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1. Introduction.

All spaces considered in this paper are assumed to be compact and metrizable.

Let ¢ be a homeomorphism from a space (X, d) onto itself. Then ¢ is
expansive if there is ¢>0 such that for every x, y= X with x+#y there is neZ
for which d(¢™(x), ¢™(9))>c. Given 0>0, a sequence {x;:7/Z} is a d-pseudo-
orbit of ¢ if d(p(x,), x:41)<0 for every i€ Z. Given >0, a sequence {x;:icZ}
is e-traced by a point yeX if d(p'(y), x;)<e for every i€ Z. We say that ¢
has the pseudo orbit tracing property (abbrev. P.O.T.P.) if for every >0 there
is >0 such that every d-pseudo-orbit of ¢ can be e-traced by some point of X.

For a space (X, d) we denote by X(X) the space of all homeomorphisms
of X with the metric d(¢, ¢)=max{d(p(x), ¢(x)): x&X} for every ¢, P K(X).
Let &(X)={psH(X): ¢ is expansive} and P(X)={p=H(X): ¢ has P.O.T.P.}.

In Section 3 we are concerned with the Cantor set C. The Cantor set C
is the unique zero-dimensional infinite group. N. Aoki proved that every
group automorphism of C has P.O. T.P. M. Sears proved that &(C) is dense
in 4(C), constructing a dense subset A of &(C) in #(C). M. Dateyama
proved that @(C) is dense in % (C), constructing a dense subset @ of @(C) in
H(C). However, for the sets A and $ above we have ANB=¢. So it is
unknown whether the set &(C)N\(C) of all expansive homeomorphisms with
P.O.T.P. of C is dense in 4(C). In Section 3 we shall prove the following
theorem.

THEOREM 1. The set of all expansive homeomorphisms with P.O. T.P. of the
Cantor set C is dense in H(C).

We know [6] that &(C) is of first category. So &(C)NP(C) is also of first
category.

The convergent sequence is another standard zero-dimensional space, classed
with the Cantor set. In Section 4 we shall prove the following theorem.
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THEOREM 2. Let S={0,1,1/2,1/3, ---}. Then

(@) the set of all expansive homeomorphisms of S is dense in K(S),

(b) the set of all homeomorphisms with P.O. T.P. of S is dense in 9(S),
(¢) S has no expansive homeomorphism with P.O.T.P.

In Section 5 we shall construct a zero-dimensional space having no expansive
homeomorphism.

2. Preliminaries.

Let D?=11{D;:i=Z}, where D;={0, 1} for every iZ. We define the
metric d on D? by

1I/min{|k|: xx#y:} if xe=9
d(x, y)=

if inyo

for every x=(x;), y=(y;)€ D?.

Obviously, (DZ, d) is homeomorphic to the Cantor set. For a homeomorphism
of a compact metrizable space X it is clear that both expansiveness and P.O. T.P.
do not depend on the choice of metrics on X. Thus we may regard (D?, d) as
the Cantor set.

For every 7, & Z with i1<; we put D@, /)=II{D,:i<k=j} and for every
feDG, j) we put ¢*(f)=jand ¢ (f)=i. We define the order < on \U{D(, j):7, j
eZ with i<j}\UD? as follows: f<g if and only if one of the following condi-
tions holds; (1) f=g, (2) f€DG, 7), g D(k, ), k=i, j<!and f,=gn for every
m,i<m<j, 3) feDq, 5), gD? and f,=gn for every m,i<m<j, where f=
(fi, fisr, ==, f3) for fE€D@, j) and f=(---, fo1, fo, fr, ) for f€D? For every
feD@E, j) and any neN with i<—n and n<j (or for every f=DZ? and any
neEN)we put fin=f-n, f-n+1, =+ » fa)ED(—n, n). For every f=D(, j) we put
A;=p7}(f), where p;;: D2—D(, j) is the projection.

If a space X is the union of a pairwise disjoint collection {X;: A=A} of
open-and-closed subsets of X, then we represent X as X=@P{X,;: 1= 4}.

