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1. Introduction

A Lie transformation group on a smooth manifold M is a pair (G, M) of a Lie group G
which acts smoothly on M. This paper is concerned with the cohomogeneity (abbrev. cok) of
(G, M), which is defined by

coh (G, M)=dim M—dim G+min {dim G,; xe M},
where G, is the isotropy subgroup of G at x. Then
coh (G, M)=zdim M—dim G (=: doh (G, M)),
{xe M; coh (G, M)=doh (G, M)+dim G,} is an open subset of M, and
coh (G°, M) =coh (G, M)

where G° is the identity connected component of G.

An orthogonal transformation group (abbrev. o.t.g.) on an N dimensional Euclidean
space E" is defined as a pair (G, E”) of a connected Lie subgroup G of the full orthogonal
group O(N) on E¥. (G, EV) is said to be contained in another o.t.g. (G', EV) on E" if there
is a real linear isometry zEY—E" and a Lie group monomorshism 7:G—G’ such that

t(g)i=1g for all geG.

If moreover 7 is a Lie group isomorphism, (G, E") is said to be equivalent to (G', EV).
Let p be a linear representation on R over the field R of all real numbers of a Lie

group G. We say (G, p, RN) an orthogonal linear triple and p an orthogonal representation of

G if there is a positive definite inner product on RY which is invariant under the action of

Received December 10, 1985.



300 Osami YASUKURA

p(G). Suppose p' is another orthogonal representation of G. We call (G, p’, R"Y) and (G, p,
R") are equivalent as real representation if p’ and p are equivalent as real representations
of G.

An orthogonal linear triple (G, p, R") naturally induces an o.t.g. (p(G°), E¥) which is
well defined up to equivalences and denoted by O(G, p, R"). We denote

coh (G, p, R¥)=coh (O(G, p, R")),
doh (G, p, R¥)=doh (O(G, p, R")).

If G is compact, then any real representation of G is an orthogonal linear representation,
and the corresponding o.t.g. is called a compact linear group.

An o.t.g. is called maximal if it is not properly contained in an o.t.g. of the same
cohomogeneity. Suppose (G, E") is a maximal o.t.g. If it contains a compact linear group
(K, E") of the same cohomogeneity, then itself is a compact linear group. In fact, the
closure G of G in O(N) is compact and

coh (G, EN)=coh (G, EV)

since {reE"; G(x) is closed (i.e., (—Xx)=G_(x_)=G(x)), coh (G, EN)=N-dim G+dim G,}
contains an open dense subset {xe EY; coh (K, EN)=N—dim K+dim K,} of E¥.

Hsiang-Lawson studied a classification of all compact linear groups of
cohomogeneity 2 or 3 and maximal by means of the classification of compact linear groups
which has a non trivial isotropy subgroup at a point of a principal orbit (cf. Kramer [15],
Hsiang and Hsiang-Hsiang [9]). As a result, most of them can be induced from the
linear isotropy representations of Riemannian symmetric pairs.

Conversely, the linear isotropy representation of each Riemannian symmetric pair of
rank 7 induces a compact linear group of cohomogeneity r(cf. Takagi-Takahashi [19]).
Any of its orbit in the representation space is an R-space in the meaning of Takeuchi
(cf. Takeuchi-Kobayashi [21]). A principal R-space denotes an R-space of the highest dimen-
sion among all R-spaces associated with a given Riemannian symmetric pair.

From tables of Takagi-Takahashi [19, Table I and II], it appears that two principal R-
spaces associated with two distinct Riemannian symmetric rairs of rank 2 are not
equivalent as Riemannian manifolds nor Riemannian submanifolds of a hypersphere of the
representation space. Especially if two maximal o.t.g.’s of cohomogeneity 2 contain
o.t.g.’s from two distinct Riemannian symmetric pairs of rank 2 respectively, then they are
not equivalent (cf. Ozeki-Takeuchi [17; Theorem 1, Theorem 2]).

However it is well known that the o.t.g. from the Riemannian symmetric pair (G,,
SO(4)) of rank 2 is missed in a theorem of Hsiang-Lawson [11; Theorem 5] (cf. Takagi-
Takahashi [19], Uchida [23]). More than before, Uchida pointed out many examples
of real reducible (i.e., non irreducible) compact linear groups of cohomogeneity 3 which
shows that another theorem of Hsiang-Lawson[l11; Theorem 6] shoud be properly
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modified. Uchida [23; Theorem] also gave a classification theorem of real reducible com-
pact linear groups of cohomogeneity 3 and maximal in a correct form by the use of a
classification of compact Lie groups which act transitively on spheres (cf. Montgomery-
Samelson [16], Borel [3], [4]).

In this paper, we study the classification of real irreducible 0.t.g.’s of cohomogeneity at
most 3 by a direct method (cf. Sato-Kimura [18], Yokota [25]). We have the list of them in
Section 4, which shows that the other theorem of Hsiang-Lawson [11; Theorem 7] should
be properly modified and also gives a classification of real irreducible compact linear
groups of cohomogeneity 3 in a correct form (cf. Theorem 4.8, Remark 4.10).

Our results also give a proof of the fact that a compact linear group of cohomogeneity
2 and maximal is equivalent to an o.t.g. which is induced from the linear isotropy represen-
tation of a Riemannian symmetric pair of rank 2. Topologically, Asoh [2] has already com-
pleted the classification of compact Lie groups acting on spheres with an orbit of codimen-
sion one, which properly modified the result of H.C. Wang (cf. Hsiang-Hsiang [8]).
Recently, Dadok classified real irreducible compact linear groups with certain proper-
ty, so-called ‘polar’, which is satisfied by each compact linear group of cohomogeneity 2.

2. Preliminaries

For each type of compact simple Lie algebra of dimension g and rank k, we shall in-
vestigate (cf. Adams [1], Goto-Grosshans [6])
(1) ‘Real’ complex irreducible representations of degree m such that

dy:=m—g=3,

(2) Complex irreducible representations of degree m such that
di=2m—g=4,

(3) ‘Quaternion’ complex irreducible representations of degree 2m such that
dy:=4m—g=6.

