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A CHARACTERIZATION OF CLOSED s-IMAGES
OF METRIC SPACES

By

Zhi min GAO and Yasunao HATTORI

Throughout the present note, we assume that all spaces are regular topologi-

cal spaces and all mappings are continuous. Let $N$ denote the set of all natural
numbers.

Recall from [7] a collection i) of subsets of a space $X$ is called a k-network
for $X$ if for every compact subset $K$ of $X$ and every open set $U$ of $X$ with $ K\subset$

$U$, there is a finite subcollection $f$); of.P such that $K\subset\cup\{P:P\in f^{\prime}\}\subset U$ . A
collection i) of subsets of a space $X$ is called a cs-network for $X$ if for every

sequence $\{x_{n} ; n\in N\}$ converging to a point $x\in X$ and every neighborhood $U$ of
$x$, there is an element $P\in \mathcal{F}$ such that $P\subset U$ and $\{x_{n} : n\in N\}$ is eventually in $P$

$([4])$ . A space is said to be an $\aleph$ -space if it has a $\sigma$ -locally finite k-network
([6]). A mapping $f$ from a space $X$ to a space $Y$ is called an s-mapping if $f^{-1}(y)$

has a countable base for each $y\in Y$.
Recently, L. Foged [2] proved an interesting characterization of La\v{s}nev

spaces: A space $X$ is La\v{s}nev space ( $i$ . $e$ . $X$ is a closed image of a metric space)

if and only if $X$ is a Fr\’echet space with a $\sigma$ -hereditarily closure preserving k-
network. On the other hand, Y. Tanaka showed that every closed s-image $X$ of
a metric space is an $\aleph$ -space if any closed metrizable subset of $X$ is locally com-
pact ([9, Lemma 4.1]). (Using this result, he gave a characterization for the
product space $X\times Y$ of closed s-images $X$ and $Y$ of metric spaces to be a k-space
(see [9, Theorem 4.3]).) He asked in the same paper whether every closed $s$.
image of a metric space is an $\aleph$ -space. The purpose of this note is to answer
the above question and simultaneously to get a characterization of Fr\’echet $\aleph-$

spaces.
Our result is the following.

THEOREM. For a regular space $X$, the following are equivalent.

(a) $X$ is a Fr\’echet $\aleph$ -space.
(b) $X$ is a closed s-image of a metric space.
(c) $X$ is a Fr\’echet space with a point countable, $\sigma$ -closure preserving,
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closed k-network.
$PR\infty F$ . The implication $(a)\rightarrow(b)$ can be shown by an argument similar to

that of [2, Proposition 5]. To prove the implication $(b)\rightarrow(c)$ , let $X$ be an image
of a metric space $Y$ under a closed s-mapping $f$. Let $\mathcal{B}$ be a $\sigma$ -locally finite
base for $Y$. Then it is obvious that $f=\{f(\overline{B}):B\in \mathcal{B}\}$ is a point countable
and $\sigma$ -closure preserving family of closed sets of $X$. Furthermore, $p$ is a k-
network for $X$. Indeed, let $K$ be a compact subset of $X$ and $U$ an open set of
$X$ with $K\subset U$ . By [5, Corollary 1.2], there is a compact subset $C$ of $Y$ with
$C\subset f^{-1}(U)$ and $f(C)=K$. Let $B_{1},\cdots,$ $B_{n}$ be elements of $\mathcal{B}$ such that $ C\subset B_{1}\cup\cdots$

$\cup B_{n}\subset\overline{B}_{1}\cup\cdots\cup\overline{B}_{n}\subset f^{-1}(U)$ . Then $K\subset f(\overline{B}_{1})\cup\cdots\cup f(\overline{B}_{n})\subset U$ . Thus $f$ is a k-
network for $X$ and hence the implication $(b)\rightarrow(c)$ is proved. To prove the impli-
cation $(c)\rightarrow(a)$ , by [1, Theorem 4], it is sufficient to show that $X$ has a $\sigma$ -discrete
cs-network. Now, let $j)_{=}\cup\{f_{n} : n\in N\}$ be a point countable, $\sigma$ -closure preserving
and closed k-network for $X$, where each $i)_{n}$ is closure preserving. Without loss
of generality, we can assume that each $i)_{n}$ is closed under finite intersections
and $i_{n}$)

$\subset i)_{n+1}$ for each $n\in N$. Since $i)_{n}$ is locally countable, there is an open
cover $?4_{n}$ of $X$ such that each member $U$ of $u_{n}$ intersects at most countably
many members of $p_{n}$ . Since $X$ is a $\sigma$ -space (see [8]), there is a $\sigma$ -discrete closed
refinement $y_{n^{=}}\cup\{y_{nm^{;m\in N\}}}$ of $?4_{n}$ , where $y_{nm}=\{F_{nm\alpha} : \alpha\in A_{n}\}$ is discrete in
X. For each $n,$ $m\in N$ and each $\alpha\in A_{n}$ , we put

