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EXISTENCE OF ALL THE ASYMPTOTIC $\lambda$ -TH MEANS
FOR CERTAIN ARITHMETICAL CONVOLUTIONS

By

Y.-F. S. P\’ETERMANN*

To A. F.-P.

Abstract. Let $E$ designate either of the classical error terms for
the summatory functions of the arithmetical functions $\phi(n)/n$ and
$\sigma(n)/n$ ( $\phi$ is Euler’s function and $\sigma$ the divisor function).

By following an idea of Codec\‘a’s [3] and by refining some of his
estimates we prove that $|E|$ has asymptotic $\lambda$-th order means for
all positive real numbers $\lambda$ . We also prove that $E$ has asymptotic
k-th order means for all positive integers $k$ , and that this mean is
zero whenever $k$ is odd.

The results obtained can be applied to functions other than $E$

as well, such as the functions $P$ and $Q$ of Hardy and Littlewood
[8], or the divisor functions $G_{-1,k}[9]$ .

1. Introduction.

We consider

$H(x)=\sum_{n\leq x}\frac{\phi(n)}{n}-\frac{6}{\pi^{2}}x$ , ( $ 1.1\rangle$

$F(x)=\sum_{n\leqq x}\frac{\sigma(n)}{n}-\frac{\pi^{2}}{6}x+\frac{1}{2}\log x+\frac{\gamma}{2}+1$ , (1.2)

$Q(x)=\sum_{n\leqq x}\frac{1}{n}\sin(x/n)$ , (1.3)

and
$P(x)=\sum_{n\leq x}\frac{1}{n}\cos(x/n)$ , (1.4)

where $\phi$ denotes Euler’s function, $\sigma(n)$ the sum of the positive divisors of $n$ ,

and $\gamma$ Euler’s constant. These functions are unbounded; more precisely we
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know that $[13, 5]$

$H(x)=\Omega(\log\log\log x)$ (1.5)
and

$H(x)=\Omega_{\pm}(\log\log\log\log x)$ , (1.6)

that $[12, 2]$

$F(x)=\Omega_{-}(\log\log x)$ (1.7)
and

$\lim_{x\rightarrow}\sup_{\infty}F(x)=+\infty$ , (1.8)

and that $[8, 4]$

$P(x)=\Omega_{+}(\log\log x)$ (1.9)
and

$Q(x)=\Omega_{f}((\log\log x)^{1/2})$ . (1.10)

However, $H[13],$ $F[14]$ and $Q[15]$ are known to have an asymptotic first
mean; $F[16]$ and $H[1]$ even have square means. By $\lambda$-th mean we mean

DEFINITION. For a real function $E$ defined on $[1, +\infty$ ) and a real positive
number $\lambda$ we call–as long as the involved limit exists-

$M(E, \lambda)=\lim_{x\rightarrow\infty}\frac{1}{x}\int_{1}^{x}E^{\lambda}(t)dt$ (1.11)

the asymptotic $\lambda$-th mean of $E$ .
In a recent article [3], P. Codec\‘a obtains for any positive real number $\lambda$

$\int_{1}^{x}|E(t)|^{\lambda}dt=O_{\lambda}(x)$ , (1.12)

if $E$ is one of the functions defined in (1.1) through (1.4). In this paper we
prove that in fact, for the same $E$ ,

$M(E, k)$ exists for all positive integers $k$ , (1.13)

and that
$M(|E|, \lambda)$ exists for all positive real numbers $\lambda$ (1.14)

(Theorems 1 and 2).

We conclude this introduction by noting that quantitative estimates of the
constants $M(|E|, \lambda)$ for large $\lambda$ are worth seeking for: in the case where $E=H$

for instance, they might provide precious information on the behaviour of the
distribution function

$D_{H}(s)=\lim_{x\rightarrow\infty}\frac{1}{x}|\{n\leqq x, H(n)\geqq s\}|$ (1.15)

[10], which by a result of Erdos and Shapiro’s [6] exists and is continuous.
$D_{H}$ in turn has a close relationship with the function $X_{H}(x)$ that counts the
number of changes in sign of $H$ in the interval (1, x) [11].
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Since $M(|E|, \lambda)=M(E, \lambda)$ for $\lambda=2k$ with $k$ a positive integer, this case
seems easier to handle; as yet we can only estimate the related $M(E, 2k+1)$ if
$E=H,$ $F$ or $Q$ , for all nonnegative integers $k$ (Theorem 3).

