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BENFORD’S LAW FOR LINEAR RECURRENCE SEQUENCES

By

Kenji NAGASAKA and Jau-Shyong SHIUE

1. Introduction.

One of the authors of the present paper, Kenji Nagasaka, considered, in his
preceding article [4], various sampling procedures from the set of all positive
integers and examined for the resulting sampled integers whether Benford’s law
holds or not.

J. L. Brown, Jr. and R. L. Duncan [1] treated linear recurrence sequences
and proved that, under several conditions on the corresponding characteristic
equations, Benford’s law is valid for certain linear recurrence integer sequences.
It was shown by Lauwerens Kuipers and Jau-Shyong Shiue [3] that this result
was able to be established by using one of J. G. van der Corput’s difference the-

orems [5], [6].

Nagasaka succeeded in generalizing the main theorem of Duncan and Brown,

which is Theorem 4.3 in [4]. Detailed study of linear recurrence sequences,
especially of order 2 is made in Theorem 4.1 and Theorem 4.2. But it still
remains several cases ignored.

In this joint paper, we shall adopt one of van der Corput’s difference the-
orems as a main tool and prove some results on Benford’s law for linear recur-
rence sequences.

In the next Section, recurrence sequences of order 1 will be considered and
we shall show sufficient conditions for Benford’s law to be valid, which contain
Theorem 3.2 in [4] as a special case.

In Section 3 we shall give proofs of Theorem 4.1 and Theorem 4.2 in [4]

based upon one of van der Corput’s difference theorems. These Theorems do not

contain the case where the corresponding characteristic equation has two complex
conjugate roots. We shall show further that Benford’s law holds for linear recur-
rence sequences when their corresponding characteristic equations have two

purely imaginary conjugate roots.

In the final Section, we shall consider general linear recurrence sequences of
arbitrary order and prove analogous results as in the case of order 2.
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Unless otherwise stated, notations and definitions are the same as in [4].

Throughout in the following we shall agree to write

$\log x=\log_{10}x$ .

2. Recurrence sequences of first order.

In the preceding paper [4], we considered a linear recurrence formula of
order 1. The recurrence sequence $\{h_{n}\}_{n=1,2},\ldots$ satisfies the following recursion
formula:

(2. 1) $h_{n+1}=r\cdot h_{n}+s$,

where $r\neq 1,$ $s$ and $h_{1}$ are positive integers. Then it is proved that Benford’s law
holds for the sequence $\{h_{n}\}_{n=1,2},\ldots$ except for the case $r=10^{m}$ with $m$ being some
nonnegative integer.

In this Section, we consider, instead of (2.1), the following recursion for-
mula of first order:

(2. 2) $y_{n+1}=r\cdot y_{n}+f(n),$ $n=1,2,$ $\cdots$ ,

where $r$ and $y_{1}$ are positive integers and the range of $\{f(n)\}$ is also positive
integers. Then we obtain:

THEOREM 2.1. Let $ty_{n}\}_{n}=1,2,\ldots$ be an integer sequence generated by the
recursion formula (2.2). If the series $\sum_{n}^{\infty_{=1}}f(n)/r^{n-1}$ is convergent, then the
sequence $\{y_{n}\}_{n}=1,2,\ldots$ obeys Benford’s law except for the case $r=10^{m}$ with $m$

being some nonnegative integer.

REMARK 1. In the case that $f(n)=s$ for every $n,$ $(2.2)$ is identical to (2. 1),

so that this Theorem 2.1 contains Theorem 3.2 in [4] as a special case.
In order to prove Theorem 2.1 we need again Lemma 3.1 in [4] and fur-

ther one of van der Corput’s difference theorems in [6], p. 378, which is stated
below as Lemma 2.1 (see also [5]).

LEMMA 2.1. Let $\{x_{n}\}_{n-1,2},\ldots$ be a sequence of real numbers. If
$\lim_{n\rightarrow\infty}(x_{n+1}-x_{n})=\alpha$ ,

where $\alpha$ is irrational, then the sequence $\{x_{n}\}_{n=1,2},\cdots$ is uniformly distributed mod
1.