We denote a compact simple Lie algebra of type X, by X, (X=A,B,C,D, E, F, or i)
and the corresponding compact simply connected Lie group also by X;. A complex irreduci-
ble representation of the highest weight A is denoted by A. Especially the trivial represen-
tation is denoted by 0. The fundamental weights with respect to the simple roots o,
o, -+, oy are denoted by

Aly AZ:' : ')Ak'

(&)

The simple roots of A, are given by a Dynkin diagram:
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o — oy — - —ay (B=1).
(1) ‘Real’ complex irreducible representations of A, are given by

A=2MA,Gf k=1), '} 1i(A;+ Ap_in1)(f k=2R+2),
2h+1

Ashs2Aops2t Z; Ai(A;+Ap_ i )G k=48 +3),

or
2h+2 .
2A2n+3 043+ Z]J Ai(Ai+Ap_i )G k=4h+5),
where % and A;({=1, - - -, [(k+1)/2]) are non-negative integers, and [p] denotes the max-

imal integer at most p.

PROPOSITION 2.1 Ifdy:=deg A —k2—2k=3, then A is equivalent as a complex represen-
tation of Ax(k=1) to one of the followings:

d0<0. Az(k=3), O(kzl),
dy=0: 2A,(k=1), A;+A,(k22),
d0=2: 4A1(k=1)

PrROOF: If A;=1 for some i=4, ---, or [(k+1)/2], then £2=7 and dy,=deg
Ay—k*—2k=,1Cy— k2 —2k=7. If [(+1)/2]=3 and A3=1, then k=5 and dy=deg
(A3+Ay_3) —k2—2k=(k+2)(k+1)’k*(k—4)/36 —k?—2k=140. If A,=1 and k=4, then
do=deg (Ay+Ap_y))—k*—2k=(k+1)%(k*—4)/4—F*—2k=51. Therefore A=0(k21),
221 A,(k=1), i (A1 +A)(k=2), or AyAz+A1(A;+A3)(k=3). If k=1 and A,=3, then
dy=deg 6A4,—3=4. If k=2 and 1,22, then dy=deg 2(A,+A;) — k2 —2k=k(k+1)*(k+4)/
4—k*—2k=19. If =3 and 1,22, then dy=deg 24,—15=5. If k=3 and 1,=A,=1, then
dy=deg (A,+A,+A13)—15=49. Q.E.D.

(2) Complex irreducible representations of A,(k=1) are given by
A=Zlﬁ-’=1 A:A; where A;(i=1, -- -, k) are non-negative integers.

PROPOSITION 2.2 If di:=2deg A—Fk*—2k=<4, then A is equivalent as a complex
representation of A,(k=1) to one of the followings:

0k=1), A(k21), 2A,(k=1,2), A (k=2),
2A2(k=2), Ak_l(kgll-), Ak(kg‘g).

PrOOF: If =1 and A1,=3, then deg A=deg 34,=4 and d,=5. If k=2 and A;(or A,)
=3, then deg A=deg 34,=10 and d,=12. If k=2, 1,21 and 4,21, then deg A=deg
(A1 +A,)=Fk(k+2)and d;=8. If k=3 and A;(or A;) =2, then deg A =deg 24,=(k+1)(k+2)
/2 and d;=5. If A;=1 for some i=3, - - -, k—2, then deg A=deg A;=Fk(k*—1)/6, k=5 and
d25. If A,(or A4—1)=2 and 2=<k—1, then deg A=deg 2A,=k(k+1)*(k+2)/12, k=3 and
d=25. If 1,21, 4,121 and 2<k—1, then deg A=deg (A;+A,_;)=(k+1)*(k*—4)/4,
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k=4 and d12126 If llgl,lk_lgl and 1<k_1, then deg/lgdeg (A1+Ak_1)=(k+2)
(¥*—1)/2, k=3 and d;,=15. If 1,=1, 4,=1 and 2<%k, then d,=15. If 4,21, 4,21 (or
Ap-1=1,2,=1) and 2<k—1, then degA=deg (A;+A)=2k(k+1)(k+2)/3,d =56.
Q.E.D.

REMARK 2.3 2A,(k=1), A,(k=3) are ‘real’. A,(k=1) is ‘quaternion’. Ay, A,(A=2)
(resp. Ay, A,_1(k=4), resp. 2A4,, 2A4,(k=2)) are conjugate from each other.

(3) ‘Quaternion’ complex irreducible representations of A,(k=1) are given as
A=2Agps1+1) Agpi1+Z2, 2:(A;+ Ay_;1) where k=4h+1, A; and k are non-negative in-
tegers.

PROPOSITION 2.4 If dy:=2deg A—k*—2k=<8, then A is equivalent as a complex
representation of A,(k=1) to one of the followings:

d2=11 Al(k:—l),
d2=5: 3A1(k=1), A3(k=5).

PROOF: If k=4h+1=6, then k=9 and d,=2deg Ay 41— k2 —2k=2deg As— k2 —2k=
405. So k=1 or 5. Suppose k=1.If 1, =2, then d;=2deg (24, +1) A;—3=2deg 54,—3=9.
So A=A, or 3A4;. Next suppose k=5. If 1,=1, then d,=2deg (A;+A4,)—35=343.1f 1,21,
then d,=2deg (A,+A5)—35=35. If A;=1, then d,=2deg 34;—35=1925. So A=A3.
Q.E.D.

(&)
The simple roots of C, are given by a Dynkin diagram:
A — Qg — " T O] = O (k22)

(1) ‘Real’ complex irreducible representations of C,(k=2) are given by
A=3%_, 1;A; where 3,;,44; is even and A;(i=1, - - -, k) are non-negative integers.

PROPOSITION 2.5 If dy:=deg A—k(2k+1)=<3, then A is equivalent as a complex
representation of C,(k=2) to one of the followings:

dp,<0: 0(k=2), A,(k=2),
dy=0: 24,(k=2).