2. Notation and statement of the results.

We denote by $\alpha$ a real bounded sequence that satisfies, for some real con-
stant $K$,

$\sum_{n\leqq x}\alpha(n)=Kx+o(x)$ , (2.1)

and by $f$ a real periodic function with period $T$ , of bounded variation, such that

$\int_{0}^{T}f(t)dt=0$ .

If the real function $g$ , defined on $[1, +\infty$ ), satisfies

$g(x)=\sum_{n\leq x}\frac{\alpha(n)}{n}f(x/n)+o(1)$ , (2.3)

then we shall say that $g\in C(\alpha, f)$ .
For the functions defined in (1.1) and (1.2), for instance, elementary calcula-

tion–with, in the case of $H$, an application of the prime number theorem–
shows that

$H\in C(-\mu, \psi)$ (2.4)
and

$F\in C(-1, \psi)$ , (2.5)

where $\mu$ is Moebius’ function, $\psi(y)=\{y\}-1/2$ (with $\{y\}$ the fractional part of
$y)$ , and 1 denotes the arithmetic function with constant value one. As for the
functions of (1.3) and (1.4), we have by definition

$Q\in C(1, \sin)$ (2.6)
and

$P\in C(1, \cos)$ . (2.7)

Much better information on such a function can be obtained if the cor-
responding sum (2.3) can be truncated. We shall say that $g\in C(\alpha, f)$ belongs to
$C_{z}(\alpha, f)$ if, for $K$ as in (2.1), we have

$g(x)=\sum_{n\leq z}\frac{\alpha(n)}{n}f(x/n)+K\int_{1}^{\infty}\frac{f(u)}{u}du+o(1)$ (2.8)

for some increasing and unbounded function $z=z(x)=o(x)(x\rightarrow\infty)$ . In the sequel

these conditions on $z$ will be assumed; if in addition $z$ satisfies $z(x)=o(x^{\text{\’{e}}})$ for
all positive $\epsilon$ , we shall say that $z$ is slowly varying. Also, we shall refer to the
constant on the right side of (2.8) by $K(g)$ .
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For instance we have

THEOREM 1. There is a slowly varying function $z$ such that

$H\in C_{z}(-\mu, \psi)$ $(K(H)=0)$ (2.9)

$F\in C_{z}(-1, \psi)$ $(K(F)=-\frac{1}{2}\log 2\pi+1)$ (2.10)

$Q\in C_{z}$(1, sln) $(K(Q)=\int_{1}^{\infty}\frac{\sin u}{u}du)$ , (2.11)

and

$P\in C_{z}(1, \cos)$ $(K(P)=\int_{1}^{\infty}\frac{\cos u}{u}du)$ . (2.12)

Assertion (1.13) is thus a consequence of the following theorem easily
deducible by induction from Codec\‘a’s Theorem 1 [3].

THEOREM A. If $g\in C_{z}(\alpha, f)$ for some $\alpha,$ $f$ and slowly varying $z$ , then

$M(g, k)$ exists for all positive integers $k$ . (2.13)

In order to obtain assertion (1.14) we need more, namely

THEOREM 2. If $g$ satisfies the hypotheses of Theorem $A$ , then

$M(|g|, \lambda)$ exists for all positive real numbers $\lambda$ . (2.14)

In the proof of Theorem 2, we shall use another result of Codec\‘a’s [3, (5.5)

and Theorem 2].

THEOREM B. If $g$ satisfies the hypotheses of Theorem $A$ and if
$g_{y}(x)=\sum_{n\leq y}\frac{\alpha(n)}{n}f(x/n)$ , (2.15)

then
$\lim_{N\rightarrow\infty}(\lim_{x\rightarrow}\sup_{\infty}\frac{1}{x}\int_{1}^{x}|g_{z}(t)-g_{N}(t)|^{\lambda}dt)=0$ , (2.16)

and (as a consequence) $g_{z}$ is a $B^{\lambda}$ almost periodic function.

Note that we also have (this will be used later)

$\int_{1}^{x}|g_{N}(t)|^{\lambda}dt=O_{\lambda}(x)$ , (2.17)

where the implied constant does not depend on $N$.
Also note that the last assertion of Theorem $B$ implies, with Theorem 1,

that the functions $H,$ $F,$ $Q$ and $P$ are $B^{\lambda}$ almost periodic for all positive real
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numbers R.
The following theorem determines the value of $M(E, 2k+1)$ as mentioned

before:

THEOREM 3. If $g$ satisfies the hypotheses of Theorem $A$ , and if
$f(t)=-f(-t)$ (2.18)

except possibly on a set of measure zero, then

$M(g-K(g), 2k+1)=0$ $(k=0,1,2\cdots)$ (2.19)