$PR\infty F$ . From the recursion formula (2.2), we have

$y_{n}=r^{n-1}\cdot y_{1}+r^{n-2}\cdot f(1)+\cdots+r\cdot f(n-2)+f(n-1)$ .
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Let us consider the ratio of consective terms of $\{y_{n}\}_{n=1,2},\ldots$ :

(2. 3) $y_{n+1}/y_{n}=\{r^{n}\cdot y_{1}+r^{n-1}\cdot f(1)+r^{n-2}\cdot f(2)+\cdots+f(n)\}/$

$\{r^{n-1}\cdot y_{1}+r^{n-2}\cdot f(1)+r^{n-3}\cdot f(2)+\cdots+f(n-1)\}$

$=\{r\cdot y_{1}+f(1)+f(2)/r+\cdots+f(n)/r^{n-1}\}/$

$\{y_{1}+f(1)/r+f(2)/r^{2}+\cdots+f(n-1)/r^{n-1}\}$

$=[r\cdot y_{1}+\{f(1)+f(2)/r+\cdots+f(n)/r^{n-1}\}]/$

$[y_{1}+\{f(1)+f(2)/r+\cdots+f(n-1)/r^{n-2}\}/r]$ .
Put

$s_{n-1}=f(1)+f(2)/r+\cdots+f(n-1)/r^{n-2}$ .
Then

$s_{n}=f(1)+f(2)/r+\cdots+f(n-1)/r^{n-2}+f(n)/r^{n-1}$

$=s_{n-1}+f(n)/r^{n-1}$ ,

which implies that

$\lim_{n\rightarrow\infty}s_{n}=\lim_{n\rightarrow\infty}s_{n-1}=B>0$ ,

since the sum $\Sigma_{n}^{\infty_{=1}}f(n)/r^{n-1}$ is convergent. Taking the limit of (2.3), we get

$\lim_{n\rightarrow\infty}(y_{n+1}/y_{n})=(r\cdot y_{1}+B)/(y_{1}+B/r)$

$=\{r(r\cdot y_{1}+B)\}/(r\cdot y_{1}+B)$

$=r$ .
Therefore

$\log y_{n+1}-\log y_{n}\rightarrow\log r$ , as $ n\rightarrow\infty$ .
From Lemma 3. 1 in [4], $\log r$ is irrational. Lemma 2. 1 asserts that the sequence
$\{\log y_{n}\}_{n=1,2},$

$\ldots$ is uniformly distributed mod 1. Reconsidering the same argument

as in the first part of the proof of Theorem 3.1 [4], we complete the proof.

NOTE 1. If we don’t stick ourselves to positive integer sequences, we can
obviously relax assumptions in Theorem 2. 1. Indeed, $r$ may be a positive constant

greater than one and not of the form $10^{m}$ for any nonnegative rational number
$m$ . $y_{1}$ may also be a given positive rational number and the range of $\{f(n)\}$ is
nonnegative rational numbers.

3. Linear recurrence sequences of order 2.

In this Section, we consider a linear recurrence formula $L(2, $a $, c)$ of order
2. The recurrence sequence $\{u_{n}\}_{n=1,2},\ldots$ satisfies the following recursion formula
of order 2:
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(3. 1) $u_{n+2}=a_{2}\cdot u_{n+1}+a_{1}\cdot u_{n},$ $n\geq 1$ $(a_{1}\neq 0)$ ,

and its characteristic equation is

(3. 2) $\lambda^{2}=a_{2}\cdot\lambda+a_{1}$ $(a_{1}\neq 0)$ .

THEOREM 3.1. If the characteristic equation (3.2) has two real distinct
roots $\alpha$ and $\beta$ with $|\alpha|\geq|\beta|$ and $\alpha$ and $\beta$ are not of the form $\pm 10^{m}$ for any
nonnegative integer $m$ , then $\{u_{n}\}_{n=1,2},\ldots$ obeys Benford’s law.

