL y—(n+2)A%L y,

+2)4% .
because A& hE ;= (n 5 )——BU and SSh&AghE RS =S hGhE) S hEhE (0504,
—0110p))+Ripy;}=A2S—(1/2)L 5y from [(2.2) For some positive constant x and

any positive constant ¢ such that

2x+1
2(x+1)

(2.26) e+ Ly=Z2aS<nbSZLy-+te,

we set
2(3n+4)aS=@Bn+8)A’S— L y+4b*nSx/a+8(1—x)bS.

Then, from (2.25) we have
(2.27) 2> (Trace H*HPH")(Trace H*HPH)=(3n+8)A2Sa—alL y—4bL 5
—(n4+2)22L y+2{—2x+1)nbS+4(x+1)aS}b.

Since Ly=2(x+1)Ly+@2x+1)e—C2x+1)(Ly+e)< —2x+1)nbS+4(x+1)aS
by [2.26), using (2.27) implies

(2.28) 23\(Trace H*H?H")(Trace H*H? H)> %m .
_ (n+4) _nx Bn+8)(2x+1) ., n+4
2nS LN{L” n—1 S}+( 4(x+1) S LN)e'

Since ¢ is any positive constant, we have (2.24).
Now, we will prove [Theorem Al Making use of (2.22), (2.23) and (2.24),

from we have

4n+1) . 3(n+2¢

(2.29) Af2 (g g 2n+3e— Sty 4 }
3n?4-13n4-20 nA? .
T 3u(n+4)S {Lv=ZysPlaur,

which, together with [2.21), implies
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2(3n®*+5n—8)
27(n+4)(n+2)

3(n+2)?

(2.30) Afz CEsY

fan+3)— #Hlosl20,

Therefore, if M is compact and orientable, we have SMAfd Vol M=0, and so
we get Af=0 on M, that is,

3(n+2)*
2(n—1)

which implies that if M is not totally geodesic, then

3(n+2)*
2(n—1)

If S#0 and | o;]|#0, then it follows from and that M is of constant

né : . . .
curvature ECTYR In this case, as stated in or [6], the immersion may

f is constant on M and {2(n+3)6—— ,12} las]|=0,

lesl=0 or 2(n+3)= A2,

be considered as a standard minimal one of degree 3 from a sphere into a sphere.
If S+#0 and |los||=0, then the second fundamental form is parallel, and so the
immersion is the planar geodesic one which is determined by K. Sakamoto in
[8]. Thus we have proved Theorem A.

Next, we will prove [Theorem Bl If the sectional curvature K, of M
satisfies the inequality —3(—::3§K,,§6, then, by Theorem A, we see that M is

of constant curvature ¢ or né¢/3(n+2), or the second fundamental form of M is
parallel. Looking over the curvatures of planar geodesic submanifolds in [8],
we easily see that M must be of constant curvature ¢ or né/2(n+1) when |as|
=0. By the results in and [6], according as K, is ¢, nZ/2(n+1), or n&/
3(n+2), M is a great sphere of S(¢), a Veronese submanifold, or a generalized
Veronese submanifold.
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