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ON SPAN AND INVERSE LIMITS

By

Kazuhiro KAWAMURA

1. Introduction.

A compact metric space is called a compactum and a connected compactum is
called a continuum. All maps in this paper are continuous. Let $f:X\rightarrow Y$ be a
map between continua. Ingram [2] and Lelek [11] defined the span, semispan,
surjective span, and surjective semispan of $f$ by the following formulaS (the map
$p_{i}$ ; $X\times X\rightarrow X$ denotes the projection to the i-th factor, $i=1,2$).

$\tau=\sigma,$ $\sigma_{0},$
$\sigma^{*},$ $\sigma_{0}^{*}$ .

$\tau(f)=\sup\{c\geqq 0|_{d(f(x),f(y))\geqq cforeach(x,y)\in Z}^{thereexistsacontinuumZ\subset X\times X}thatZsatisfiesthecondition\tau)and^{such}\}$ ,

where the condition $\tau$ ) is:

$p_{1}(Z)=p_{2}(Z)$ if $\tau=\sigma$ , $p_{1}(Z)\supset p_{2}(Z)$ if $\tau=\sigma_{0}$ ,

$p_{1}(Z)=p_{2}(Z)=X$ if $\tau=\sigma^{*}$ , $p_{1}(Z)=X$ if $\tau=\sigma_{0}^{*}$ .
The span of a continuum $X$ is defined by $\sigma(id_{X})$ . The other cases are

similar. In the same way, we can define the symmetric span of $f$ by the formula

$s(f)=\sup\{c\geqq 0|_{andd(f(x),f(y))\geqq cforeach(x,y)\in Z^{ch}}^{thereexistsacontinuumZ\subset X\times X}Zissymmetric(i.e.(x,y)\in Ziff(y^{su}x)\in^{th}Z^{a})^{t}\}$ .

It is a mapping version of symmetric span of a continuum due to J. F. Davis [1].

Let $X=\lim_{\leftarrow}(X_{n}, p_{nn+1})$ be a continuum, where $p_{nn+1}$ : $X_{n+1}\rightarrow X_{n}$ . Ingram
[2] and [4] showed that $\sigma(X)=0$ if and only if there exists a cofinal subsequence
$(n_{i})_{i\geq 1}$ such that $\lim_{j}\sigma(p_{n_{i}n_{j}})=0$ for each $i\geqq 1$ . In section 2 of this paper, we

will prove a mapping version of this theorem. H. Cook proved essentially that
the symmetric span of the dyadic solenoid is zero ([1], p. 134), while its span
is positive. The author wishes to thank to the referee for pointing out this
fact. In section 3, we generalize this to the poly-adic solenoid. Let $f$ and
$g:X\rightarrow Y$ be maps. $d(f, g)$ denotes $\sup\{d(f(x), g(x))|x\in X\}$ .
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2. Span and a limit of maps.

Let $X=\varliminf(X_{n}, p_{nn+1})$ and $Y=\varliminf(Y_{n}, q_{nn+1})$ be compacta, where all $X_{n}$

and $Y_{n}$ are polyhedra and both of $p_{nn+1}$ ; $X_{n+1}\rightarrow X_{n}$ and $q_{nn+1}$ : $Y_{n+1}\rightarrow Y_{n}$ are
surjective for each $n\geqq 0$ . The maps $p_{n}$ : $X\rightarrow X_{n}$ and $q_{n}Y\rightarrow Y_{n}$ denote the pro-
jection maps. Under these notations, Mioduszewski showed the following [15].

THEOREM 1. 1) For every sequence $(\epsilon_{n})$ of positive numbers with $\lim\epsilon_{n}=0$ ,

there exist cofinal increasing subsequences $(m_{k})$ and $(n_{k})$ and maps $f_{k}$ ; $X_{m_{k}}\rightarrow Y_{n_{k}}$

such that diagrams $(A)$ and $(B)$ are $\epsilon_{k}$ -commutative for each $s\leqq k\leqq l$ .