Other applications. The functions (recall (2.5))

$G_{a,k}(x)=\sum_{n\leq\sqrt{}^{\overline{x}}}n^{a}\psi_{k}(x/n)$ ,

where $\psi_{k}(y)=B_{k}(\{y\})$ is the k-th Bernoulli polynomial ”modulo 1”, are closely

related to various divisor problems (see for instance [9]). Theorem 2 is ap-
plicable to $G_{-1,k}$ for all $k$ , and Theorem 3 for all odd $k$ . (We shall omit the
proof of this for $k>1$ , very similar to that for $k=1$ : Walfisz’argument [17,

Chapter III] can be easily generalised if one uses the Fourier expansion for $\psi_{k}$

instead of that for $\psi=\psi_{1}.$ )

3. Proof of Theorem 1.

Most of the material needed in the proof essentially exists in the literature
[3, 7, 9, 17], and rather than repeat lengthy arguments, we choose, to save space,
to refer systematically to it.

a) Proof of (2.9): $H$ First we have

$x\exp(-\frac{\Sigma}{\log x})<n\leqq x\frac{\mu(n)}{n}\psi(x/n)=o(1)$ (3.1)

instead of Codec\‘a’s weaker [3, Lemma 5], where he shows that the left side of
(3.1) is $O(1)$ ; the same argument, with a stronger version [17, p. 146] of the
prime number theorem than the one he uses shows that in fact it is 0(1).

Next we have, for some slowly varying function $z=z(x)$ ,

$\sum_{z<n\leqq x\exp(-\sqrt{\log x})}\frac{\mu(n)}{n}\psi(x/n)=o(1)$ . (3.2)

This is essentially Hilfss\"atze 4 and 5 of [17, pp 141-144]: one may replace $BQv^{-2}$

on the right side of (22) by $BQv^{-8/3}$ , thus improving the conclusion of Hilfssatz
4; by using this better estimate to improve (31), one eventually obtains (3.2)

instead of Hilfssatz 5. Note that although this argument of Walfisz’ uses the
assumption that $x$ is an integer, this is a superfluous hypothesis, since
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$\sum_{\nu<n\leq x}\frac{\mu(n)}{n}\psi(x/n)=\sum_{\nu<n\leq x}\frac{\mu(n)}{n}\psi([x]/n)+O(y^{-1})$ . (3.3)

Assertion (2.9) now follows from (2.4), (3.1) and (3.2).

b) Proof of (2.10): $F$. First we have

$\sum_{\sqrt x<n\leq x}\frac{1}{n}\psi(x/n)=\frac{1}{2}\log(2\pi)-1+0(1)$ : (3.4)

this is a special case of [9, Theorem 2]. Then, for some slowly varying $z$ ,

$\sum_{z<n\sqrt f}\frac{1}{n}\psi(x/n)=o(1)$ : (3.5)

this can be easily derived from the proof of Satz 1 in [17, p. 94-95] by being
less generous in estimate (28) p. 95.

c) Proof of (2.11) and (2.12): $P$ and $Q$ . By [7, p. 9] we have

$\sum_{\exp(\log x/\log\log x)<n\leq\sqrt{x}}\frac{1}{n}\exp(ix/n)=o(1)$ . (3.6)

Next, an application of the Euler-Mac Laurin sum formula yields, for
$1>\epsilon>x^{-1/2}$ ,

$\sum_{\epsilon x<n\leq x}\frac{1}{n}\exp(ix/n)=\int_{1}^{\infty}\frac{e^{iu}}{u}du+O(\epsilon^{-2}x^{-1}+\epsilon)$ . (3.7)

Finally, for $\epsilon>x^{-1/2}$ we have

$\sum_{\sqrt{x}<n\leq\epsilon x}\frac{1}{n}\exp(ix/n)=O(\epsilon^{1/4})$ , (3.8)

which can easily be obtained from the unnumbered estimate [7, p. 8]

$\sum_{a\leq n\leq b\leq 2a}\frac{1}{n}\exp(ix/n)=O((a/x)^{1/4})$ $(a>\sqrt{x}>6)$ . (3.9)

(2.11) and (2.12) now follow from (3.6), (3.7), (3.8) if $\epsilon=\epsilon(x):=x^{-1/3}$ .