$j)_{nma}=\{P\in j)_{n\ddagger P\cap F_{nm\alpha}\neq\phi\}}$

Since $i)_{nm\alpha}$ is countable, let $i_{nm\alpha}$
)$*=\{P_{nm\alpha}^{k} : k\in N\}$ be the family of all finite

unions of $p_{nm\alpha}$ . For each $n,$ $m\in N$ and each $\alpha\in A_{n}$ , we put

$W_{nm\alpha}=\bigcup_{i=1}^{\infty}[$ ( $\cup\{P\in \mathcal{F}_{i}$ : $P\cap(\cup\{F_{nm\rho}$ : $\beta\in A_{n}$ with $\beta\neq\alpha\})=\phi\}$ )

$-(\cup\{P\in \mathcal{F}_{i} : P\cap F_{nma}=\phi\})]$ .
We have the following.

(1) $F_{nm\alpha}\subset W_{nm\alpha}$ for each $\alpha\in A_{n}$ and $n\in N$.
(2) $ W_{nm\alpha}\cap W_{nm}\beta=\phi$ for each $\alpha,$ $\beta\in A_{n}$ with $\alpha\neq\beta$ .

For each $n,$ $m,$ $k,$ $r\in N$ and each $\alpha\in A_{n}$ , we put

$Q_{nm\alpha}^{r}=\cup\{P\in f_{r}$) : $P\subset W_{nma}$)
$j$

and

$\mathcal{O}_{nm}^{kr}=\{P_{nm\alpha}^{k}\cap Q_{nma}^{r} : \alpha\in A_{n}\}$ .
Finally, we put

$\mathcal{O}=\cup t\mathcal{O}_{nm}^{kr}$ : $(n, m, k, r)\in N\times N\times N\times N$ }.
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By (2), it follows that $Q_{nm}^{kr}$ is discrete in $X$. To show that $\mathcal{O}$ is a cs-network for
$X$, let $\{x_{n} : n\in N\}$ be a sequence in $X$ which converges to a point $x\in X$ and $U$

a neighborhood of $x$ . Since $p$ is a k-network for $X$, there are a number $n\in N$

and a finite subcollection $i)_{n^{\prime}}$ of $i)_{n}$ such that $\{x_{n} : n\in N\}$ is eventually in
$\cup\{P:P\in i)_{n^{\prime}}\},$ $\cup\{P:P\in i_{n^{\prime}})\}\subset U$ and $x\in\cap\{P:P\in f_{n^{\prime}})\}$ . Since $y_{n}$ is a cover of
$X$, there are a number $m\in N$ and an element $\alpha\in A_{n}$ such that $x\in F_{nm\alpha}$ . Then
$\cup\{P:P\in f_{n^{\prime}}\}\in J_{nm\alpha})*$ Let us put $\cup$ { ) for some $k\in N$. On the
other hand, since every sequence converging to a point of $F_{nm\alpha}$ is eventually in
$W_{nm\alpha}$ , it follows that there are a number $r\in N$ with $r\geq n$ and a finite subcol-
lection $J)_{r^{\prime}}$ of $i)_{r}$ such that $\{x_{n} : n\in N\}$ is eventually in $\cup\{P:P\in J)_{r^{\prime}}\}$ and
$\cup t)\subset W_{nm\alpha}$ by [1, Lemma 3]. Therefore, $Q=P_{nma}^{k}\cap Q_{nm\alpha}^{r}$ $(\in \mathcal{O}_{nm}^{kr}\subset \mathcal{O})$

contains a tail of $\{x_{n} : n\in N\}$ and $Q$ is contained in $U$. Hence $\mathcal{O}$ is a cs-network
for $X$. This completes the proof.

REMARK 1. (i) By the theorem, every closed s-image of a metric space is
an $\aleph$ -space. This is an affirmative answer to the Tanaka’s question stated before.

(ii) The proof of the implication $(c)\rightarrow(a)$ in the theorem showed that every
regular space with a point countable, $\sigma$ -closure preserving and closed k-network
is an $\aleph$ -space. This is an affirmative answer to a question in [11] whether
every regular space with a point countable, $\sigma$ -hereditarily closure preserving
closed k-network is an $\aleph$ -space.

REMARK 2. In the statement (c) of the theorem, the assumption of the
“closedness” of the k-network can not be dropped. Indeed, let $X$ be the discrete
sum $\oplus\{I_{\alpha} : \alpha<\omega_{1}\}$ of the copies $I_{\alpha},$ $\alpha<\omega_{1}$ , of the unit closed interval $I=[0,1]$ .
Let A be the subset of $X$ consisting of all zero’s. Let $Y=X/A$ be the quotient
space. It is well known that $Y$ has no point countable closed k-network (cf.

[10] or [3]). On the other hand, L. Foged [2] pointed out that every La\v{s}nev
space has a $\sigma$ -hereditarily closure preserving and point countable k-network.
Hence $Y$ has a point countable, $\sigma$ -closure preserving k-network.
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