PROOF. The n-th term $u_{n}$ can be represented by

(3. 3) $u_{n}=A\cdot\alpha^{n-1}+B\cdot\beta^{n-1},$ $n\geq 1$ ,

where $A$ and $B$ are constants depending only on $a_{1},$ $a_{2},$ $u_{1}$ and $u_{2}$ . Moreover
$\alpha\cdot\beta\neq 0$ , since $a_{1}\neq 0$ . We then have

$u_{n+1}/u_{n}=(A\cdot\alpha^{n}+B\cdot\beta^{n})/(A\cdot\alpha^{n-1}+B\cdot\beta^{n-1})$

$=\{A\cdot\alpha+B\cdot(\beta/\alpha)^{n-1}\cdot\beta\}/\{A+B\cdot(\beta/\alpha)^{n-1}\}$ .
Suppose further that $|\alpha|>|\beta|$ and $A\neq 0$ , then

$\log u_{n+1}-\log u_{n}=\log(u_{n+1}/u_{n})\rightarrow\log\alpha$ , as $ n\rightarrow\infty$ .
$\log\alpha$ is irrational by Lemma 4.2 in [4] and from Lemma 2.1, the sequence
$\{\log u_{n}\}_{n=1,2},\ldots$ is uniformly distributed mod 1.

For the case that $A=0$ , we have
$u_{n}=B\cdot\beta^{n-1},$ $r\iota\geq 1$ .

$\beta$ is not of the form $\pm 10^{m}$ for any nonnegative integer $m$ .
Then

$\log u_{n+1}-\log u_{n}=\log(u_{n+1}/u_{n})$

$=\log(B\cdot\beta^{n})/(B\cdot\beta^{n-1})$

$=\log\beta$ ,

that is irrational. We derive, again from Lemma 2. 1 uniform distribution mod 1
for the sequence $\{u_{n}\}_{n}=1,2,\ldots$ .

For the case $|\alpha|=|\beta|$ , we may assume, without loss of generality, that
$0<\alpha=|\alpha|=|\beta|$ , that is $\beta=-\alpha$ , then we can show also by Lemma 2.1 that
$\{\log u_{n}\}_{n=1,3,5}\ldots$ and $\{\log u_{n}\}_{n=2,4,6}\ldots$ are both uniformly distributed mod 1, from
which $\{\log u_{n}\}_{n=1,2},\ldots$ is uniformly distributed mod 1 too. Hence $\{u_{n}\}_{n=1,2},\ldots$

obeys Benford’s law. (Q. E. D.)

NOTE 2. This Theorem 3.1 is almost identical to Theorem 4.1 in [4] but
we gave another proof using Lemma 2.1, one of the van der Corput’s difference
theorems. The only difference between this Theorem and Theorem 4.1 in [4]
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is the additional assumption: $\beta$ is neither of the form $\pm 10^{m}$ for any nonnegative
integer $m$ . This assumption is indispensable when $A=0$ , but necessary only for
the case that $A=0$ in (3.3).

REMARK 2. The condition on $\alpha$ cannot be removed. Consider

$u_{n+2}=u_{n},$ $n\geq 1$ ,

and $(u_{1}, u_{2})=(c_{1}, c_{2})$ , where $c_{1}$ and $c_{2}$ are arbitrary positive integers. The roots

of the corresponding characteristic equation are $\pm 1=\pm 10^{0}$ , and the sequence
$\{u_{n}\}_{n=1,2},\ldots$ is purely periodic with period of length 2. 0bviously, the sequence
$\{u_{n}\}_{n=1,2},\ldots$ does not obey Benford’s law.

THEOREM 3.2. If the characteristic equation (3.2) has a double real root $\alpha$

which is not of the form $\pm 10^{m}$ for any nonnegative integer $m$ , then $\{u_{n}\}_{n=1,2},\ldots$

obeys Benford’s law.

