HOMEOMORPHISMS OF ZERO-DIMENSIONAL SPACES

By

Takashi KIMURA

Dedicated to Professor Yukihiro Kodama on his 60th birthday

1. Introduction.

All spaces considered in this paper are assumed to be compact and metrizable. Let φ be a homeomorphism from a space (X,d) onto itself. Then φ is expansive if there is c>0 such that for every $x, y \in X$ with $x \neq y$ there is $n \in Z$ for which $d(\varphi^n(x), \varphi^n(y)) > c$. Given $\delta > 0$, a sequence $\{x_i : i \in Z\}$ is a δ -pseudo-orbit of φ if $d(\varphi(x_i), x_{i+1}) < \delta$ for every $i \in Z$. Given $\varepsilon > 0$, a sequence $\{x_i : i \in Z\}$ is ε -traced by a point $y \in X$ if $d(\varphi^i(y), x_i) < \varepsilon$ for every $i \in Z$. We say that φ has the pseudo-orbit tracing property (abbrev. P.O.T.P.) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of φ can be ε -traced by some point of X.

For a space (X, d) we denote by $\mathcal{K}(X)$ the space of all homeomorphisms of X with the metric $\tilde{d}(\varphi, \psi) = \max\{d(\varphi(x), \psi(x)) \colon x \in X\}$ for every $\varphi, \psi \in \mathcal{K}(X)$. Let $\mathcal{E}(X) = \{\varphi \in \mathcal{H}(X) \colon \varphi \text{ is expansive}\}$ and $\mathcal{L}(X) = \{\varphi \in \mathcal{H}(X) \colon \varphi \text{ has P.O.T.P.}\}$.

In Section 3 we are concerned with the Cantor set C. The Cantor set C is the unique zero-dimensional infinite group. N. Aoki [1] proved that every group automorphism of C has P.O.T.P. M. Sears [6] proved that $\mathcal{E}(C)$ is dense in $\mathcal{H}(C)$, constructing a dense subset $\mathcal{H}(C)$ of $\mathcal{H}(C)$. M. Dateyama [3] proved that $\mathcal{H}(C)$ is dense in $\mathcal{H}(C)$, constructing a dense subset $\mathcal{H}(C)$ of $\mathcal{H}(C)$ in $\mathcal{H}(C)$. However, for the sets $\mathcal{H}(C)$ and $\mathcal{H}(C)$ above we have $\mathcal{H} \cap \mathcal{H} = \phi$. So it is unknown whether the set $\mathcal{H}(C) \cap \mathcal{H}(C)$ of all expansive homeomorphisms with P.O.T.P. of C is dense in $\mathcal{H}(C)$. In Section 3 we shall prove the following theorem.

THEOREM 1. The set of all expansive homeomorphisms with P.O.T.P. of the Cantor set C is dense in $\mathcal{H}(C)$.

We know [6] that $\mathcal{E}(C)$ is of first category. So $\mathcal{E}(C) \cap \mathcal{L}(C)$ is also of first category.

The convergent sequence is another standard zero-dimensional space, classed with the Cantor set. In Section 4 we shall prove the following theorem.

THEOREM 2. Let $S = \{0, 1, 1/2, 1/3, \dots\}$. Then

- (a) the set of all expansive homeomorphisms of S is dense in $\mathcal{H}(S)$,
- (b) the set of all homeomorphisms with P.O.T.P. of S is dense in $\mathcal{H}(S)$,
- (c) S has no expansive homeomorphism with P.O.T.P.

In Section 5 we shall construct a zero-dimensional space having no expansive homeomorphism.

2. Preliminaries.

Let $D^{\mathbf{z}} = \prod \{D_i : i \in \mathbf{Z}\}$, where $D_i = \{0, 1\}$ for every $i \in \mathbf{Z}$. We define the metric d on $D^{\mathbf{z}}$ by

$$d(x, y) = \begin{cases} 1/\min\{|k| : x_k \neq y_k\} & \text{if } x_0 = y_0 \\ 2 & \text{if } x_0 \neq y_0 \end{cases}$$

for every $x=(x_i)$, $y=(y_i) \in D^z$.

Obviously, (D^z, d) is homeomorphic to the Cantor set. For a homeomorphism of a compact metrizable space X it is clear that both expansiveness and P.O.T.P. do not depend on the choice of metrics on X. Thus we may regard (D^z, d) as the Cantor set.