PROOF: Suppose £=5. Then deg A;<deg A; for i=4, ---, k and deg A;—dim
C,=4k(k?—3k—7)=20. deg 3A4,—dim C,=k(2k+1)(4k—1)/3=165. deg (A;+A;)—dim
Cir=Fk(8k?—6k—11)/32265. deg 24,—dim C,=k?(4k?—13)/3=725. So A=0, A, or 2A,.
Suppose k=4. Then the assertion holds since deg A;—dim C,=12, deg A,—dim C,=6,
deg 24,—dim C,=272, deg 34, —dim C,=84 and deg (A;+A;)—dim C,=124. Suppose
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k=3. Then the assertion holds since deg 34;—dim C;=35, deg (A;+A;)—dim C;=43,
deg (A;+A3) —dim C;3=49, deg 243—dim C;=63 and deg 24,—dim C;=69. Suppose
k=2. Then the assertion holds since deg 44, —dim C,=25, deg 24,—dim C,=4 and deg
(24, +A3)—dim C,=25. Q.E.D.

(2) Complex irreducible representations of C,(k=2) are given by
A=3!, 1;A; where 1,(i=1, - - -, k) are non-negative integers.

PROPOSITION 2.6 If di:=2deg A—k(2k+1)=<6, then A is equivalent as a complex
representation of Cy(k=2) to one of the followings:

0k22), A,(k22), A,(k=2).

PROOF: Suppose £=3. If A is not equivalent to 0 nor A;, then deg A=deg A, so
d;=2deg A,—dim C,=2k*—3k—2=7. Suppose k=2. The the assertion holds since 2deg
24, —dim C,=10, 2deg (A; + A;) —dim C,=22 and 2deg 24,—dim C,=18. Q.E.D.

(3) ‘Quaternion’ complex irreducible representations of C,(k=2) are given by
A=2%;_, AiA; where 2,44, is odd and A,(=1, - - -, k) are non-negative integers.

PROPOSITION 2.7 If dy:=2deg A—k(2k+1)<6, then A is equivalent as a complex
representation of C,(k=2) to one of the followings:

Ay (k22).

PROOF: Suppose £=3. If A is not equivalent to A;, then deg A =deg A,, so d,=2deg
Ay—dim C,=2k*—3k—227. Suppose k=2. If A is not equivalent to A, then deg A =deg
(A;+A4,)=16, so d;=22. Q.E.D.

(B)
The simple roots of B, are given by a Dynkin diagram:

A — O = * " T O] => Qg (k23)

(1) ‘Real’ complex irreducible representations of B,(£=3) are given by
A=34 4,A,Gf k=4h+3 or 4h+4), 24,4, + 21 1,A; (otherwise) where % and A,(G=1,
- - -, k) are non-negative integers.

PROPOSITION 2.8 If dy:=deg A—k(2k+1)=5, then A is equivalent as a complex
representation of B,(k=3) to one of the followings:

dp<0: A(k=3), Ap(k=3o0r4), 0(rk=3),
dy=0: Ay(k=3).

Proor: If A;=1 for some ¢=3,---,k—1, then k=4 and d,=deg A;—dim
B,=Fk(2k+1)(2k—4)/3=48. If A,=2, then dy=deg 24,—dim B,=2k=6. If 1,=2, then
dyzdeg 2A,—dim B,=(2k+3)(2k+1)(k+1)(k—1)/3—k(2k+1)=147. If ;=1 and A,21,
then dy=deg (A;+A;)—dim B,=2k+1)(k+1)(4%2—3)=84. Then A=A,, A, A, or
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Ay+A,Gf k=4h+3 or 4h+4), A, or A, (otherwise) since deg 2A4,—dim B,=2;+1Cr+1
—k@2k+1)=14 and deg (A;+A4,)—dim B,=k2**1—k(2k+1)=27. If k=4h+3 or 4h+4,
k=5 and 1,=1, then £=8 and dy=deg A,—dim B,=2*—k(2k+1)=120. If k=3(resp. 4),
then deg (A;+A,)—dim B,=91(resp. 396). Q.E.D.

(2) Complex irreducible representations of B(k=3) are given by
A=3X%_, A;A; where A,(i=1, - - -, k) are non-negative integers.

PROPOSITION 2.9 If di:=2deg A—k(2k+1)=8, then A is equivalent as a complex
representation of B,(k=3) to one of the followings:

d;<0: A,(k=23), A(k=3or4), 0(k=3).

PRrROOF: If A;21 for some (=2, ---,k—1, then d;=2deg A,—k(2k+1)=k(2k+1)
=21. If 1,22, then d,=2deg 2A,—k(2k+1)=k(2k+5)=33. If 1,22, then d;=2deg
2A,—k2k+1)=2 3,11Coe1—k(2k+1)=49. If ;=1 and 1,21, then d;=2deg (A;,+A4,)
—kQ2k+1)=k2t2—E(2k+1)=75. If k=5, then 2deg A,—k(Q2k+1)=2"1—k(2k+1)=9.
Q.E.D.

(3) ‘Quaternion’ complex irreducible representations of B,(k=3) are given by
A=3212.4,+ (22, +1) A, where k=4h+5 or 4h+6, h and A,(i=1, ---, k) are non-
negative integers. Then £=5.

PROPOSITION 2.10 There is no ‘quaternion’ complex irreducible representation of B,
such that d,:=2deg A —k(2k+1)=8.

PROOF: Since k25, d,=2deg A,—k(2k+1)=2"1—Ek(2k+1)=9. Q.E.D.

D)
The simple roots of D, are given by a Dynkin diagram:

0 == O — *°° —'Tk—z — Qp-1 (k=4).

(27

(1) ‘Real’ complex irreducible representations of D,(k=4) are given by
A=Z422 2+ Ao 1 (Ao + AL)GE B=2h+5), Z*_, A,A; f k=4h+4), or ZiZZ 1A+
AX  Ap_1+ AN, (if kP=4h+6), where A}_,+A}is even, h and AP(=1, ---, k) are non-
negative integers.