$X_{m_{i}}\leftarrow X$ $X_{m_{k}}\leftarrow Y_{n_{l}}$

$ f_{k}\downarrow$ $\downarrow f$ $f\sqrt{}$ $\downarrow f_{l}$

$Y_{n_{s}}\leftarrow Y_{n_{k}}\leftarrow Y$ $ X_{m_{s}}\leftarrow Y_{n_{k}}\leftarrow Y_{m}\iota$

(A) (B)

2) Conversely, if we are given diagram $(B)$ , then we can find a map $f;X$

$\rightarrow Y$ which satisfies diagram $(A)$ for each $k$ . If all $f_{k}\prime s$ are surjective, $f$ can be

constructed so as to be surjective.
Notice that the map $f$ is defined by $q_{n_{s}}f=\lim_{k}q_{n_{S}n_{k}}f_{k}p_{m_{k}}$ .

We say that $f$ is weakly induced by the sequence $(f_{k})$ . This terminology is
due to Oversteegen and Tymchatyn [13].

THEOREM 2. Let $f:X\rightarrow Y$ be a map between continua which is weakly induced
by a sequence $(f_{k} : X_{m_{k}}\rightarrow Y_{n_{k}})$ Then,

$\tau(f)=0$ if and only if there exists a cofinal subsequence $(n_{k_{j}})$ of $(n_{k})$ such that
$\lim_{j}\tau(q_{n_{k_{i}}n_{k_{j}}}f_{k_{j}})=0$ for each $i$ . Where, $\tau=\sigma,$ $\sigma^{*},$

$\sigma_{0},$
$\sigma_{1)}^{*}$ , and $s$ .

The basic idea of the proof is in [2] and [3]. But we need some prepara-
tions. Throughout this section, $\tau$ denotes $\sigma,$ $\sigma_{0},$

$\sigma^{*},$ $\sigma_{U}^{*}$ , and $s$ unless otherwise
stated.

PROPOSITION 3. Let $f:X\rightarrow Y$ and $g:Y\rightarrow Z$ be maps.
1) $\tau(gf)\leqq\tau(g)$ . 2) If $\tau(f)=0$ , then $\tau(gf)=0$ .

POPOSITION 4. Let $(f_{n} ; X\rightarrow Y)$ be a sequence of maps which converges uni-
formly to a map $f:X\rightarrow Y$. Then $\tau(f)=\lim\tau(f_{n})$ .

The proof of the above two propositions are easy and will be omitted.
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PROPOSITION 5. 1) Let $X_{n}\prime s$ and $X$ be continua in a metric space $M$ and let
$Y_{n}\prime s$ and $Y$ be continua in a metric space N. Suppose that $f:X\rightarrow Y,$ $f_{n}$ : $X_{n}\rightarrow Y_{n}$ ,
$p_{n}$ : $X\rightarrow X_{n}$ , and $q_{n}$ : $Y\rightarrow Y_{n}$ satisfy the following conditions.

a) Lim $X_{n}=X$, Lim $Y_{n}=Y$ . Both of XV $\bigcup_{n=1}^{\infty}X_{n}$ and $Y\cup\bigcup_{n=1}^{\infty}Y_{n}$ are compact.

b) Both of the maps $p_{n}$ and $q_{n}$ are $1/2^{n}$-translation (that is, $d(x, p_{n}(x))<$

$1/2^{n}$ for each $x\in X$ etc.).

c) There exists a decreasing sequence of prositive numbers $\epsilon_{n}\prime s$ with $\lim\epsilon_{n}=0$ ,

such that $d(q_{n}f, f_{n}p_{n})<\epsilon_{n}$ .
d) Define $F:X\cup\cup X_{n}\rightarrow Y\cup\cup Y_{n}$ by $F|X=f,$ $f|X_{n}=f_{n}$ . Then $F$ is well de-

fined and continuous.
Then $\tau(f)=\lim\tau(f_{n})$ .
2) We can replace condition d) by
e) Each $p_{n}$ is surjective.