4. Proof of Theorem 2.

Let $\overline{g}_{N}(t):=g_{N}(t)+K(g)$ . If $\nu$ and $\epsilon$ are positive real numbers, then it
follows from Theorem $B$ that for some $N_{0}=N_{0}(\nu, \epsilon)$ , whenever $N\geqq N_{0}$ and $x$ is
sufficiently large, we have

$\int_{1}^{x}|g(t)-\overline{g}_{N}(t)|^{\nu}dt\leqq\epsilon x$ . (4.1)

This implies that

$\int_{1}^{x}|g(t)|^{\lambda}dt=\int_{1}^{x}|\overline{g}_{N}(t)|^{\lambda}dl+xR_{\lambda.N}(x)$ , (4.2)
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where $\lim_{N\rightarrow\infty}\lim_{x\rightarrow}\sup_{\infty}|R_{\lambda.N}(x)|=0$ . Indeed if $k$ is the (positive) integer such that
$k-1<\lambda\leqq k$ , $\epsilon>0$ , and $N$ is an integer large enough to satisfy (4.1) for $\nu=2\mu$ ,

where $\mu:=\lambda/k$ , then by Schwarz inequality,

$\int_{1}^{x}||g(t)|^{\lambda}-|\overline{g}_{N}(t)|^{\lambda}|dt\leqq(\int_{1}^{x}(|g(t)|^{\mu}-|\overline{g}_{N}(t)|^{\mu})^{2}dt)^{1/2}$

$\times(\int_{1}^{x}(\sum_{n\Leftarrow 0}^{k- 1}|g(t)|^{\mu n}|\overline{g}_{N}(t)|^{\mu(k-1-n)})^{2}dt)^{1/2}$

$=;\sqrt{\alpha\beta}$ , say. (4.3)

Since $\mu\leqq 1$ , we have $||g(t)|^{\mu}-|\overline{g}_{N}(t)|^{\mu}|\leqq|g(t)-\overline{g}_{N}(t)|^{\mu}$ , whence by (4.1)

$\alpha\leqq\epsilon x$ . (4.4)

And $\beta\leqq k^{2}(\int_{1}^{x}|g(t)|^{2\mu(k-1)}dt+\int_{1}^{x}|\overline{g}_{N}(t)|^{2\mu(k-1)}dt)$ , whence by Theorem A and a

direct consequence of (2.17),

$\beta=O(x)$ . (4.5)

In view of (4.3) and (4.4), this concludes the proof of (4.2).

We proceed to prove Theorem 2. Since $g_{N}$ is a periodic function, so is
$|\overline{g}_{N}|^{\lambda}$ . Hence

$\int_{1}^{x}|\overline{g}_{N}(t)|^{\lambda}dt\sim K_{N}x$ $(x\rightarrow\infty)$ , (4.6)

where by (2.17) the sequence $\{K_{N}\}_{N=1}^{\infty}$ is bounded, and has thus a subsequence
$\{K_{N_{i}}\}_{i=1}^{\infty}$ that converges to some constant $C_{\lambda}$ . By (4.2) we must then have

$\int_{1}^{x}|g(t)|^{\lambda}dt\sim C_{\lambda}x$ $(x\rightarrow\infty)$ (4.7)

(and in fact the whole sequence $\{K_{N}\}$ converges to $C_{\lambda}$ ).

5. Proof of Theorem 3.

We have [3, (4.1) and (4.2)]

$\int_{1}^{x}g_{z}^{m}(t)dt=\sum_{1\leq n_{j}\leqq z}\alpha(n_{1})\cdots\alpha(n_{m})\int_{\lambda/N}^{x/N}f(N_{1}u)\cdots f(N_{m}u)du$ (5.1)

where $N:=n_{1}\cdots n_{m},$ $N_{j}:=N/n_{j}(J^{=1}, , m)$ , and $\lambda:=\max(w(n_{1}), \cdots, w(n_{m}))$ ,
$w$ denoting the inverse of $z$ . For $j=1,$ $\cdots,$ $m$ , the function $f_{j}(u):=f(N_{j}u)$ is
periodic of period $T/N_{j}$ , and so is thus $G(u):=f_{1}(u)\cdots f_{m}(u)$ , with period $P:=$

$T/(N_{1}, \cdots, N_{m})$ . Now by (2.18) $f_{j}(u)=-f_{j}(-u)(j=1, \cdots, m)$ , and thus, if $m$ is
odd, $G(u)=-G(-u)$ , except possibly on a set of measure zero. Hence, for all
real numbers $a$ ,
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$\int_{a}^{a+P}G(u)du=0$ (5.2)

From (5.1) and (5.2) we obtain (2.19), since $G$ and $\alpha$ are bounded, and since $z$

is slowly varying.
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