PROPOSITION 2.11 If dy:=deg A—Fk(2k—1)=<6, then A is equivalent as a complex
representation of Dy(k=4) to one of the followings:

dp<0: 0(k=4), A(k=4), Ay k=4), Az(k=4)
dp=0: Ay(k=4).
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Proor: If 1,21 for some =3, ---, or k—2, then k=5 and dy=deg A;—k(2k—1)
=k(2k—1)(2k—5)/3=75. So A,=0 for =3, ---,k—2. Since deg2A4,—k(2k—1)
=2k—127, deg 2A,—k(2k—1)=k3(4k?—13) =272 and deg (A, +A;) —k(2k—1)=k(4k—5)
(2k+1)/3=132, we have A;+1,=<1. Suppose A"} or AW=1. If k=8, then
dy=2""1—k(2k—1)=8. If k=7, then dy=deg (Ag+A;)—91=2912. If k=6, then dy=deg
(As5+Ag)—66=726 or dy=deg (2A45) —66=deg (24,) —66=,,C¢—66=2396. If k=5, then
dy=deg (A4+A5)—45=165. If k=4 and 4,21, then dy=deg (A;+A,) —28=deg (A, +A45)
—28=28. If k=4 and A,=1, then dy=deg (A;+A,)—28=deg (A,+A3)—28=132. So
k=4 and A=A, or A;. Q.E.D.

(2) Complex irreducible representations of D,(k=4) are given by
A=3%, 1;4; where 1;(i=1, - - -, k) are non-negative integers.

PROPOSITION 2.12 If d:=2deg A—k(2k—1)=36, then A is equivalent as a complex
representation of D,(k=4) to one of the followings:

d,<0: 0(k=4), A, (k=4), A3(k=4), A,(k=4),
A4(k=5), As(k=5), As(k=6), Aa(k=6)

PrROOF: If A;=1 for some i=2, ---, k—2, then d,=2deg A,—k(2k—1)=k(2k—-1)
=28. So that 4;,=0 for i=2, - -, k—2. Since 2deg 24, —k(2k—1)=(k+2)2k—1)=42, we
have A,=1. Suppose A,_;+4,=1. Then k=6 since d,=2deg A,—k(2k—1)=2deg
Ay —k(@2k—1)=2*—k((2k—1)=37 if k=7. We have that 1;+A,_;+A,=1 since 2deg
(A1 +A,)—k(2k—1)=2deg (A, +As_1) —kQCE—1)=2*—k)2k—1)=84, 2deg (A4_1+A;)
—k@2k—1)=k@2k-1)[42E—2)!/ {(k—1)!(k+1)!} —1]=84 and 2deg 2A,—k(2k—1)
=2deg 2A,_1—k(2k—1)=k(2k—1){2(2k—2)!/(k!)>—1} =42. Q.E.D.

REMARK 2.13 A4(k=5) and A5(k=5) are conjugate. Az(k=4) and A,(k=4) are ‘real’,
and there are outer automorphisms 7;(z=1, 2) of D, such that Az, ° 7, and Ay ° 7, are
equivalent as complex representations of D, to A;. There is also an outer automorphism
t3(resp. 14) of Dg(resp. Ds) such that Asg ° 73(resp. Ay ° 74) and Ag(resp. As) are equivalent
as complex representations of Dg(resp. Ds).

(3) ‘Quaternion’ complex irreducible representations of D,(k=4) are given by
A=3%% 1;A; where A,_;+ 4, is odd, k=4h+6, and k, A;(i=1, - - -, k) are non—negative in-

tegers.

PROPOSITION 2.14 If dy:=2deg A—k(2k—1)=36, then A is equivalent as a complex
representation of D,(k=4) to one of the followings:

dy=—2: A5(k=6), Ag(k=6).

PROOF: The assertion follows from Proposition 2.12 and Remark 2.13. Q.E.D.
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(E)
The simple roots of exceptional Lie algebras are given by Dynkin diagrams:

GzZ o] = O

F4: Q] = Qg => 3 — 04

E(;: Q1 7 Qg 7 Q3 T 04 — Q5
o7

E7: Q] 7 Qg T Q3 T Q4 — 05 — Qg
o7

EB: Q] 7 Qg T Q3 T Q4 — Q5 7 Qg T Q7
Olg

PROPOSITION 2.15 Suppose A is a complex irreducible representation of an exceptional
Lie algebra of dimension g. If dy:=deg A —g=<12, then A is equivalent as a complex representa-
tion to one of the followings:

do<0: A3(Gy), Ay(Fy), A1(Ee), As(Ee), Ae(Ey),
dy=0: A1(Go), A1(Fy), Ae(Ee), A(E;), A7(Es).

PROOF: Case G,) If A is not equivalent to A; nor Ay, then dy=13 since deg 24,=77,
deg 24,=27 and deg (A;+A,)=64. Case F,) If A is not equivalent to A; nor A,, then
dy=221 since deg 2A4;=deg (A;+A4,)=1053, deg 24,=324, deg A,=1274 and deg
A3=273. Case Eg) If A is not equivalent to A;, A5, nor Ag then dy=273 since deg
2A,=deg 2A;=deg A,=deg A,=351, deg A;=2925, deg 24=2430, deg (A, +A5)=650
and deg (A, +A¢)=deg (As5+A¢)=1728. Case E;) In A is not equivalent to A; nor A, then
dy=779 since deg A,=8645, deg A;=365750, deg A,=27664, deg A5=1539, deg
A;=912, deg 24,=7371, deg 245=1463 and deg (A;+As)=3920. Case Eg) If A is not
equivalent to A,; then dy=3627 since deg A;=3825, deg 1,=6696000, deg A;=
6899079264, deg A,=146325270, deg A5=2450240, deg A;=30380, deg A3=147250,
and deg 24,=27000. Q.E.D.

REMARK 2.16 A,(G,) is ‘real’ of degree 7. A4(F,) is ‘real’ of degree 26. A;(Es) and
As(Eg) are conjugate from each other and of degree 27. A¢(E;) is ‘quaternion’ of degree 56.
A1(Gy), A1(Fy), As(Eg), A1(E;) and A;(Eg) are the adjoint representations, especially
‘real’, of degree 14, 52, 78, 144, 248 respectively. Any A of d; or d,=12 is contained in the
above list since d,=d,>d,.

Next propositions are also useful in sections 3 and 4.

PROPOSITION 2.17 Each non trivial ‘veal’ complex irreducible representation of degree at
most 3 of a compact simple Lie algebra is equivalent as a complex representation to one of the
Sfollowings:
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degree 3: 24,(A,).