PROOF. We can express the n-th term $u_{n}bv$

$u_{n}=(A\cdot n+B)\cdot\alpha^{n-1},$ $n\geq 1$ ,

where $A$ and $B$ are constants depending only upon $a_{1},$ $a_{2},$ $u_{1}$ and $u_{2}$ . Then

$\log u_{n+1}-\log u_{n}=\log(u_{n+1}/u_{n})$

$=\log\{(A\cdot n+A+B)\alpha^{n}\}/\{(A\cdot n+B)\alpha^{n-1}\}$

$=\log|A\cdot n+A+B|/|A\cdot n+B|+\log|\alpha|\rightarrow\log|\alpha|$ , as $ n\rightarrow\infty$ .
Since $\log|\alpha|$ is irrational, repeating the same argument with Lemma 2. 1 as in
the proof of Theorem 3.1, we finish the proof. (Q. E. D.)

REMARK 3. As a general setting throughout, we agree that $\{u_{n}\}_{n=1,2},\ldots$ is
a sequence of positive integers. From the recurrence formula (3.1) with a and
$c$ integral vectors, $u_{n}$ may be a negative integer. In this case, we consider the
sequence

$\{v_{n}\}_{n}=1,2,\ldots=\{|u_{n}|\}_{n}=1,2,\ldots$ ,

instead of $\{u_{n}\}_{n=1,2},\ldots$ and Theorem 3.1 and Theorem 3.2 hold for the sequence
$\{v_{n}\}_{n}=1,2,\ldots$ .

REMARK 4. The modulus $|\alpha|$ in Theorem 3. 1 and in Theorem 3. 2 is greater

than one, since $\alpha\cdot\beta=a_{1}\neq 0$ is an integer. Then $|u_{n}|$ tends to infinity as $n$ tends
to infinity possibly except when $A=0$ . Suppose that $A=0,$ $B\neq 0$ and $|u_{n}|\rightarrow 0$ as
$ n\rightarrow$ oo. Since $\{u_{n}\}_{n=1,2},\ldots$ is an integer sequence, $u_{n}$ is always zero from a certain
point on, which is of no interest. If $A=B=0$ , this sequence $\{u_{n}\}_{n=1,2},\ldots$ is the
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sequence of zero’s which is of no interest either.
Apart from the characteristic equation (3.2), let us consider a sequence

$\{u_{n}\}_{n=12},\ldots$ originally defined by

$u_{n}=C\cdot\gamma^{n-1}+D\cdot\delta^{n-1},$ $n\geq 1$ ,

where $C\neq 0,$ $D,$
$\gamma$ and $\delta$ are real constants and $0<|\delta|<|\gamma|$ . Then $\{\log|u_{n}|\}_{n}=1,2,\ldots$

is uniformly distributed mod 1 unless $\gamma$ is of the form $\pm 10^{m}$ with $m$ nonnegative
rational number. In this situation, $|\gamma|$ may be smaller than one, $i$ . $e$ . $u_{n}\rightarrow 0$ , as
$ n\rightarrow\infty$ . Then by considering the first nonzero digits of $u_{n}$ , Benford’s law holds
also for $\{u_{n}\}_{n}=1,2,\ldots$ (From Theorem 1 in Persi Diaconis [2]).

If the characteristic equation (3.2) has two complex conjugate roots, $\alpha$ and
$\overline{\alpha}$ , where 2 is the complex conjugate of $z$, then the situation is a little confusing.
We shall consider only for the case: $a_{2}=0$ and $D=4a_{1}<0$ .

In this case, two complex conjugate roots are
$\alpha=\sqrt{}\overline{a_{1}}=ai,\overline{\alpha}=-ai$ ,

by setting $a=\sqrt{-a_{1}}$ . Then

(3. 4) $u_{n}=A(ai)^{n-1}+(-1)^{n-1}\overline{A}(ai)^{n-1},$ $n\geq 1$ ,

where

$A=(c_{1}\cdot a-c_{2}i)/2a$ .
If we suppose further that $A$ is real, then $u_{2}=c_{2}$ must be zero and from (3.1),

$u_{2m}=0,$ $m\geq 1$ . 0riginal Benford’s law signifies that the distribution of the distri-
bution of the first significant digits except zero obeys the logarithmic law. Thus
we agree to say that Benford’s law holds for an integer sequence $\{a_{n}\}_{n}=1,2,\ldots$ if
the distribution of the first digits of $\{b_{n}\}_{n}=1,2,\ldots$ obeys the logarithmic law, where
$\{b_{n}\}_{n}=1,2,\ldots$ is the subsequence of all non-zero elements of $\{a_{n}\}_{n}=1,2,\ldots$ .