Reasoning the same way as in [10, 3.1] and [5, 2.1], we can show two in-
equalities; $\lim\sup\tau(f_{n})\leqq\tau(f)\leqq\lim\inf\tau(f_{n})$ , which imply the conclusion.

PROOF OF THEOREM 2. To simplify the notations, a cofinal subsequence of
$(n_{i})$ is also denoted by $(n_{i})$ . First we assume that $\tau(f)=0$ . Take any sub-
sequence $(n_{i})$ and an integer $j>0$ . It suffices to prove that $\lim_{i}\tau(q_{n_{j}n_{i}}f_{i})=0$ .
Let $A$ be a compactum satisfying the following conditions.

1) $A=\overline{X}\cup\cup\overline{X}_{m_{k}}$ , where $\overline{X}$ and $\overline{X}_{m_{k}}$ are homeomorphic to $X$ and $X_{m_{k}}$ re-
spectively. $\overline{X}\cap\overline{X}_{m_{k}}=\emptyset=\overline{X}_{m_{k}}\cap\overline{X}_{m}\iota$ for each $k\neq l$ .

2) Let $h:X\rightarrow\overline{X}$ and $h_{k}$ : $X_{m_{k}}\rightarrow\overline{X}_{m_{k}}$ be homeomorphisms. There exists an
$\epsilon_{k}$ -translation $\overline{p}_{m_{k}}:\overline{X}\rightarrow\overline{X}_{m_{k}}$ satisfying $h_{k}p_{m_{k}}=\overline{p}_{m_{k}}h$ .

3) Lim $\overline{X}_{m_{k}}=\overline{X}$ .
That such space $A$ exists is well known. As each bonding map is surjective,
we can take each $\overline{p}_{m_{k}}$ to be surjective. Consider the following diagram.

Where, $a=q_{n_{j}}fh^{-1}$ and $b_{i}=q_{n_{i}n_{j}}f_{i}h_{i}^{-1}$ . Then,
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4) $d(a, b_{i}\overline{p}_{m_{i}})=d(q_{n_{j}}fh^{-1}, q_{n_{j}n_{i}}f_{i}h_{i}^{-1}h_{i}p_{m_{i}}h^{-1})$

$=d(q_{n_{j}n_{i}}q_{n_{i}}f, q_{n_{j}n_{i}}f_{i}p_{m_{i}})<\epsilon_{i}$

by the $\epsilon_{i}$ -commutativity of (A). It is easy to see that $\tau(a)=\tau(q_{n_{j}}f)$ and $\tau(b_{i})=$

$\tau(q_{n_{j}n_{i}}f_{i})$ . Applying Proposition 3.2), Proposition 5 and by condition 4), we have

$\lim_{i}\tau(q_{n_{j}n_{i}}f_{i})=\lim_{i}\tau(b_{i})=\tau(a)=\tau(q_{n_{j}}f)=0$ .

Next we assume that a cofinal subsequence satisfies the hypothesis. By
Proposition 4 and Proposition 3.1),

$\tau(q_{n_{j}}f)=\lim_{i}\tau(q_{n_{j}n_{i}}f_{i}p_{i})$

$\leqq\lim_{i}\tau(q_{n_{j}n_{i}}f_{i})=0$ .