3. Proof of Theorem 1.

Let ¢: D?->DZ? be a homeomorphism and ¢>0. We shall construct an ex-
pansive homeomorphism ¢ with P.O. T.P. such that d(¢, ¢)=max{d(p(x), ¢(x)):
xe D%} <e.

We take k, n= N such that 1/k<e and d(¢(x), ¢(y))<1/k for every x, yc D?
with d(x, y)<1/n.
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Claim 1. For every feD(—n, n) there are h(f)eD(—k, k) and g(f)e
D(—1,, I,) for some [, [,=N, i=1, 2, satisfying the following three conditions;

@ D?P=B{As>: fED(—n, n)},

(D) P(A)CT Ancss,

() h(fHH=g(f).

Proof of Claim 1. From diam A;<1/n it follows that diam ¢(A;)<1/k.
Since D?=@{A,: heD(—Fk, k)} and d(A,, Ay)=1/n for every h, h"D(—k, k)
with h+h’, there is A(f)eD(—Fk, k) such that ¢(A;)CAnyy. For every he
D(—F, k) list {feD(—n, n): h(f)=h} as {fri: 1=Z:1<pr}. Forevery i, 1Zi< py,
we take gn.=h such that A,=@P{A,,,: 1=i=p,}. Let us set g(fr)=gr: for
every heD(—k, k) and any 7, 1<i<p,. Then g(f) and A(f) have all the re-
quired properties.

Next, we shall construct a homeomorphism ¢: D?—D? For every x&D?
we define ¢(x) as follows.

Let f=x,,€D(—n, n) and g(f)eD(—,, I,).

Case 1. [;+/,=2n and [,=n.

Let us set
(g if —0L<i<l,
Ixi“ if [2+1§Z'
(p(x))i= . .
l Xitig+lg+e if n—0,—[,—1<i—[,—1
Xioon+l +lp+1 if 1€n—04—10,—2
and

M*(f)=1 and M- (f)=—2n-++1+1.

Case 2. [,+0,<2n and [,<n.

Let us set
(g(f )i if —L=is
{xiﬂ if i1 £—n—-2
(p(x))i= . .
Xiten+2 if —n—1=/=—/,—1
Xiton—1y-1p+1 if L +1=:
and

M (f)=2n—1,—0,+1 and M- (f)=1.

Case 3. otherwise, i.e. ({;+[,=2n and [,<n) or ([,+{,<2n and [,>n).
In this case we have [,<<n</,. Let us set
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(g(fN: it —L=i<l,
(@(x)):i=\ Xivn-1, if L+1=7

Xi+1,-n if i=—-0,—1
and

M+ (f)=n—!, and N (f)=l—n.

Then it is obvious that Qiag: A;—A,sy is a homeomorphism. By (a), ¢ is a
homeomorphism from D? onto itself. Let us set m=max{—c (g(f)), c*(g(f):
feD(—n, n)}.

By the construction of ¢ the following claim is easily seen.

Claim 2. Let x, yeD? with d(x, y)=1/k<1/2m.

(1) If x,#y:, then d(p(x), (x))=1/l and x,#y,, where [=k—M*(x,a).

(i) If x_,#y-,, then d(¢™'(x), o' (¥)=1/l and x_,#y_,, where [=k—
M=(x5).

By Claim 2, 1/2m is an expansive constant for ¢. Thus ¢ is expansive.

To prove that ¢ has P.O.T.P. we need the following mappings a and 8.

For every feuU{D(, j): i, j&€Z with i£—n and n<j} let us set

a(f)=max{g: g<¢(h) for every heD? with f<h}.
For every geU{D(, 5): i, j€Z with i<—m and m<j} let us set
B(g)=max{f: f<¢~'(h) for every he D? with g<h}.

We shall show that ¢ has P.O.T.P.