Direct calculation from (3.4) showe that
$u_{n}=2\ovalbox{\tt\small REJECT}_{e}A\cdot a^{4k}$ , if $n=4k+1$ ,

$=-2J_{m}A\cdot a^{4k+1}$ , if $n=4k+2$ ,
$=-2\ovalbox{\tt\small REJECT}_{e}A\cdot a^{4k+2}$ , if $n=4k+3$ ,
$=2J_{m}A\cdot a^{4k+3}$ , if $n=4k+4$ .

From the above convention, we may suppose, without loss of generality, that
$u_{n}\neq 0$ for any $n$ . Then the following four sequences $\{\log|u_{n}|\}_{n=1,5},\ldots,$ $\{\log|u_{n}|\}_{n=2,6},\ldots$ ,
$\{\log|u_{n}|\}_{n=3,7},\ldots$ and $\{\log|u_{n}|\}_{n=4,8},$

$\ldots$ are uniformly distributed mod 1 unless $a$ is
of the form $10^{m}$ for some nonnegative integer $m$ . Thus $\{|u_{n}|\}_{n=1,2},\ldots$ obeys Ben-
ford’s law.

Considering Remark 3 and the convention above, we get
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THEOREM 3.3. If the characteristic equation has two purely imaginary
complex roots and $a_{1}$ is not of the form $-10^{m}$ for any nonnegative integer $m$ ,
then $\{u_{n}\}_{n=1,2},\ldots$ obeys Benford’s law.

4. Linear recurrence sequences of arbitrary order.

In this final Section, we treat a general linear recurrence formula $L(d, $a $, c)$

and the recurrence sequence $\{u_{n}\}_{n}=1,2,\ldots$ satisfies the following linear recursion
formula of order $d$ :

(4. 1) $u_{n+d}=a_{d-1}\cdot u_{n+d-1}+a_{d-2}\cdot u_{n+d-2}+\cdots+a_{0}\cdot u_{n},$ $n\geq 1$ ,

and also the initial conditions:

(4.2) $u_{1}=c_{1},$ $u_{2}=c_{2},$ $\cdots$ and $u_{d}=c_{d}$ ,

where

$a=(a_{d-1}, a_{d-2}, \cdots, a_{0})$ and $c=(c_{1}, c_{2}, \cdots, c_{d})$

are d-dimensional integral vectors. The cheracteristic equation of (4.1) is

(4. 3) $\lambda^{a}=a_{d-1}\cdot\lambda^{d-1}+a_{a-2}\cdot\lambda^{d-2}+\cdots+a_{1}\cdot\lambda+a_{0}$ .
Analogously to Theorem 3.2, we get the following Theorem 4.1, which we

did not consider in the preceding paper [4].

THEOREM 4.1. If the characteristic equation has only one root $\alpha$ of multi-
plicity $d$ which is not of the form $\pm 10^{m}$ for any nonnegative integer $m$ , then

Benford’s law holds for the linear recurrence sequence $\{u_{n}\}_{n=1,2},\ldots$ .