To show that $\tau(f)=0$ , we take any continuum $Z$ in $X\times X$ satisfying condi-
tion $\tau$). There exists a point $(x^{j}, y^{j})\in Z$ such that $q_{n_{j}}f(x^{j})=q_{n_{j}}f(y^{j})$ , because
$\tau(q_{n_{j}}f)=0$ for each $j$ . We can assume that $(x^{j}, y^{j})\rightarrow(x, y)$ as $ j\rightarrow\infty$ . If $j<i$,

$q_{n_{j}}f(x^{i})=q_{n_{j}n_{i}}q_{n_{i}}f(x^{i})$

$=q_{n_{j}n_{i}}q_{n_{i}}f(y^{i})=q_{n_{j}}f(y^{i})$ .
Tending $i$ to infinity, we have

$q_{n_{j}}f(x)=q_{n_{j}}f(y)$ for each $j$ and hence $f(x)=f(y)$ .
This completes the proof.

THEOREM 6. Suppose that $X,$ $Y,$ $f$ and $f_{n}$ satisfy the hypothesis of Theorem
2. If there exists a cofinal subsequence $(n_{i})$ such that $\lim_{j}\tau(f_{n_{i}}p_{n_{i}n_{j}})=0$ , then
$\tau(f)=0$ .

PROOF. For each $s<i,$ $\tau(q_{n_{s}n_{i}}f_{n_{i}}p_{n_{i}})=0$ , because by Proposition 3,

$\tau(f_{n_{i}}p_{n_{i}})=\lim_{j}\tau(f_{n_{i}}p_{n_{i}n_{j}}p_{n_{j}})$

$\leqq\lim_{j}\tau(f_{n_{i}}p_{n_{i}n_{j}})=0$ .
Using the $\epsilon_{j}$-commutativity of the diagram (A) and (B), we have $\tau(q_{n_{i}}f)\leqq$

$\tau(q_{n_{i}n_{j}}f_{j}p_{n_{j}})+2\epsilon_{j}=2\epsilon_{j}$ for each $j>i$ . Therefore $\tau(q_{n_{i}}f)=0$ for each $i$ and $\tau(f)=0$ .

COROLLARY 7 [8 and 10]. Let $X=\lim_{\leftarrow}(X_{n}, p_{nn+1})$ be a continuum represented
as the inverse limit of continua and onto bonding maps. Then the followings are
equivalent.

1) $\tau(X)=0$ .
2) There exists a cofinal subsequence $(n_{i})$ such that $\lim_{j}\tau(p_{n_{i}n_{j}})=0$ for each $i$ .
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3) For each $n,$ $\tau(p_{n})=0$ .

In Theorem 2 and 6, no conditions on $p_{n}\prime s$ and $q_{n}\prime s$ , on $X_{n}\prime s$ and $Y_{n}\prime s$ are
required. If we add some conditions, the followings are obtained.

PROPOSITION 8. Suppose $X,$ $Y,$ $f,$ $f_{n},$ $p_{n}$ and $q_{n}$ satisfy the hypothesis of
Theorem 2. Moreover assume that:

1) All $p_{n}\prime s$ are monotone. $or$

2) $X$ is tree-like and each $X_{n}$ is a finite tree. Each $p_{n}$ is an open onto map.
$\tau=\sigma,$ $\sigma_{0}$ , and $s$ .

If $\tau(f)=0$ , then $\lim_{n}\tau(f_{n})=0$ .

PROOF. 1) For each $n\geqq 0$ and for each continuum $Z\subset X_{n}\times X_{n}$ satisfying
$\tau),$ $(p_{n}\times p_{n})^{-1}(Z)$ is a continuum in $X\times X$ satisfying $\tau$). There exists a $(x, y)\in$

$(p_{n}\times p_{n})^{-1}(Z)$ such that $f(x)=f(y)$ . Then

$d(f_{n}p_{n}(x), f_{n}p_{n}(y))\leqq d(f_{n}p_{n}(x), q_{n}f(x))+d(q_{n}f(y), f_{n}p_{n}(y))$

$\leqq 2\epsilon_{n}$ .
Hence $\tau(f_{n})\leqq 2\epsilon_{n}$ and this completes the proof.

2) We need the following theorem for the proof.