For every $i, j \in \mathbb{Z}$ with $i \leq j$ we put $D(i, j) = \prod \{D_k : i \leq k \leq j\}$ and for every $f \in D(i, j)$ we put $c^+(f) = j$ and $c^-(f) = i$. We define the order \leq on $\cup \{D(i, j) : i, j \in \mathbb{Z} \text{ with } i \leq j\} \cup D^{\mathbb{Z}}$ as follows: $f \leq g$ if and only if one of the following conditions holds; (1) f = g, (2) $f \in D(i, j)$, $g \in D(k, l)$, $k \leq i$, $j \leq l$ and $f_m = g_m$ for every $m, i \leq m \leq j$, (3) $f \in D(i, j)$, $g \in D^{\mathbb{Z}}$ and $f_m = g_m$ for every $m, i \leq m \leq j$, where $f = (f_i, f_{i+1}, \dots, f_j)$ for $f \in D(i, j)$ and $f = (\dots, f_{-1}, f_0, f_1, \dots)$ for $f \in D^{\mathbb{Z}}$. For every $f \in D(i, j)$ and any $n \in \mathbb{N}$ with $i \leq -n$ and $n \leq j$ (or for every $f \in D^{\mathbb{Z}}$ and any $n \in \mathbb{N}$) we put $f_{+n} = (f_{-n}, f_{-n+1}, \dots, f_n) \in D(-n, n)$. For every $f \in D(i, j)$ we put $A_f = p_{ij}^{-1}(f)$, where $p_{ij} : D^{\mathbb{Z}} \to D(i, j)$ is the projection.

If a space X is the union of a pairwise disjoint collection $\{X_{\lambda} : \lambda \in \Lambda\}$ of open-and-closed subsets of X, then we represent X as $X = \bigoplus \{X_{\lambda} : \lambda \in \Lambda\}$.

3. Proof of Theorem 1.

Let $\psi: D^z \to D^z$ be a homeomorphism and $\varepsilon > 0$. We shall construct an expansive homeomorphism φ with P.O. T. P. such that $\tilde{d}(\psi, \varphi) = \max\{d(\psi(x), \varphi(x)): x \in D^z\} < \varepsilon$.

We take k, $n \in \mathbb{N}$ such that $1/k < \varepsilon$ and $d(\phi(x), \phi(y)) < 1/k$ for every x, $y \in D^{\mathbb{Z}}$ with d(x, y) < 1/n.

Claim 1. For every $f \in D(-n, n)$ there are $h(f) \in D(-k, k)$ and $g(f) \in D(-l_1, l_2)$ for some $l_1, l_2 \in \mathbb{N}$, i=1, 2, satisfying the following three conditions;

- (a) $D^{\mathbf{z}} = \bigoplus \{A_{\mathbf{z}(f)}: f \in D(-n, n)\},$
- (b) $\phi(A_f) \subset A_{h(f)}$,
- (c) $h(f) \leq g(f)$.

Proof of Claim 1. From diam $A_f < 1/n$ it follows that diam $\psi(A_f) < 1/k$. Since $D^{\mathbf{Z}} = \bigoplus \{A_h : h \in D(-k, k)\}$ and $d(A_h, A_{h'}) \ge 1/n$ for every $h, h' \in D(-k, k)$ with $h \ne h'$, there is $h(f) \in D(-k, k)$ such that $\psi(A_f) \subset A_{h(f)}$. For every $h \in D(-k, k)$ list $\{f \in D(-n, n) : h(f) = h\}$ as $\{f_{hi} : 1 \le i \le p_h\}$. For every $i, 1 \le i \le p_h$, we take $g_{hi} \ge h$ such that $A_h = \bigoplus \{A_{g_{hi}} : 1 \le i \le p_h\}$. Let us set $g(f_{hi}) = g_{hi}$ for every $h \in D(-k, k)$ and any $i, 1 \le i \le p_h$. Then g(f) and h(f) have all the required properties.

Next, we shall construct a homeomorphism $\varphi: D^z \to D^z$. For every $x \in D^z$ we define $\varphi(x)$ as follows.