PROOF. By (4.1) and (4.3), we have that

$u_{n}=(b_{0}+b_{1}\cdot n+\cdots+b_{d-1}\cdot n^{a-1})\alpha^{n-1}$ ,

where $b_{0},$ $b_{1},$ $\cdots$ and $b_{d-1}$ are constants depending only on a $,$

$c$ and $\alpha$ . From
Remark 4, we may suppose that $u_{n}\neq 0$ for any $n$ . Then

$u_{n+1}/u_{n}=[\{b_{0}+b_{1}(n+1)+\cdots+b_{d-1}(n+1)^{d-1}\}\cdot\alpha^{n}]/$

$\{(b_{0}+b_{1}\cdot n+\cdots+b_{d-1}\cdot n^{d-1})\cdot\alpha^{n-1}\}$

$=[\{b_{0}+b_{1}(n+1)+\cdots+b_{d-1}(n+1)^{d-1}\}\cdot\alpha]/$

$(b_{0}+b_{1}\cdot n+\cdots+b_{d-1}\cdot n^{a-1})\rightarrow\alpha$ , as $ n\rightarrow$ oo.

Thus
$\log|u_{n+1}|-\log|u_{n}|\rightarrow\log|\alpha|$ , as $ n\rightarrow\infty$ .

The number $\alpha$ is algebraic and therefore $\log|\alpha|$ is an irrational number.
Hence Lemma 2. 1 is applicable and we deduce that $\{\log|u_{n}|\}_{n}=1,2,\ldots$ is uniformly
distributed mod 1, which indicates that the recurrence sequence $\{u_{n}\}_{n}=1,2,\ldots$
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obeys Benford’s law. (Q. E. D.)

Hereafter we suppose that the characteristic equation (4.3) has distinct roots

$\alpha_{1},$ $\alpha_{2},$
$\cdots$ and $\alpha_{p}$ with multiplicity $m_{1},$ $m_{2},$ $\cdots$ and $m_{p}$ , respectively. For our conve-

nience, we arrange the roots $\alpha_{1},$ $\alpha_{2},$
$\cdots$ and $\alpha_{p}$ according to the magnitude of their

moduli, that is,

$|\alpha_{1}|\geq|\alpha_{2}|\geq\cdots\geq|\alpha_{p}|$ .
It is known that $u_{n}$ can be represented by

(4. 4) $u_{n}=b_{1}(n-1)\cdot\alpha_{1}^{n-1}+b_{2}(n-1)\cdot\alpha_{2}^{n-1}+\cdots b_{p}(n-1)\cdot\alpha_{p}^{n-1}$ ,

where $b_{1},$ $b_{2},$ $\cdots$ and $b_{p}$ are polynomials of degree at most $m_{1}-1,$ $m_{2}-1,$ $\cdots$ and
$m_{p}-1$ , respectively. Under this setting, we obtain

THEOREM 4.2 Suppose that the distinct roots $\alpha_{1},$ $\alpha_{2},$
$\cdots$ and $\alpha_{p}$ of the cha-

racteristic equation (4.3) satisfy

(4. 5) $|\alpha_{1}|>|\alpha_{2}|\geq|\alpha_{3}|\geq\cdots\geq|\alpha_{p}|$ .
and $\alpha_{1}$ is not of the form $\pm 10^{m}$ for any nonnegative integer $m$ and further
$b_{1}(n-1)$ in (4.4) is not identically zero. Then the linear recurrence sequence
$\{u_{n}\}_{n}=1,2,\ldots$ obeys Benford’s law.

NOTE 3. Thes theorem is identical with Theorem 4.3 in [4]. In order to

make clear the situation of the roots, we add an adjective “distinct” and delete
the assumption that $\alpha_{1}$ is real, since (4.5) indicates that $\alpha_{1}$ is real.

Another added assumption on $b_{1}(n-1)$ is not so essential. If $b_{j}(n-1)$ is the
first non-zero polynomial among $b_{1},$ $b_{2},$ $\cdots$ and $b_{p}$ , then (4.5) may be replaced by

$|\alpha_{j}|>|\alpha_{j+1}|\geq\cdots\geq|\alpha_{p}|$ ,

and $\alpha_{j}$ is required not being of the form $\pm 10^{m}$ for any nonnegative integer $\prime n$ .