PROOF: The assertion follows from Prop. 2.1, 2,5, 2.8, 2.11 and 2.15 since d, is less
than the degree which is at most 3. Q.E.D.

PROPOSITION 2.18 Each non trivial complex irreducible representation of degree at most
3 of a compact simple Lie algebra is equivalent as a complex representation to one of the follow-
ings:

degree 2: A,(4,),
degree 3: 24,(4,), 4:1(4,), A2(45).

PrROOF: The assertion follows from Prop.’s 2.2, 2.6, 2.9, 2.12 and 2.15 since d,=
2 degree—g¢g=2.3—3=3. Q.E.D.

REMARK 2.19 A,(A,) is conjugate to A,(A4,).

PROPOSITION 2.20 Each non trivial ‘quaternion’ complex irreducible representation of
degree at most 6 of a compact simple Lie algebra is equivalent as a complex representation to one
of the followings:

degree 2: A,(4,),
degree 4: 34,(A,), A (Cy),
degree 6: 51,(A4,), A:(C5).

PROOF: The assertion is trivial in the case of A;. Otherwise, it follows from Prop.’s
24,27, 2.10, 2.14 and 2.15 since d;=2 degree—g=2-6—8=4. Q.E.D.

3. Basic Classification by cohomogeneity
Let (G, M) be a Lie transformation group. For xe M, we denote G(x) the orbit of G
through #, and G, the isotropy subgroup of G at x.

LEMMA 3.1 Let (G, M), (G, N) be Lie transformation groups and f be a G-equivariant
submersion from M onto N with the property:

@) =Gz
at a fixed xe M. Then we have that
dim M—dim G+dim G,=dim N—dim G+dim Gy,
PROOF: dim M=dim N+dim f ~}(f(x)) =dim N+dim G (x) =dim N+dim G —

dim G, since (Gyy),=G,. Q.E.D.
Let R, C and H be the set of real numbers, complex numbers and quaternions respec-
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tively. Naturally H contains C, and C contains R. The conjugate u+jv of u+jve H (u, ve C)
is defined by

u+jv=a-—jv
where # is the complex conjugate of ». For u+jv, u’ +jv’ € H, the product of them is defined
by
(u+ijv) ' +v")=uu' —ov') +j(vu’ +av’).
Let Fbe R, C, or H. The set of all (»,, n,) —matrixes with coefficients F is denoted by
F(ny, ny). For Xe F(n,, n,), we denote the conjugate of X with respect to the coeflicients by
X, and the transposed matrix of X by ‘X. We write F*=F(n, 1), F(n) =F(n, n), and denote

the identity matrix of F(n) by I,. We denote hF(n)= {XeF(n); X=X}, pFn)= {XehF(n); X
is positive definite}, and use the following notations for classical groups:

GF(n)= {XeFn); ' XX=X'X=1I,}.
If F=Ror C, denote
SF(n)= {XeGF(n); det X=1}.

Then GR(n)=0m), GCn)=U@n), GHn)=Spn), SR(n)=SOn) and SC(n)=SU(n) in
usual notations. Any subgroup of GF'(n) acts on F” linearly over right multiplications of F'
by usual manner and acts on ZF (n)(resp. pF (n)) by

A-X=AX'A (3.1)

for AeGF(n), XehF (n)(resp. pF(n)). Each matrix of hF(n) can be transformed to a
diagonal form by the action of GF(n)(resp. SF(n)). Similarly any subgroup of GF(#n;)
x GF(n,) acts on F(n,, ny) by

(A,B)-X=AX'B 3.2)
for (A, B) e GF (ny) X GF (n;), XeF (n,, M)

We use mappings &, 2': H(n,, ny) —> C(2n,q, 2n,),

h: H(ny, ny) — C(2ny, ny) and h': H(n,, ny) —> C(ny, 2n,) such that
wsn=( 4 °8). ke ( Y b). (¥,
WU+ Vj)=(U, V) for U, VeC(n,, ny).

Then &, k' are real linear injections such that

‘®#(P)=k(P), B (P)=k'(P), k(PQ)=k(P)k(Q), k' (PQ)=Ek(P)FK(Q)
for Pe H(ny, n,), Q€ H(n,y, n3),

and A(resp. ') is a linear bijection over right (resp. left) multiplications of C such that
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h(PQ)=Fk(P)h(Q )resp. k' (PQ)=h"(P)k(Q)).

For PeH(n,, n,), we see that column-rankg(P):=n,—dimg{QeH"; PQ=0}=
(2n,—dim¢ {Q e H™; PQ=0})/2=(rankck(P))/2=(rankck (P))/2=(2n,—dim¢ {Qe H(1, n,);
QP=0})/2=n,—dimg {Qe H(1, n,); QP=0} =: row-rankyz(P). Note that the linear in-
dependence in H", H(1, n,) over right multiplications of H is equivalent to one over left
multiplications of H respectively owing top_q=q' -p (p, qin H). Therefore rankg(P): = column-
ranky (P) =row-rankg(P) is well-defined. Denote MF (n,, ny)= { X € F (n,, n,); rankp(X)=
max(n,, #;)} . Then B(MH (n,, ny))=MC(2n,, 2n;) Nk(H (n,, ny)).

Assume n,=n,. Denote f: MF(n,, n,) —> pF(ny)

such that f(X)='XX for Xe MF(n,, n,). Then f is GF(n,) x GF (ny)-equivariant with
respect to the action on MF(n,, n,) and the following action on pF (n,):

(A,B)- Y=BY'B 3.3)
for (A, B) e GF(ny) X GF (n;), Y epF (n,).

LEMMA 3.2 (1) f s a submersion.
2 fF{f(X)=(GF(m)x {I,,})- X for Xe MF (n,, n,).
(3) If ni>ny, then f~1(f(X))=(SF(n,) x {I,,})- X for Xe MF(n,, n;) where F=R or C.