THEOREM 9 [14, p. 189]. Let $X$ and $Y$ be compacta and $f:X\rightarrow Y$ be a light
open map from $X$ onto Y. For each dendrite $D$ in $Y$, there exists a dendrite $D_{1}$

in $X$ such that $f(D_{1})=D$ and $f|D_{1}$ is a homeomorphism on $D$ .

Using this Theorem, 2) is shown as follows.
Let $n$ be a positive integer. There exists a continuum $W_{n}$ and maps $r_{n}$ : $X$

$\rightarrow W_{n},$ $s_{n}$ : $W_{n}\rightarrow X_{n}$ such that $r_{n}$ is monotone and $s_{n}$ is light open and $s_{n}r_{n}=p_{n}$ .
As $X_{n}$ is a tree, there exists a dendrite $T_{n}$ in $W_{n}$ such that $s_{n}(T_{n})=X_{n}$ and
$s_{n}|T_{n}$ is a homeomorphism by Theorem 9. For each continuum $Z\subset X_{n}\times X_{n}$

satisfying the condition $\tau$)( $\tau=\sigma,$ $\tau_{0}$ , and $s$ ), the set $(s_{n}\cdot(r_{n}|r_{\overline{n}}^{1}(T_{n}))\times s_{n}\cdot$

$(r_{n}|r_{n}^{-1}(T_{n})))^{-1}(Z)$ is a continuum in $X\times X$ which also satisfies the condition $\tau$).

Arguing the same way as in 1), we obtain the conclusion.

An easy example shows that the converse of Proposition 8 does not hold.
But by Theorem 6 and Proposition 3, we can prove:

If $\tau(f_{n})=0$ for each $n$ , then $\tau(f)=0$ .
Monotone maps preserve span zero ([3], theorem 2). The author recently

proved that open maps also preserve span zero [7]. Hence,
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COROLLARY 10. Let $X=\lim_{\leftarrow}(X_{n}, p_{nn+1})$ be a continuum as the inverse limit

of continua and onto bonding maps. Suppose that all $p_{nn+1}$ ; $X_{n+1}\rightarrow X_{n}\prime s$ are
monotone or all $p_{nn+1}^{\prime}s$ are open. Then $\sigma(X)=0$ if and only if $\sigma(X_{n})=0$ for
each $n$ .

3. Some examples.

In this section, we are concerned with circle-like contlnua.

PROPOSITION 11. Let $X=\lim_{\leftarrow}(X_{n}, p_{nn+1})$ , $Y=\lim_{\leftarrow}(Y_{n}, q_{nn+1})$ be circle-like
continua and $f:X\rightarrow Y$ be a map which is weakly-induced by a sequence of maps
$(f_{n} : X_{n}\rightarrow Y_{n})$ . If all $X_{n}\prime s$ and $Y_{n}\prime s$ are simple closed curves and all $q_{nn+1}$ are
essential, then the followings are equivalent.

a) $\sigma(f)=0$ .
b) There exis $ts$ a subsequence $(n_{j})$ such that $f_{n_{f}}\cong 0$ for each $j$ .
As was shown in [5, 2.2], a map $f:X\rightarrow S^{1}$ from a continuum $X$ to the unit

circle $S^{1}$ is essential if and only if $\sigma(f)=diamS^{1}>0$ Using this result, this pro-
position is easily proved. (See also [16]).

H. Cook has essentially proved that the symmetric span of the dyadic
solenoid is zero ([1], p. 134). Here we consider general $p$ -adic solenoid. Let
$p=(p_{1}, p_{2}, \cdots)$ be a sequence of positive integers. The p-adic solenoid $S_{p}$ is de-
fined by the inverse limit of the unit circles $X_{n}=S^{1}=\{z\in C||z|=1\}$ , whose
bonding maps $f_{n}$ : $X_{n+1}\rightarrow X_{n}$ are defined by the formulas; $f_{n}(z)=z^{p_{n}}$ . We show
the following result.