Let $f = x_{1n} \in D(-n, n)$ and $g(f) \in D(-l_1, l_2)$.

Case 1. $l_1+l_2\geq 2n$ and $l_2\geq n$.

Let us set

$$(\varphi(x))_i = \begin{cases} (g(f))_i & \text{if } -l_1 \leq i \leq l_2 \\ x_{i+1} & \text{if } l_2 + 1 \leq i \\ x_{i+l_1 + l_2 + 2} & \text{if } n - l_1 - l_2 - 1 \leq i \leq -l_1 - 1 \\ x_{i-2n+l_1 + l_2 + 1} & \text{if } i \leq n - l_1 - l_2 - 2 \end{cases}$$

and

$$M^+(f)=1$$
 and $M^-(f)=-2n+l_1+l_2+1$.

Case 2. $l_1+l_2<2n$ and $l_1\leq n$.

Let us set

$$(\varphi(x))_{i} = \begin{cases} (g(f))_{i} & \text{if } -l_{1} \leq i \leq l_{2} \\ x_{i+1} & \text{if } i \leq -n-2 \\ x_{i+2n+2} & \text{if } -n-1 \leq i \leq -l_{1}-1 \\ x_{i+2n-l_{1}-l_{2}+1} & \text{if } l_{1}+1 \leq i \end{cases}$$

and

$$M^+(f) = 2n - l_1 - l_2 + 1$$
 and $M^-(f) = 1$.

Case 3. otherwise, i.e. $(l_1+l_2 \ge 2n \text{ and } l_2 < n)$ or $(l_1+l_2 < 2n \text{ and } l_1 > n)$. In this case we have $l_2 < n < l_1$. Let us set

$$(\varphi(x))_{i} = \begin{cases} (g(f))_{i} & \text{if } -l_{1} \leq i \leq l_{2} \\ x_{i+n-l_{2}} & \text{if } l_{2}+1 \leq i \\ x_{i+l_{1}-n} & \text{if } i \leq -l_{1}-1 \end{cases}$$

and

$$M^+(f) = n - l_1$$
 and $N^-(f) = l_1 - n$

Then it is obvious that $\varphi_{A_f}: A_f \to A_{g(f)}$ is a homeomorphism. By (a), φ is a homeomorphism from D^z onto itself. Let us set $m = \max\{-c^-(g(f)), c^+(g(f)): f \in D(-n, n)\}$.

By the construction of φ the following claim is easily seen.

Claim 2. Let $x, y \in D^z$ with $d(x, y) = 1/k \le 1/2m$.

- (i) If $x_k \neq y_k$, then $d(\varphi(x), \varphi(x)) = 1/l$ and $x_l \neq y_l$, where $l = k M^+(x_{ln})$.
- (ii) If $x_{-k} \neq y_{-k}$, then $d(\varphi^{-1}(x), \varphi^{-1}(y)) = 1/l$ and $x_{-l} \neq y_{-l}$, where $l = k M^{-}(x_{+n})$.

By Claim 2, 1/2m is an expansive constant for φ . Thus φ is expansive. To prove that φ has P.O.T.P. we need the following mappings α and β . For every $f \in \bigcup \{D(i, j) : i, j \in \mathbb{Z} \text{ with } i \leq -n \text{ and } n \leq j\}$ let us set

$$\alpha(f) = \max\{g : g < \varphi(h) \text{ for every } h \in D^{\mathbf{z}} \text{ with } f < h\}.$$

For every $g \in \bigcup \{D(i, j): i, j \in \mathbb{Z} \text{ with } i \leq -m \text{ and } m \leq j\}$ let us set

$$\beta(g) = \max\{f : f < \varphi^{-1}(h) \text{ for every } h \in D^{\mathbb{Z}} \text{ with } g < h\}.$$

We shall show that φ has P.O.T.P.

Let $\varepsilon_1 > 0$. We take $\delta = 1/N$ such that $1/N < \min\{\varepsilon_1, 1/2m\}$. Let $\{x^i : i \in \mathbb{Z}\}$ be a δ -pseudo-orbit of φ . Let K(-1) = -N - 1. By induction on $0 \le i \in \mathbb{Z}$, we choose K(i) and $y_j \in D_j$ for every j, $K(i-1) < j \le K(i)$, satisfying the following conditions:

- (d) K(i-1) < K(i),
- (e) $c^+(\alpha^i(y^i))=N$,
- (f) $\alpha^i(y^i)_{\mid N} = x_{\mid N}^k$,

where $y^i = (y_{-N}, y_{-N+1}, \dots, y_{K(i)}) \in D(-N, K(i))$.