Let &,>0. We take 6=1/N such that 1/N<min{e,, 1/2m}. Let {x*:/i€Z}
be a d-pseudo-orbit of ¢. Let K(—1)=—N—1. By induction on 0=:€Z, we
choose K (i) and y;=D; for every j, K(G—1)<j< K (), satisfying the following
conditions :

d K@E—DL<K(@),

(e) c*(a(y)=N,

) a'(y)iv=xtw,
where y'=(y_n, Y-n+1, ', Yx@)ED(—N, K({@)).

In case :=0, let K(0)=N and for every j, —K(—1)</j=K(0), let y;=x}.
Assume that K(z) and y;, KG—1)<j=<K (), are chosen such that the above con-
ditions hold. Let us set K(G+1)=K(@)+MH(ai(y%),,) and y;=xi%_ g+ for
every 7, K@)<j=<K(@+1). It is easy to check that all induction hypothesis are
satisfied. Let L(1)=N-+1. By induction on 0=/=Z, similarly as above, we
choose L(z) and y,=D; for every j, LG)Sj<L(i+1), satisfying the following
conditions :
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(8 LE<LE+D,

(h) ¢ (B (y)N)=—N,

(i) .B—i(yi)lN:x'fN,
where y'=(Yrc Yrcrer, =, YN)ED(LE), N). Let usset y=(+, ¥-1, Yo, Y1, =)
€D?. Then for every /=0 we have ¢'(y)>a’(y*) and a’(y*),y=x!y. This im-
plies that ¢*(y),»=x!y and therefore we have d(¢%(»), x¥)<1/N<e,. For every
1<0 we have ¢*(y)>p"%(y?) and B~ (y*) y=xiy. This implies that ¢*(¥) y=xlx
and therefore we have d(¢*(y), x")<1/N<e;,. Hence {x‘:i=Z} is e;-traced by
y. Therefore ¢ has P.O.T.P.

We show that d(p, ¢)<<e. By the construction of ¢, ¢((As))=A,s, for every
f€D(—n, n). For every x D?, we have x< A, for some feD(—n, n). Thus,
by (c), we have o(x)E@(As)=Azs»TAncsy. On the other hand, by (b), we have
P(xX)EP(A)CT Aneyy. From diam A,py=1/(k+1)<e it follows that d(e(x), ¢(x))
<e. Hence we have d(¢, ¢)<e. Theorem 1 has been proved.

4. Proof of Theorem 2.

Let d be the Euclidean metric on S={0, 1, 1/2, 1/3, ---}. Note that a map-
ping ¢: S—S is a homeomorphism if and only if ¢ is one-to-one, onto and
©(0)=0. For every n=N we set S,={1/(n—1), 1/(n—2), ---, 1}.

(@) Let ¢g=4(S) and &,>0. We construct ¢=&(S) such that d(p, ¢)<e,.
To do this, we take neN with 1/n<e,. For every meN, m<n, we take
xn&S such that ¢(x,)=1/m. Let /=max{l/x,:m<n}+1. For every k&N,
k=1l let us set

1/(k—2) if k=[+2:; for some ;&N
o(1/k)=1 1/(k+2) if k=[+2/—1 for some ;&N
1/({+1) if k=I.

For every m&N, m<n, let us set ¢(xn,)=1/m (=¢(xn)). Let ¢0)=0, and for
every x&S;,—{xn: m<n} let ¢(x) be an element of S;—S, such that ¢(x)#¢(x")
for every x, x'eS,—{xn:m<n} with x#x’. Then ¢ is one-to-one, onto and
¢(0)=0. Thus ¢=4(S). By the construction of ¢, it is obvious that d(p, ¢)<
1/n<e,. Let ¢=1/(20?+2!). Note that U.1//)={1/l}. We show that ¢ is an
expansive constant for ¢. Let x, y&S with x#y. We may assume that x+0.
If x&S,, then d(x, y)>c. If x&S,, then ¢(x)=1/! for some /= Z, and there-
fore d(¢*(x), *(¥))>c. Hence we have p=&(S).