PROPOSITION 12. Let $S_{p}$ be the p-adic solenoid, $p=(p_{1}, p_{2}, \cdots)$ . Then $s(S_{p})>0$

if and only if there exists a positive integer $N$ such that for each $n>N,$ $p_{n}$ is odd.

First we calculate the symmetric span of maps between the unit circles.

LEMMA 13. Let $f:S^{1}\rightarrow S$ ‘ be the map between the unit circles defined by
$f(z)=z^{n}$ , where $n$ is a positive integer. Then $s(f)=0$ or diam $S^{1}(=2)$ . Also,
$s(f)=0$ if and only if $n$ is even.

PROOF. $S^{1}\times S^{1}$ is obtained from the rectangle $[0,2\pi]\times[0,2\pi]$ by identify-
ing $(x, 0)$ and $(x, 2\pi),$ $(0, y)$ and $(2z, y)(0\leqq x, y\leqq 2\pi)$ . Let $F=\{(x, y)\in S^{1}\times S^{1}|$

$f(x)=f(y)\}$ . Then $F$ contains diagonal set. Let

$A_{t}=[2\pi\cdot(i-1)/n, 2\pi\cdot i/n]\times 0$ ,

$B_{i}=0\times[2\pi\cdot(i-1)/n, 2\pi\cdot i/n]$ ,
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$ C_{i}=[2\pi\cdot(i-1)/n, 2\pi\cdot i/n]\times 2\pi$ ,

$D_{i}=2\pi\times[2\pi\cdot(i-1)/n, 2\pi\cdot i/n]$ , $i=1,$ $\cdots,$ $n$ .
$A_{i}$ and $C_{i},$ $B_{i}$ and $D_{i}$ are identified in $S^{1}\times S^{1}$ respectively. Let $X_{i}$ be the
tetragon bounded by $F$ and $A_{i}$ and $D_{n+1-i}$ in $[0,2\pi]\times[0,2\pi]$ , and $\tilde{X}_{i}$ be the
set in $S^{1}\times S^{1}$ obtained from $X_{i}$ by the identification. Notice that $s(f)>0$ if and
only if there exists a continuum $Z$ in $S^{1}\times S^{1}$ such that $Z$ is symmetric and
$ Z\cap F=\emptyset$ .

First we assume that $n$ is odd. Then $(\pi, 0)(=(\pi, 2\pi)$ in $S^{1}\times S^{1}$ ) and
$(0, \pi)(=(2\pi, \pi)$ in $S^{1}\times S^{1}$ ) do not belong to $F$. So we can join $(\pi, 0)$ and $(0, \pi)$

by the symmetric arc $A=\{(x, y)\in S^{1}\times S^{1}||\arg x-\arg y|=\pi\}$ . It is easy to see
that $d(f(x), f(y))=diamS^{1}=2$ for each $(x, y)$ of $A$ . Hence $s(f)=2$ .

Next we assume that $n$ is even. Suppose that $s(f)>0$ . Then by the above
remark, there exists a continuum $Z$ in $S^{1}\times S$ ‘ such that $Z$ is symmetric and
$ Z\cap F=\emptyset$ . For each $i=1,$ $\cdots$ , $n$ , let $Z_{j}=Z\cap\tilde{X}_{i}$ . Then $Z_{i}^{-}‘=Z\cap\tilde{X}_{i}^{-}$ ’. Let $j$ be
the first integer such that $ Z_{j}\neq\emptyset$ .

We claim that $ Z_{j}\cap Z_{j}^{-1}=\emptyset$ . If $j=1,\tilde{X}_{1}\cap\tilde{X}_{1}^{-1}\subset(diagona1)\subset F$. Since $ Z\cap F=\emptyset$ ,
$ Z_{1}\cap Z_{1}^{-1}=\emptyset$ . Assume $j>1$ . As $n$ is even, $i\neq n+1-i$ for each integer. Hence
$B_{i}\cap D_{n+1-i}\subset F,$ $A_{i}\cap C_{n+1-i}\subset F$, and we have $\tilde{X}_{j}\cap\tilde{X}_{j}^{-1}\subset F$. As $ Z\cap F=\emptyset$ , we have
the claim.