PROOF. The n-th term $u_{n}$ of the recurrence sequence $\{u_{n}\}_{n}=1,2\cdots$ can be
represented by

$u_{n}=b_{1}(r\iota-1)\cdot\alpha_{1}^{n-1}+b_{2}(n-1)\cdot\alpha_{2}^{n-1}+\cdots+b_{p}(n-1)\cdot\alpha_{p}^{n-1}$ ,

where $b_{1},$ $b_{2},$ $\cdots$ and $b_{p}$ are polynomials of degree at most $m_{1}-1,$ $m_{2}-1,$ $\cdots$ and
$m_{p}-1$ , respectively. Considering Remark 4, we may suppose that $u_{n}\neq 0$ for any
$n$ . Then

$\iota\ell_{n+1}/r\iota_{n}=(b_{1}(n)\cdot\alpha_{1}^{n}+b_{2}(n)\cdot\alpha_{2}^{n}+\cdots+b_{p}(r\iota)\cdot\alpha_{p}^{n})/$

$(b_{1}(n-1)\cdot\alpha_{1}^{n-1}+b_{2}(n-1)\cdot\alpha_{2}^{n-1}+\cdots+b_{p}(n-1)\cdot\alpha_{p}^{n-1})$
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$=\alpha_{1}^{n}\{b_{1}(n)+b_{2}(n)\cdot(\alpha_{2}/\alpha_{1})^{n}+\cdots+b_{p}(n)\cdot\alpha_{p}/\alpha_{1})^{n}\}/$

$\alpha_{1}^{n-1}\{b_{1}(r\iota-1)+b_{2}(n-1)\cdot(\alpha_{2}/\alpha_{1})^{n-1}+\cdots+b_{p}(n-1)\cdot(\alpha_{p}/\alpha_{1})^{n-1}\}$

$\rightarrow\alpha_{1}$ , as $ n\rightarrow\infty$ .
Now

$\log|u_{n+1}|-\log|u_{n}|\rightarrow\log|\alpha_{1}|$ , as $ n\rightarrow\infty$ ,

and $\log|\alpha_{1}|$ is irrational. Hence Lemma 2.1 applies and we obtain that
$\{\log|u_{n}|\}_{n}=1,2,\ldots$ is uniformly distributed mod 1. This proves $\{u_{n}\}_{n}=1,2,\ldots$ obeys
Benford’s law. (Q. E. D.)

Now we would like to treat, instead of (4.5), the following case (4.6):

(4. 6) $|\alpha_{1}|=|\alpha_{2}|>|\alpha_{3}|\geq\cdots\geq|\alpha_{p}|$ .
We suppose further that

(4. 7) $\alpha_{2}=-\alpha_{1}$ .
Then we distinguish two cases;
I. $\alpha_{1}$ and $\alpha_{2}$ are real:

Hence $u_{n}$ can be represented by

$u_{n}=\{b_{1}(n-1)+b_{2}(n-1)\}\cdot\alpha_{1}^{n-1}+b_{3}(n-1)\cdot\alpha_{3}^{n-1}+\cdots+b_{p}(n-1)\cdot\alpha_{p}^{n-1}$ ,

if $n$ is odd,
$=\{b_{1}(n-1)-b_{2}(n-1)\}\cdot\alpha_{1}^{n-1}+b_{3}(n-1)\cdot\alpha_{3}^{n-1}+\cdots+b_{p}(n-1)\cdot\alpha_{p}^{n-1}$ ,

if $n$ is even.

Likewise as in Theorem 4.2, we may suppose that $b_{1}$ and $b_{2}$ are non-zero
polynomials and $b_{1}\neq b_{2}$ . Then, for odd $n=2m+1$ ,

$u_{2m+2}/u_{2m}$

$=[\{b_{1}(2m+1)+b_{2}(2m+1)\}\cdot\alpha_{1}^{2m+1}+b_{3}(2m+1)\cdot\alpha_{3}^{2m+1}+\cdots+b_{p}(2m+1)\cdot\alpha_{p^{m+1}}^{2}]/$

