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ON SPAN AND INVERSE LIMITS

By

Kazuhiro KAWAMURA

1. Introduction.

A compact metric space is called a compactum and a connected compactum is
called a continuum. All maps in this paper are continuous. Let f: X—Y be a
map between continua. Ingram [2] and Lelek defined the span, semispan,
surjective span, and surjective semispan of f by the following formulas (the map
pi: XX X—X denotes the projection to the /-th factor, 7=1, 2).

T=a, 0, 0%, o¥.

there exists a continuum ZC XXX such
7(f)=sup{c=0|that Z satisfies the condition ) and s
d(f(x), f(y)=c for each (x, y)EZ

where the condition 7) is:

W 2)=p2) if t=0, PpI(2)DpAZ) if t=0,
P Z)=p(Z)=X if r=0%*, »(Z)=X if r=0%.

The span of a continuum X is defined by ¢(Gdx). The other cases are
similar. In the same way, we can define the symmetric span of f by the formula

there exists a continuum ZC XXX such that
s(f)=sup{c=0|Z is symmetric (i.e. (x, y)=Z iff (y, x)EZ)
and d(f(x), f(y))=c for each (x, )EZ

It is a mapping version of symmetric span of a continuum due to J. F. Davis [1].

Let X=1lim(X,, pnn+1) be a continuum, where pnnsi: Xns1i—X,. Ingram
and showed that ¢(X)=0 if and only if there exists a cofinal subsequence
(n4)iz: such that li;n a(pnin]):o for each 7=1. In section 2 of this paper, we

will prove a mapping version of this theorem. H. Cook proved essentially that
the symmetric span of the dyadic solenoid is zero ([1], p. 134), while its span
is positive. The author wishes to thank to the referee for pointing out this
fact. In section 3, we generalize this to the poly-adic solenoid. Let f and
g: X—Y be maps. d(f, g) denotes sup{d(f(x), g(x))|x&X}.
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2. Span and a limit of maps.

Let X=lim(X,, pnr+:) and Y=Um (Y », gu+1) be compacta, where all X,
and Y, are polyhedra and both of p,,+1: Xos1—Xr and ¢, p41: Yo —Y, are
surjective for each n=0. The maps p,: X—X, and ¢,Y—Y, denote the pro-
jection maps. Under these notations, Mioduszewski showed the following [15].

THEOREM 1. 1) For every sequence (e,) of positive numbers with lim e, =0,
there exist cofinal increasing subsequences (m;) and (n,) and maps fp: Xn,—Ya,
such that diagrams (A) and (B) are e,-commutative for each s<k<l.

X, ~———X Xp, «——— Yo,

AT q

YnsL Yn,, < Y X‘ms< Y"k< le
(A) (B)

2) Conversely, if we are given diagram (B), then we can find a map f: X
—Y which satisfies diagram (A) for each k. If all f,’s are surjective, f can be
constructed so as to be surjective.

Notice that the map f is defined by q,,sf:li;n GngngfDm,-

We say that [ is weakly induced by the sequence (f,). This terminology is
due to Oversteegen and Tymchatyn [13].

THEOREM 2. Let f: X—>Y be a map between continua which is weakly induced
by a sequence (fy: Xn,—Yn,) Then,

7(f)=0 if and only if there exists a cofinal subsequence (ny,) of (ns) such that
liJm T<aninkjfkj):0 for each i. Where, =0, 0*, 0., 6%, and s.

The basic idea of the proof is in [2] and [3]. But we need some prepara-
tions. Throughout this section, = denotes a, ¢, *, ¢¥, and s unless otherwise
stated.

PROPOSITION 3. Let f: X—Y and g: Y—Z be maps.
1) r(gfHi=t(g). 2) If ©(f)=0, then =(gf)=0.

POPOSITION 4. Let (f,: X—>Y) be a sequence of maps which converges uni-
formly to a map f: X—>Y. Then z(f)=lim z(f,).

The proof of the above two propositions are easy and will be omitted.
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PROPOSITION 5. 1) Let X,’s and X be continua in a metric space M and let
Y.'sand Y be continua in a metric space N. Suppose that f: X—Y, fo: Xo—Y,,
Pn: X—X,, and q.: Y=Y, satisfy the following conditions.

a) Lim X,=X, LimY,=Y. Both of XU\J X, and YU \JY. are compact.

b) Both of the maps p. and g, are 1/2"-translation (that is, d(x, p.(x)<
1/2* for each x= X etc.).

c) There exists a decreasing sequence of prositive numbers &,’s with lim e, =0,
such that d(q. f, foprn)<étn.

d) Define F: XU\ JX,—YUUJY, by F|X=f, f|Xo=fn. Then F iswell de-
fined and continuous.

Then =(f)=lim z(f,).

2) We can replace condition d) by

e) FEach p, is surjective.

Reasoning the same way as in [10, 3.1] and [5, 2.1], we can show two in-
equalities; lim sup #(f»)<t(f)<lim inf z(f,), which imply the conclusion.