As $Z$ is connected, $Z_{j}\cup Z_{j}^{-1}\neq Z$ . If $Z$ does not intersect $Int_{S^{1}xS^{1}}(\tilde{X}_{n+1-j}^{-1})$ ,
then $Z_{j}\cup Z_{j}^{-1}$ is a clopen set in $Z$ , because $\tilde{X}_{n+1-j}^{-1}$ is the only one of the $\tilde{X}_{s}\prime s$

which meets $\tilde{X}_{j}$ in $S^{1}\times S^{1}-F$. So $ Z\cap Int\tilde{X}_{n+1-j}^{-1}\neq\emptyset$ . By the similar argument,
we see that $\tilde{X}_{j}\cup\tilde{X}_{n+1-j}$ does not intersect any other $\tilde{X}_{s}\prime s$ and $\tilde{X}^{-1}\prime s$ in $S^{1}\times S^{1}-F$

$and\frac{\iota}{4}\tilde{X}_{j}\neq\tilde{X}_{n+1-j}$ . Therefore $Z_{j}\cup Z_{n+1-j}^{-1}$ is a clopen proper subset of $Z$ . This is
a contradiction which completes the proof.

PROOF OF PROPOSITION 12.
First we assume $s(S_{p})>0$ . If there exists a cofinal subsequence $(n_{i})$ such

that $p_{n_{i}}$ is even, $s(f_{n_{i}+1n_{i+1}})=0$ by Lemma 13. By Corollary 7, $s(S_{p})=0$ , a con-
tradiction.

Next suppose that there exists a positive integer $N$ satisfying the hypothesis.
Then for each $m>n>N,$ $s(f_{nm})=2$ . Therefore $\lim_{m}s(f_{n7n})>0$ and $s(S_{p})>0$ , as
desired.

This completes the proof.

References

[1] Davis, J.F., The equivalence of zero span and zero semispan, Proc. A. M.S. 90
(1984), 135-138.



340 Kazuhiro KAWAMURA

[2] Ingram, W. T., An atriodic tree-like continuum with positive span, Fund. Math. 77
(1972), 99-107.

[3] –, Hereditarily indecomposable tree-like continua II, ibidem. 111 (1981), 95-
106.

[4] –, Positive span and inverse limits, Top. Proc. 9 (1984), 313-317.
[5] Koyama, A., On mappings of span zero, mimeographical notes (1985).
[6] –, A note on span under refinable maps, Tsukuba J. Math. 9 (1985), 237-240.
[7] Kawamura, K., On some properties on span, to appear.
[8] Lelek, A., Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-

214.
[9] –, On surjective span and semispan of connected metric spaces, Colloq. Math.

37 (1977), 35-45.
[10] –, The span and the width of continua, Fund. Math. 98 (1978), 181-199.
[11] –, Continua of constant distances in span theory, Pacific J. of Math. 123

(1986), 161-171.
[12] Oversteegen, L. G. and Tymchatyn, E. D., On span and weakly chainable continua,

Fund. Math. 123 (1984), 159-174.
[13] –and–, On span of weakly chainable continua, ibidem, 119 (1983),

151-156.
[14] Whyburn, G.T., Analytic topology, Amer. Math. Soc. Colloq. Pub. 28 (1963).
[15] Mioduszewski, J., Mappings of inverse limits, Colloq. Math. 10 (1964), 39-44.
[16] Koyama, A. and Tymchatyn, E. D., On mappings with zero surjective span, pre-

print (1986).

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan


	ON SPAN AND INVERSE LIMITS
	1. Introduction.
	2. Span and a limit of ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 6. ...
	THEOREM 9 ...

	3. Some examples.
	References