$[\{b_{1}(2m-1)+b_{2}(2m-1)\}\cdot\alpha_{1}^{2m-1}+b_{3}(2m-1)\cdot\alpha_{3}^{2m-1}+\cdots+b_{p}(2m-1)\cdot\alpha_{p}^{2m-1}]$

$\rightarrow\alpha_{1}^{2}$ , as $ n\rightarrow\infty$ .
Thus

$\log|u_{2m+2}|-\log|u_{2m}|\rightarrow 2\cdot\log|\alpha_{1}|$ , as $ n\rightarrow\infty$ .
If $|\alpha_{1}|$ is not of the form $10^{m}$ for any nonnegative integer $m$, then
$\{\log|u_{2m}|\}_{m=1,2},\ldots$ is uniformly distributed mod 1 and by the same argument
$\{\log|u_{2m-1}|\}_{m}=1,2,\ldots$ is uniformly distributed mod 1. Thus $\{\log|u_{n}|\}_{n}=1,2,\ldots$ is
uniformly distributed mod 1.
II. $\alpha_{1}$ and $\alpha_{2}$ are purely imaginary:

In this case, we put
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$\alpha_{1}=ai$ and $\alpha_{2}=-ai$,

where $a>0$ . Then (4.4) may be rewritten as

(4. 8) $ u_{n}=b_{1}(n-1)\cdot(ai)^{n-1}+b_{2}(n-1)\cdot(-ai)^{n-1}+b_{3}(n-1)\cdot\alpha_{3}^{n-1}+\cdots$

$+b_{p}(n-1)\cdot\alpha_{p}^{n-1}$ .

Since

$|ai|=|-ai|>|\alpha_{3}|\geq\cdots\geq|\alpha_{p}|$ ,

and $\{u_{n}\}_{n\Leftarrow 1,2},\ldots$ is a sequence of integers, thus

$b_{1}(n-1)\cdot(ai)^{n-1}+b_{2}(n-1)\cdot(-ai)^{n-1}$

is real for every sufficiently large $n$ , and consequently

$b_{1}(n-1)\cdot(ai)^{n-1}+b_{2}(n-1)\cdot(-ai)^{n-1}$

$=\overline{b_{1}(n-1)}\cdot(-ai)^{n-1}+\overline{b_{2}(n-1)}\cdot(ai)^{n-1}$

for every $n$ . Thus we get

$b_{1}(n-1)=\overline{b_{2}(n-1)}$ , for every $n$ .
As we have seen before, the distribution of $\{\log|u_{n}|\}_{n}=1,2,\ldots$ depends only

upon $(n-1)\cdot\log|\alpha_{1}|$ . Analogously to the proof of Theorem 3. 3, we consider four
subsequences of $\{\log|u_{n}|\}_{n}=1,2,\ldots$ and if $a$ is not of the form $10^{m}$ for any nonne-
gative integer $m$ , then each subsequence of $\{\log|u_{n}|\}_{n}=1,2,\ldots$ is uniformly distri-
buted mod 1. Hence $\{\log|u_{n}|\}_{n}=1,2,\ldots$ is uniformly distributed mod 1 and original
sequence $\{u_{n}\}_{n}=1,2,\ldots$ obeys Benford’s law, using the convention in the last Sec-
tion, if necessary. Thus we get:

THEOREM 4.3. Suppose that the distinct roots $\alpha_{1},$ $\alpha_{2},$ $\cdots$ , and $\alpha_{p}$ of the
characteristic equation (4.3) satisfy (4.6) and (4.7) and $\alpha_{1}$ is not of the form
$\pm 10^{m}$ for any nonnegative integer $m$ and further $b_{1}(n-1)$ and $b_{2}(n-1)$ in (4. 4)

are neither identically zero nor identically equal mutually. Then the linear
recurrence sequence $\{u_{n}\}_{n}=1,2,\ldots$ obeys Benford’s law.

REMARK 5. We fix the base of logarithms to be 10, but if we change the
base to an arbitrary positive integer $g>1$ , our arguments still remain valid by
exchanging the assumption on $\alpha_{1}$ from $10^{m}$ to $g^{m}$ .
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