PROOF: (1) Since any diagonal matrix in pF(n,) is in the image of f, it follows that f
is onto from the diagonalizability by the action (3.3). To prove dfx,: F(n,, ny)—hF(ny);
X-'XX,+'X,X is onto at X,e MF(n,, n,), if we use the action (3.2) of GF(#,) x GF (n,),
we may assume that X, has the following form for some non-zero x;e R (=1, - - -, n,):

X1

Xo= R Ty | In fact, the action (3.3) of {I,,} X GF(n,) transforms ‘X, X, to a diagonal
form and the action (3.2) of GF(n,) x {I,,} gives a required form. Then it is easy to show
that dfx, is onto. (2) Suppose f(X)=f(Y). Denote X=[x,, - - -, x,,], Y=[31, - - -, y»,] Where
%, ;€ F™, then '%x;,=%;y; (i, j=1, - - -, n;). We can choose x;, , (h, k=n,+1, - - -, n;) such
that %;x,="9;y,=0 and ‘%%, =9,y =0 Then X'=[x,, - - -, %, ], Y'=[91, - - -, y»,] have the
inverse matrices. For A=Y'X'"!, A is in GF(n,) since ‘X' X'='Y'Y’. We have (A, L)
‘X=Y. 3)If F=R or C, then X"=X"-diag[1, ---,1,det X'"!] and Y"'=Y"-diag[1,
-+-,1,det Y'"'] are in SL(n;, F). Then B=Y"X""! is in SF(n)) and (B, I,,))- X=7Y if
1, >ny. Q.E.D.

The tensor product F ”‘@- . (?F " over F of F™, ---, F™ is defined if F=R or C.
Naturally R”‘(}?- . -(;?R"’= {z in C”‘C>é<)- . -(>C9C"‘; z=2z} where denotes the complex conjuga:
tion extended naturally on C”‘(?- . -(?C”‘. If F=H, then we consider the real linear map J:
CZ"’%)' . '(?CZ’“—'CZ”‘CVCQ' : '(?CZ”’; % 2i(h(Pn) @ - - - @ h(Py)) > Z; 2:(h(Pf) @ - - - @ h(Pif)),
where z;€ C and P,e H*(t=1, - - -, s). Then J?=1d(f s is even), or -id (if s is odd). The ten-
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sor product H ”1® ®H " over right H of H", ---, H" is defined by H ”1® ®
H":={Ze Cz’”® ®CZ" : JZ=Z} (if s is even), or C2"1® ®Cz" with the quaternlon
structure ] Gfs 1s odd) If s=1, then ] is the standard quatermon structure on C?"'=h(H™).
If s=2, then H' ”1(?}1 " is a real form of Cz'“@é)Cz”z with respect to the real structure J on €
(?Cz”z. For an even s, H ”1(;?- . -@H " is equivalent as real spaces to

(Hm@an)@I? . (;?(Hns—l@Hns)
since the complexifications are isomorphic over C.
Let py, - - -, p, be linear representations of Lie groups Gy, * - -, G, on F™, - - - F™ over
Frespectively. If F=R or C, then the exterior tensor product plC%)- . -@ps over F'is defined as

the representation of the direct product group G, X - - - X G, on the tensor prodict space F™
C;)- . @F” over F such that

(P18 &p)ar, -+, ):=p1( @)D Rp(4.)

for (g1, - -, gs) in Gy X - - - X G, where the right hand side is the usual tensor product of
linear transformations. If = H, then note that f commutes with the representation (& © p,)
(i@- . -Q/E}(k op)of Gy X -+ xGson h(H”‘)Cé)- : -(?h(H”S). The exterior tensor product pl@- : g%)
ps over vight H is defined as the representation of G; X - - - X G, on H "1@- . -%)H s such that

(p@' . 'C;?ps)(gl, e, g =((k Opl)@- . -C?(k o p g1, * ) gs) IH”1®- . ~®H"‘.

If s is even, then it is equivalent as a real representation of G; X - - - X G, to ( p1®p2)® @
(ps- 1®ps) Next, we study the case of s=2 in more detail. The identity representatzon of a
Lie subgroup K of GF(n) is denoted by id. We consider the action [(3.1) of K on pF(n).

PROPOSITION 3.3 If K is a Lie subgroup of GF(n;) and nIan, then (1) coh(GF (n,)
x K, 1d®1d F ”‘®F ")=coh(K, pF(n,)), (2) coh(SO(nl)XK 1d®1d R’”®R"2) coh(K,
pR(ng)), 3 If n1>n2, then coh(SU(n,) X K, 1d®1d C”‘@C"Z) coh(K pC(nz)) (4) coh(X,
PF (n5)) Z coh(GF (n2), pF (n3)) =n, (=coh(SF (nz) PF (nz)) if F=R or C).

Proor: If F=R or C, the representation space F’“C;)F”2 is identified with F'(n,, n,) by
the correspondence & F”1(>;)F"2—>F(n1, ny) such that 1(e;®e)=E; (1=1, -+, ny;j=1, - -+,
n,) with respect to the standard bases {e;}, {¢;}, {E;j} of F™, F™, F(n,, n;) respectively.
Through i, the action of GF(n,) X K on F(n,, n,) is induced as

(A, B)-X=AX'B

for Xe F(ny, ny), (A, B)e GF (n,) X K. The o.t.g. induced from this action is equivalent to
one from the similar action of GF(n;) x K where K= {B; BeK} is the conjugation of
K e GF(n,). Hence the o.t.g. induced from idC%)id is equivalent to one from the action (3.2)
of GF(n;) x K. When F=H, we consider 1: Cz’“@c?Cz""’—+ C(2n,, 2n,) for the standard basis
ei=hle1), - -, e, =hle,,), es1=h(e1]), - - -, ean,=hle, j) of C* where ey, - - -, e, is the stan-
dard basis of H” (:=1, 2). Then we have
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I(H"‘%)H"z) =k(H(n,, ny))

since JZi=J.Z, (Z:e C**), 1 (JZ)=J 1 (Z)], (Z e C*m®C™) and
k(H (n,, n2)={XeC(2n,, 2n,); ; X'J,=X} where

I ( 0. —I,

I 0) (=1, 2).