(b) Let ¢=4(S) and &,>0. We costruct o=2(S) such that d(p, ¢)<eo.
Let n,/ and x,, m<n, be as in (a). For every x&S, let ¢(x) be as in (a).
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For every x&S—S, let ¢(x)=x. Then, similarly as in (a), we have @&4%4(S)
and d(¢, ¢)<e,. To prove that ¢ has P.O.T.P. let ¢,>0. Take k=N with
1/k<min{e,, 1//}. Let 6=1/(k*+ k). Note that Us1/5)={1/j} for every jEN,
J=k. It suffices that every d-pseudo-orbit of ¢ can be e,-traced by some point
of S. Let {y::7=Z} be a d-pseudo-orbit of ¢. If y,&S—S,, then y;=1/n<¢,
for every i€Z. Thus {y;:i€Z} is e,-traced by y, If y,=S,, then y;=¢'(y,)
for every i€ Z. Thus {y;:i=Z} is e,-traced by y,. Hence ¢ has P.O.T.P.

(¢) Let p=&(S) with an expansive constant ¢. It is enough to prove that
eE=P(S). We take neN with 1/n<c. Assume that 1/m is a periodic point for
every meN, m<n. Then U{Orb(l/m): m<n} is finite, where Orb(x)=
{p'(x): ieZ}. Pick up a point x&€S—(U{Orb(1/m): m<n}U{0}). Then we
have Orb(x)S—S,, therefore d(¢'(x), ¢*(0))<1/n<c for every i=Z. This is
a contradiction. Take m<n such that 1/m is not a periodic point. Let ¢=
1/m*+m). For every >0 we can take /&N such that ¢'"(1/m)<d and
¢ Y(1/m)<d, because 1111’2 ¢'(1/m)=0 the 31}2 0 *(1/m)=0. Let us set

{ ©/(1/m) if 0=/<51-1
Vort+ij= ) . .
e (1/m) if 1<5L20

Then {y;:i€Z} is a d-pseudo-orbit of ¢. Assume that {y,:7=Z} is e-traced
by yS. Since U,(1/m)={1/m} and y.;,,;=1/m for every k=Z, we have ¢**(y)
=1/m for every k=Z. This implies that 1/m is a periodic point. This is a
contradiction. Hence S has no expansive homeomorphism with P.O. T.P.

5. A zero-dimensional space having no expansive homeomorphism.

S. Fujii [4] proved that a space X is zero-dimensional if and only if the
identity mapping idx has P.O.T.P. So every zero-dimensional space has at
least one homeomorphism with P.O.T.P. We know ([2], or see [5]) that the
unit interval has no expansive homeomorphism. However, as far as the author
knows it is unknown whether there is a zero-dimensional space having no ex-
pansive homeomorphism. In this section we construct such a space X. Note
that the space X above is contained in the Cantor set, bzscause the Cantor set is
universal for the class of zero-dimensional spaces.

Let Cc[0, 1] be the Cantor set and S={0, 1, 1/2, ---} a convergent sequence.
Let X,=(CéHS™)/{0, 0,} be the quotient space obtained by identifying {0, 0,} to
a point x,, where 0=C and 0,=(0, 0, ---, 0)=S", for every n=N, and let X,=
{x,} be a one-point space. Let X=U{X,: neNU{0}}. We give X a topology
as follows. Let @(x)={U:U is a neighborhood of x in X,} for every x&X,
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neN, and B(x)={J{X;: j<i}UX,: jeN}. Then {8(x): x=X} is a neigh-
borhood system. Obviously the space X with the topology generated by { 8(x):
x= X} is compact, metrizable and zero-dimensional. Next we show that X has
no expansive homeomorphism. To do this let ¢ be a homeomorphism of X.
The point x, is the only point that has arbitrarily small neighborhoods contain-
ing a set homeomorphic to the Cantor set, a set homeomorphic to S*, and no
set homeomorphic to S"*!. Therefore we have ¢(x,)=x, for every n&N.
Thus ¢ has infinitely many fixed points. Hence ¢ is not expansive.

After I finished writing an early version of this paper, I knew that T. Shi-
momura also proved Theorem 1, independently.
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