In case i=0, let K(0)=N and for every j, $-K(-1) < j \le K(0)$, let $y_j = x_j^0$. Assume that K(i) and y_j , $K(i-1) < j \le K(i)$, are chosen such that the above conditions hold. Let us set $K(i+1)=K(i)+M^+(\alpha^i(y^i)_{|n})$ and $y_j=x_{j+N-K(i+1)}^{i+1}$ for every j, $K(i) < j \le K(i+1)$. It is easy to check that all induction hypothesis are satisfied. Let L(1)=N+1. By induction on $0 \ge i \in \mathbb{Z}$, similarly as above, we choose L(i) and $y_j \in D_j$ for every j, $L(i) \le j < L(i+1)$, satisfying the following conditions:

- (g) L(i) < L(i+1),
- (h) $c^{-}(\beta^{-i}(y^{i})) = -N$,
- $(i) \quad \beta^{-i}(y^i)_{|N} = x_{|N}^k,$

where $y^i = (y_{L(i)}, y_{L(i)+1}, \cdots, y_N) \in D(L(i), N)$. Let us set $y = (\cdots, y_{-1}, y_0, y_1, \cdots) \in D^{\mathbf{Z}}$. Then for every $i \geq 0$ we have $\varphi^i(y) > \alpha^i(y^i)$ and $\alpha^i(y^i)_{|N} = x_{|N}^i$. This implies that $\varphi^i(y)_{|N} = x_{|N}^i$ and therefore we have $d(\varphi^i(y), x^i) < 1/N < \varepsilon_1$. For every $i \leq 0$ we have $\varphi^i(y) > \beta^{-i}(y^i)$ and $\beta^{-i}(y^i)_{|N} = x_{|N}^i$. This implies that $\varphi^i(y)_{|N} = x_{|N}^i$ and therefore we have $d(\varphi^i(y), x^i) < 1/N < \varepsilon_1$. Hence $\{x^i : i \in \mathbf{Z}\}$ is ε_1 -traced by y. Therefore φ has P.O.T.P.

We show that $\tilde{d}(\varphi, \psi) < \varepsilon$. By the construction of φ , $\varphi((A_f)) = A_{g(f)}$ for every $f \in D(-n, n)$. For every $x \in D^z$, we have $x \in A_f$ for some $f \in D(-n, n)$. Thus, by (c), we have $\varphi(x) \in \varphi(A_f) = A_{g(f)} \subset A_{h(f)}$. On the other hand, by (b), we have $\psi(x) \in \psi(A_f) \subset A_{h(f)}$. From diam $A_{h(f)} = 1/(k+1) < \varepsilon$ it follows that $d(\varphi(x), \psi(x)) < \varepsilon$. Hence we have $\tilde{d}(\varphi, \psi) < \varepsilon$. Theorem 1 has been proved.

4. Proof of Theorem 2.

Let d be the Euclidean metric on $S = \{0, 1, 1/2, 1/3, \dots\}$. Note that a mapping $\varphi: S \to S$ is a homeomorphism if and only if φ is one-to-one, onto and $\varphi(0) = 0$. For every $n \in \mathbb{N}$ we set $S_n = \{1/(n-1), 1/(n-2), \dots, 1\}$.

(a) Let $\phi \in \mathcal{H}(S)$ and $\varepsilon_0 > 0$. We construct $\varphi \in \mathcal{E}(S)$ such that $\tilde{d}(\varphi, \psi) < \varepsilon_0$. To do this, we take $n \in \mathbb{N}$ with $1/n < \varepsilon_0$. For every $m \in \mathbb{N}$, m < n, we take $x_m \in S$ such that $\phi(x_m) = 1/m$. Let $l = \max\{1/x_m : m < n\} + 1$. For every $k \in \mathbb{N}$, $k \ge l$, let us set

$$\varphi(1/k) = \begin{cases} 1/(k-2) & \text{if } k = l+2i \text{ for some } i \in \mathbb{N} \\ 1/(k+2) & \text{if } k = l+2i-1 \text{ for some } i \in \mathbb{N} \\ 1/(l+1) & \text{if } k = l \end{cases}$$