Through 1, the action of Sp(n,) X K on k(H(n,, n,)) is induced from the representation
id(%id on H’”%)H"Z by (4, B)-k(X)=Fk(A)k(X)'k(B) for Xe H(n,, n,), (A, B) e Sp(n)) x K.
The o.t.g. induced from this action is equivalent to the one which is induced from the ac-
tion of Sp(n;) x K on H(n,, n,), since *k(B)=Fk('B) and k(A)k(X)k(B)=k(AX'B).
Then (1) follows from Lemma 3.1 and Lemma 3.2(0), (1), (2), since MF (n,, n,) is open
and dense in F(n, 7). (2) follows from (1) since GR(n,)°=SO0(n,). (3) follows from Lem-
ma 3.1 and Lemma 3.2(0), (1), (3). (4) follows from that GF (n;)(resp. SF(n,) if F=R or C)
transforms any matrix in pF(n,) to a diagonal form. Q.E.D.
Denote 7(n;, ny, n3) =coh(SO(n;) x SO(n,) x SO(ng) 1d®1d®1d R”‘®R"2®R”3)
c(ny, ny, n3)=coh(U(n,) x SU(ny) x SU (n3) 1d®1d®1d C”‘@C"2®C"3) q(nl, n,, n3)‘=
coh((Sp(ny) X Sp(n3)) x SO(n3), (1d®1d)®1d (H”1®H”2)®R"”)

PROPOSITION 3.4

Q) r(ny, ny, nm)=18 if nmy=n,=n;=3.

2) cny, ny, n3)=6 if mi=n,=nz=2.

@) qny, ny,m3l)=3  if n3=3, mi=n,=1.

4) qny, ny, n3)=8  if n3=3, m=2, m=ny,=1.

PROOF: Denote A(n;, n; n3)=dim pB(n,n;)—dim SO(ny) x SO(ns) (Gif #,=n,n;) or
dim R”‘%}R”Z(;)R”a—dim SO(n;) x SO(ny) x SO(n3) (otherwise), k (1, ny, n3) =dim pC(nyns)-
dim SU(n,) x SU (n3) (if n, =n,yn3) or dim C"‘C?C"’Gé)03—dim Un,) x SU(ny) x SU (n3) (other-
wise), and u(n,, nz, n3)=dim pR(4n,n;)-dim Sp(n,) X Sp(n,) (f nz=4n,n,), dim pH (nyn3)—
dim Sp(n,) X SO(ns) Gf ns=<4n,;n,, nonz;=n;) or dim (H ”(;?H ”3)%)R”3—dim Sp(n,) x Sp(ny)
x SO(n3) (otherwise). Then A(ny, ny, n3) <7(n,, 1y, n3), kN, Ny, n3) <c(n,, n,, n3) and u(n,,
ny, M3) <q(n,, ns, n3) by Prop. 3.3 since (H "‘®H "2)®R”3 is equivalent to H "1®(H ”2®R”3) as
Sp(n,) x Sp(n;) X SO(ns)-spaces over R. Smce A(xl, X2, %3) = (x5%3 + X%z — xz—x;z, +x2 +x35)/2
(f %3 222%3)  OF XXXz + (% + %o+ 23— 22 —xz—x3)/ 2 (otherwise), (%1, X2, ¥3) =%x2x2—2x-
% — %242 (if x, =2X,%3) OF 2%, XpX3— X2 —x5—x2+2 (otherwise), and u(xy, x5, x3)= 8x3x5+ 2% x-
2= 2% = 20% —xy —x, (if X340, %,), 20502 — a2, — 202 — 2, — 2/ 2 + %3/ 2 (if X3S 4%, %5, X3X2=X1)
or 4%, %%3—%, (2%, +1) —x,(2x,+1) —x2/2+%3/2 (otherwise), they define continuous
piecewise polynomial functions on R? if we take x;(:=1, 2, 3) as real numbers. (1) Since
94/ 3x;(x1, X3, x3) =0 for x; =%, 22321 (=1, 2, 3), we have A(ny, ny, n3) =A(ny, ny, 3)=A(n,,
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3, 3)=A(3, 3, 3)=18. (2) Similar to (1), x(n, 5, n3) =k (2, 2, 2)=6. (3) Since du/9x;(x1, %z,
x3)=0 for i=1, 2, 3; x1, X9, x3=1 (if x3=4%1%, or X3%,=x1), and u/dx3(x1, X2, ¥3) = (4%, %5 — X3)
+1/2>1/2, 0u/0x5(x1, X3, x3) =4(%1%3— %) — 1= 4%, (x3— 1) — 1= 3, /%1 (%1, X2, X3) =4(x2%-
3=%1)—1> —1 for x1=x,=1, 23=2 (if x3<4x,%, and x3x,>x;), we have u(n,, ny, n3)=un,,
Ny, 3)=umy, 1, 3)=umn,—1,1, 3)+ou/dx;(n,—6,1,3) 0<6<1)=u(n;—1,1,3) (since
u(ny, 1,3)and u(n,—1, 1, 3) are integers, and —1<du/adx, is also an integer, especially du/
ax,=0)=u(l, 1, 3)=3. (4) Similar to (3), u(n, ny, ns)=un,, 1, 3)=u(2, 1, 3)=8. Q.E.D.

Let L be the Lie algebra of a connected Lie group G. We write the same letter for a
linear representation of L and the corresponding representation of G. According to
Iwahori [12], there is the following relation between real irreducible representations of
L(resp. G) and complex irreducible representations of L(resp. G) (cf. Goto-Grosshans [6]).
For a complex irreducible representation p on a complex vector space V, we denote the
real restriction of p on the real restricted vector space Vg(abbrev. Vsince V= Vg as a set)
by pr(abbrev. p), which is not real irreducible if and only if p is ‘real’, and so we attach to p
areal irreducible representation p” as follows. p’ =g (if p is the complexification o€ of a real
representation o on a real form Wof V, i.e., pis ‘real’.) or pg (otherwise). Note that p] and
p: are equivalent as real representations if and only if p; and p, are conjugate or equivalent
as complex representations of L(resp. G). Conversely the complexification € on W€ of a
real irreducible representation ¢ on a real vector space W is not complex irreducible if and
only if Whas a L(resp. G)-invariant complex structure (then it is unique), and so we attach
to o a complex irreducible representation ¢ as follows. ¢°=¢ (if W has a L(resp. G)-
invariant complex structure) or o¢ (otherwise). Note that p and p(resp. 0” and o) are
equivalent as complex(resp. real) representations.