PROOF OF THEOREM 2. To simplify the notations, a cofinal subsequence of
(n;) is also denoted by (n;). First we assume that z(f)=0. Take any sub-
sequence (n;) and an integer ;>0. It suffices to prove that lilm 7(qn;n J)=0.
Let A be a compactum satisfying the following conditions.

1) A=XU\UX,,, where X and X,,, are homeomorphic to X and X,, re-
spectively. XNXn,=@ =X, ,NXn, for each k+L

2) Let h: X—>X and hy: Xn,—Xn, be homeomorphisms. There exists an
er-translation p,, :X—X,, satisfying hspm,=pn,h-

3) Lim X, =X.
That such space A exists is well known. As each bonding map is surjective,
we can take each p,, to be surjective. Consider the following diagram.

K, < P X
he l lh
- DPm; »
qnjnifi Xmi < X qnjf
?k\ /4{

Where, a:qnjfh~1 and bizqnin].fihgl. Then,
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4) d(ay biﬁmi)zd(qnjfh-ly an nifihzlhipmih_l)
:d(anniQnif: Gn; nifipmi)<5i

by the e;-commutativity of (A). It is easy to see that t(a)=t(¢gn,;f) and z(b;)=
7(gn,n,f:)- Applying Proposition 3.2), Proposition 5 and by condition 4), we have

M 2(gs; n, fo)=lim 7(bs)=7(a)=7(gn,/)=0.

Next we assume that a cofinal subsequence satisfies the hypothesis. By
Proposition 4 and Proposition 3.1),

2(gn; H=IM 7(gn;n, fid )
élim T(an nifi)=0 .
To show that 7(f)=0, we take any continuum Z in XXX satisfying condi-

tion 7). There exists a point (x7, y/) Z such that q,.jf(xf):q,,jf(y’), because
z‘(qnjf)=0 for each ;. We can assume that (x7, y/)—(x, y) as j—ooo. If j<i,

(Jnjf(xi)=an n,;Qn,;f(xi)
=qnj n,-Qnif(yi>=0njf(yi)-
Tending : to infinity, we have
gn;f(x)=gn;f(y)  for each j and hence f(x)=/f(y).
This completes the proof.
THEOREM 6. Suppose that X, Y, f and f, satisfy the hypothesis of Theorem
2. If there exists a cofinal subsequence (n;) such that lim z( fniDa;n,)=0, then
=(f)=0. ’
PROOF. For each s<7, 7(gn,n,fn;Pn,)=0, because by
T(fnipni)=1i}n T(fnipn,; njpnj)
§1im T(fn,;pn,; nj)':O-
J

Using the ¢;-commutativity of the diagram (A) and (B), we have 7(g,, /)<
T(qny n;fiDn,)+2e;=2¢; for each j>i. Therefore 7(g,,f)=0 for each 7 and z(f)=0.

COROLLARY 7 [8 and 10]. Let X=lim (X,, prn+1) be a continuum represented
as the inverse limit of continua and onto bonding maps. Then the followings are
equivalent.

1) z(X)=0.

2) There exists a cofinal subsequence (n;) such that lijm r(pni,,j)zo for each 1.
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3) For each n, t(p,)=0.

In and 6, no conditions on p,’s and g¢,’s, on X,’s and Y,’s are
required. If we add some conditions, the followings are obtained.

PROPOSITION 8. Suppose X, Y, f, fn, Pn and q. satisfy the hypothesis of
Theorem 2. Moreover assume that:

1) All p,’s are monotone. or

2) X 1is tree-like and each X, is a finite tree. FEach p, is an open onto map.
=0, 0, and s.

If #(f)=0, then lign (fn)=0.

PROOF. 1) For each n=0 and for each continuum ZCX, XX, satisfying
), (PoXpn)"YZ) is a continuum in XX X satisfying 7). There exists a (x, y)=
(prXpr)"NZ) such that f(x)=f(y). Then

A(frDn(%), fabrINSA(faDn(%), g f(X)+d(qnf (D), faD2(D))
<2e,.

Hence 7(f,)<2e¢, and this completes the proof.
2) We need the following theorem for the proof.

THEOREMlQ [14, p.189]. Let X and Y be compacta and f: X—Y be alight
open map from X onto Y. For each dendrite D in Y, there exists a dendrite D,
in X such that f(D,)=D and f|D, is a homeomorphism on D. ’

Using this Theorem, 2) is shown as follows. ‘

Let n be a positive integer. There exists a continuum W, and maps r,: X
—Wa, Sa: W,—X, such that », is monotone and s, is light open and s,r,=p,.
As X, is a tree, there exists a dendrite T, in W, such that s,(T,)=X, and
s, T» is a homeomorphism by For each continuum ZCX,XX,
satisfying the condition 7) (r=e, 7,, and s), the set (S Tpl72 (T2) X Sp+
T 1774 T))"YZ) is a continuum in XXX which also satisfies the condition ).
Arguing the same way as in 1), we obtain the conclusion.

An easy example shows that the converse of does not hold.
But by [l'heorem 6 and Proposition 3, we can prove:

If 7(f,)=0 for each n, then z(f)=0.