For every $m \in \mathbb{N}$, m < n, let us set $\varphi(x_m) = 1/m$ ($= \varphi(x_m)$). Let $\varphi(0) = 0$, and for every $x \in S_l - \{x_m : m < n\}$ let $\varphi(x)$ be an element of $S_l - S_n$ such that $\varphi(x) \neq \varphi(x')$ for every $x, x' \in S_l - \{x_m : m < n\}$ with $x \neq x'$. Then φ is one-to-one, onto and $\varphi(0) = 0$. Thus $\varphi \in \mathcal{H}(S)$. By the construction of φ , it is obvious that $d(\varphi, \varphi) \leq 1/n < \varepsilon_0$. Let $c = 1/(2l^2 + 2l)$. Note that $U_c(1/l) = \{1/l\}$. We show that c is an expansive constant for φ . Let $x, y \in S$ with $x \neq y$. We may assume that $x \neq 0$. If $x \in S_l$, then d(x, y) > c. If $x \notin S_l$, then $\varphi^i(x) = 1/l$ for some $i \in \mathbb{Z}$, and therefore $d(\varphi^i(x), \varphi^i(y)) > c$. Hence we have $\varphi \in \mathcal{E}(S)$.

(b) Let $\phi \in \mathcal{H}(S)$ and $\varepsilon_0 > 0$. We construct $\varphi \in \mathcal{H}(S)$ such that $d(\varphi, \psi) < \varepsilon_0$. Let n, l and $x_m, m < n$, be as in (a). For every $x \in S_l$ let $\varphi(x)$ be as in (a).

For every $x \in S - S_l$ let $\varphi(x) = x$. Then, similarly as in (a), we have $\varphi \in \mathcal{H}(S)$ and $\tilde{d}(\varphi, \psi) < \varepsilon_0$. To prove that φ has P.O.T.P. let $\varepsilon_1 > 0$. Take $k \in \mathbb{N}$ with $1/k < \min\{\varepsilon_1, 1/l\}$. Let $\delta = 1/(k^2 + k)$. Note that $U_{\delta}(1/j) = \{1/j\}$ for every $j \in \mathbb{N}$, $j \leq k$. It suffices that every δ -pseudo-orbit of φ can be ε_1 -traced by some point of S. Let $\{y_i : i \in \mathbb{Z}\}$ be a δ -pseudo-orbit of φ . If $y_0 \in S - S_k$, then $y_i \leq 1/n < \varepsilon_1$ for every $i \in \mathbb{Z}$. Thus $\{y_i : i \in \mathbb{Z}\}$ is ε_1 -traced by y_0 . If $y_0 \in S_k$, then $y_i = \varphi^i(y_0)$ for every $i \in \mathbb{Z}$. Thus $\{y_i : i \in \mathbb{Z}\}$ is ε_1 -traced by y_0 . Hence φ has P.O.T.P.

(c) Let $\varphi \in \mathcal{E}(S)$ with an expansive constant c. It is enough to prove that $\varphi \in \mathcal{P}(S)$. We take $n \in \mathbb{N}$ with 1/n < c. Assume that 1/m is a periodic point for every $m \in \mathbb{N}$, m < n. Then $\bigcup \{\operatorname{Orb}(1/m) \colon m < n\}$ is finite, where $\operatorname{Orb}(x) = \{\varphi^i(x) \colon i \in \mathbb{Z}\}$. Pick up a point $x \in S - (\bigcup \{\operatorname{Orb}(1/m) \colon m < n\} \cup \{0\})$. Then we have $\operatorname{Orb}(x) \subset S - S_n$, therefore $d(\varphi^i(x), \varphi^i(0)) \leq 1/n < c$ for every $i \in \mathbb{Z}$. This is a contradiction. Take m < n such that 1/m is not a periodic point. Let $\varepsilon = 1/(m^2 + m)$. For every $\delta > 0$ we can take $l \in \mathbb{N}$ such that $\varphi^{l-1}(1/m) < \delta$ and $\varphi^{-l}(1/m) < \delta$, because $\lim_{t \to \infty} \varphi^i(1/m) = 0$ the $\lim_{t \to \infty} \varphi^{-i}(1/m) = 0$. Let us set

$$y_{2kl+j} = \begin{cases} \varphi^{j}(1/m) & \text{if } 0 \leq j \leq l-1\\ \varphi^{j-2l}(1/m) & \text{if } l \leq j \leq 2l \end{cases}$$