Monotone maps preserve span zero ([3], theorem 2). The author recently
proved that open maps also preserve span zero [7]. Hence,
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COROLLARY 10. Let X=lim(X,, pnn+1) be a continuum as the inverse limit
of continua and onto bonding maps. Suppose that all p,as1: Xes1—Xa's are

monotone or all Pppn+i’s are open. Then o(X)=0 if and only if o(X,)=0 for
each n.

3. Some examples.

In this section, we are concerned with circle-like continua.

PROPOSITION 11. Let X=Um(Xn, pnn+1), Y=UM Y 4, ¢nn+1) be circle-like
continua and f: XY be a map which is weakly-induced by a sequence of maps
(frn: Xo—Yy). If all Xo's and Y,’s are simple closed curves and all qnn+i are
essential, then the followings are equivalent.

a) a(f)=0.

b) There exists a subsequence (n;) such that f, ;=0 for each j.

As was shown in [5, 2.2], a map f: X—S! from a continuum X to the unit
circle S* is essential if and only if ¢(f)=diam S'>0 Using this result, this pro-
position is easily proved. (See also [16]).

H. Cook has essentially proved that the symmetric span of the dyadic
solenoid is zero ([1J, p.134). Here we consider general p-adic solenoid. Let
p=(pi, p., ---) be a sequence of positive integers. The p-adic solenoid S, is de-
fined by the inverse limit of the unit circles X,=S'={z&C||z|=1}, whose
bonding maps f,: X,.1—X, are defined by the formulas; f,(z)=z"». We show
the following result.

PROPOSITION 12. Let S, be the p-adic solenoid, p=(p, ps, --). Then s(Sp)>0
if and only if there exists a positive integer N such that for each n>N, p, is odd.

First we calculate the symmetric span of maps between the unit circles.

LEMMA 13. Let f:S'—>S' be the map between the unit circles defined by
f(z2)=2z", where n is a positive integer. Then s(f)=0 or diam S' (=2). Also,
s(f)=0 if and only if n is even.

PROOF. S!'XS! is obtained from the rectangle [0, 277X [0, 2] by identify-
ing (x, 0) and (x, 2#), (0, y) and 2=x, y) 0=x, y<2rm). Let F={(x, y)=S5S'XS!|
f(x)=f(»)}. Then F contains diagonal set. Let

A=[2r-(G—1)/n, 2r-i/n] X0,
B,=0x[2x-(G—1)/n, 2n-i/n],
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Ci=02rn-t—1)/n, 2r-i/n]X2r,
D=2xX[2rx-(G—1)/n, 2x-i/n], i=1, -, n.

A; and Cy, B; and D; are identified in S'XS' respectively. Let X; be the
tetragon bounded by F and A; and D,,,_; in [0, 2] %[0, 27], and X, be the
set in S'XS* obtained from X; by the identification. Notice that s(f)>0 if and
only if there exists a continuum Z in S'XS! such that Z is symmetric and
ZINF=g.

First we assume that n is odd. Then (=, 0)(=(x, 2x) in -S'XS!) and
0, #)(=2x, z) in S*XS*) do not belong to F. So we can join (x, 0) and (0, «)
by the symmetric arc A={(x, y)=S*'xXS'||arg x—arg y|=n}. It is easy to see
that d(f(x), f(y))=diam S*=2 for each (x, y) of A. Hence s(f)=2.

Next we assume that n is even. Suppose that s(f)>0. Then by the above
remark, there exists a continuum Z in S'XS* such that Z is symmetric and
ZNF=@. For each i=1, .-, n, let Z,=ZNX,. Then Z;*=ZNX7*. Let jbe
the first integer such that Z;+ @. .

We claim that Z;NZ;'=@. If j=1, X,NX7'C(diagonal)CF. Since ZNF=0,
ZNZ7'=@. Assume j>1. As n is even, i#n+1—; for each integer. Hence
BiNDyi1-iCF, AiNCrs1-:CF, and we have X,NX;'CF. As ZNF=g, we have
the claim.

As Z is connected, Z,\JZ'#Z. If Z does not intersect Intsi.s:(Xzi.-,),
then Z,UZ3;' is a clopen set in Z, because )?;3,1-, is the only one of the X,’s
which meets X; in S!XS'—F. So ZNInt X:i,.;+@. By the similar argument,
we see that )?,-U)Z'nﬂ_j does not intersect any other X,’s and X;'’s in S!XS!'—F
andX;# X,.,-;. Therefore Zi;\JZzki-; i1s a clopen proper subset of Z. This is
a contradiction which completes the proof.

PROOF OF PROPOSITION 12.

First we assume s(S,)>0. If there exists a cofinal subsequence (n;) such
that pn, is even, S(fa,+1a,,,)=0 by By $(Sp)=0, a con-
tradiction.

Next suppose that there exists a positive integer N satisfying the hypothesis.

Then for each m>n>N, s(fn,n)=2. Therefore lim s(f,,»)>0 and s(S;)>0, as
desired.

This completes the proof.
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