Then $\{y_i: i \in \mathbb{Z}\}$ is a δ -pseudo-orbit of φ . Assume that $\{y_i: i \in \mathbb{Z}\}$ is ε -traced by $y \in S$. Since $U_{\varepsilon}(1/m) = \{1/m\}$ and $y_{2kl} = 1/m$ for every $k \in \mathbb{Z}$, we have $\varphi^{2kl}(y) = 1/m$ for every $k \in \mathbb{Z}$. This implies that 1/m is a periodic point. This is a contradiction. Hence S has no expansive homeomorphism with P.O.T.P.

5. A zero-dimensional space having no expansive homeomorphism.

S. Fujii [4] proved that a space X is zero-dimensional if and only if the identity mapping id_X has P.O.T.P. So every zero-dimensional space has at least one homeomorphism with P.O.T.P. We know ([2], or see [5]) that the unit interval has no expansive homeomorphism. However, as far as the author knows it is unknown whether there is a zero-dimensional space having no expansive homeomorphism. In this section we construct such a space X. Note that the space X above is contained in the Cantor set, because the Cantor set is universal for the class of zero-dimensional spaces.

Let $C \subset [0, 1]$ be the Cantor set and $S = \{0, 1, 1/2, \dots\}$ a convergent sequence. Let $X_n = (C \oplus S^n)/\{0, 0_n\}$ be the quotient space obtained by identifying $\{0, 0_n\}$ to a point x_n , where $0 \in C$ and $0_n = (0, 0, \dots, 0) \in S^n$, for every $n \in \mathbb{N}$, and let $X_0 = \{x_0\}$ be a one-point space. Let $X = \bigcup \{X_n : n \in \mathbb{N} \cup \{0\}\}$. We give X a topology as follows. Let $\mathcal{B}(x) = \{U : U \text{ is a neighborhood of } x \text{ in } X_n\}$ for every $x \in X$, $n{\in}N$, and $\mathcal{B}(x_0){=}\{{\cup}\{X_i\colon j{\leq}i\}{\cup}X_0\colon j{\in}N\}$. Then $\{\mathcal{B}(x)\colon x{\in}X\}$ is a neighborhood system. Obviously the space X with the topology generated by $\{\mathcal{B}(x)\colon x{\in}X\}$ is compact, metrizable and zero-dimensional. Next we show that X has no expansive homeomorphism. To do this let φ be a homeomorphism of X. The point x_n is the only point that has arbitrarily small neighborhoods containing a set homeomorphic to the Cantor set, a set homeomorphic to S^n , and no set homeomorphic to S^{n+1} . Therefore we have $\varphi(x_n){=}x_n$ for every $n{\in}N$. Thus φ has infinitely many fixed points. Hence φ is not expansive.

After I finished writing an early version of this paper, I knew that T. Shimomura [7] also proved Theorem 1, independently.

References

- [1] Aoki, N., The spliting of zero-dimensional automorphisms and its application, Colloq. Math. 49 (1985), 161-173.
- [2] Bryant, B.F., Unstable self-homeomorphisms of a compact space, Vanderbilt University, Thesis, 1954.
- [3] Dateyama, M., Homeomorphisms with the pseudo orbit tracing property of the Cantor set, Tokyo J. Math. 6 (1983), 287-290.
- [4] Fujii, S., Distal homeomorphisms with the pseudo orbit tracing property and total disconnectedness, Preprint.
- [5] Jakobsen, J.F. and Utz, W.R., The nonexistence of expansive homeomorphisms on a closed 2-cell, Pacific J. Math. 10 (1960), 1319-1321.
- [6] Sears, M., Expansive self-homeomorphisms of the Cantor set, Math. System Theory 6 (1972), 129-132.
- [7] Shimomura, T., The pseudo-orbit tracing property and expansiveness on Cantor set, Preprint.

Institute of mathematics University of Tsukuba Tsukuba-shi Ibaraki 305 Japan