Let (G, EV) be an o.t.g. Then the Lie algebra L of G is a real reductive Lie algebra and
has a form:

L=L,®L,® - DL, 3.4

where L, is the center of L, and L;(:=1,- - -, s) are simple ideals of L. Let G,, G; be con-
nected Lie subgroups of G corresponding to L,, L; respectively and éo, é,« be the universal
covering groups of Gy, G; respectively, then G~,- (:=1,- -, s) are compact. Let id:G—>SO(N)
be the identity representation and id be the corresponding representation of G:=
Gox Gy % - X G,

In this paper, we consider (G, E") in case that 7d is a real irreducible representation of
G. Then G is compact (cf. Kobayashi-Nomizu[14]), and so Gy= U(1) or the trivial group 1.
For teR*:=R— {0}, we denote R— U(1) the complex irreducible representation of R
such that #(x) =e?** for x eR. We shall decompose id © of G into an exterior tensor product
of complex irreducible representations of G~,-(i =0,:--,9).

Casei) id °=id ©: Then G, is trivial, and (G, id ¢, CV) is equivalent as complex
representations to some
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(él X oo xés, pl®' . .@ps’ Cm(?' . ‘@C(),Cm)

where p; is a self-conjugate complex irreducible representation of é,- on C* n;=22(G=1,

-, 8), II;=; n;=N, and #{i; p; is ‘quaternion’} is even. We may assume p;(j=1, - - -, 27)
are ‘quaternion’ and p,(k=2r+1, - -, 2r+gq; s=2r+q) are ‘real’, and o; denotes a real
representation of G~,~ on R™ whose complexification is p,,+;(1=1, - - -, q); where  and q are
non-negative integers. Then n,,,;=3(¢=1, - -, q), and (é, id , RY) is equivalent as real
representation to

~ ~ ~ ~ A A A A A A A

(G1 X+ X G2y X Gapy1 X+ X Gy, (/)1(?172)%)' : '@(Pzr—l@Pzr)(?Glg?‘ : ‘Q’?Gq,

(Hm/2®an/2)® e ®(any—1/2®Hﬂ2r/2)®H”2r+1® -+ -@R"™+) (3.5)
)1 R R H R R R

Caseii) 1d °= id, Go=U(1): Then (G, id ¢, C"'?) is equivalent as complex represen-
tations to some

(RxGyx -~ %G, p - - &p,, CRC"Q---©C™)

where fe R, p; is a complex irreducible representation of G~,- on C*% n;=2(=1, -+, s) and
II;_, n;=N/2. So (é, id , RY) is equivalent as real representation to

(R 2Gy, (1P, Qp)a, (CRCMD- -~ @C™)g) (3.6)

Case i) 1d *= zd Gy=1: Then (G zd CM'?) is equivalent as complex representa-
tions to some

(G x - %Gy @ &p,, C"Q---RC™)
where p; is a complex irreducible representation of é; on C% n;22 (1=1, ---,s) and II;_,
=N/2. So (é, id , R") is equivalent as real representation to
(Gix - %Gy (1 - BpIn, €D+ QC™)z) 3.7)
where p1(;<2- . ~C%)ps is not ‘real’ since ( png)- . -(%)ps)g is real irreducible.
THEOREM 3.5 Let (G, EV) be an o.t.g. of cohomogeneity at most 3. If id: G—>SO(N) is
real irreducible and s= 3 (cf. [(3.4)), then (é, id , RY) is equivalent as real representation to
(A x Ay % Ay, (4408CAY, (HOHORY) (3.8)
Especially coh (G, EN)=3.
PROOF: Suppose id is real irreducible and s=3. Then O(G, id, R") is contained in (1)

O((Sp(n,/2) x Sp(n,/2)) x SO(n3), (zd®zd)®zd (H™ 2®H"2/ 2)®R"3) for some n,, n,=2,
n3=3; N=nynyn3, (2) O(SO(n,) x SO(nz) x SO(ﬂg), zd®zd®zd R”‘®R”Z®R”“) for some #,,
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Ny, N3=3; N=nynyn3, or (3) O(U(ny) X SUny) X SU (n3), (id(%)id(%)id)g, (C”‘C>C<)C”2C(>§)C”3)R) for
some 74, #y, N3=2; N=2n;n,n; owing to (3.5), and (3.7). On the other hand, coh (2)
=18, coh (3)=6, coh ((1)(max (n,, n,)=4))=8 by Prop. 3. 4(1)(2)(4) There G is trivial,
and O(G, id, R") is contained in O((Sp(1) X Sp(1) X SO(n3), (zd®zd)®zd (H® H)® R™)
which is equivalent to O(SO(4) x SO(ns), zd@zd R“@R’”) Then n3—3 since coh (G, EY)
<3. So O(G, id, RY) is contained in 0(A1 ><A1 ><A1, (A1®A1)®(2A1)’ (H®H)®R3)
Since s=3, G is isomorphic to A, xA,xA,, and O(G i, RN) O(4, ><A1 ><A1,
(Al(I?Al)(?(ZAl)', (H%H )(?R3). Then (G, id, R") and (3.8) are equivalent as real represen-
tation since A;, 24, are characterized by degrees of complex irreducible representations of
A, and 12=22-3(cf. Section 2). And coh (G, EN)=3 by Prop. 3.3. Q.E.D.

Suppose §=2: L=L,®L,® L, (cf.[3.4)). Then (G, id, R") is equivalent as real
representation to one of the followings:

TYPE I) (Gl ><Gz, p1®p2, 1(>:<)R"2) n=n,=3, N=mnn,, p;is a ‘real’ complex irreduci-
ble representatlon of G; on C™, R”’ is a G~invariant real form of C"(i=1, 2).

TYPE II) (G1 X Gz, pl@pz, H’“%}H"z), m=n,=1, N=4n,n,, p; is a ‘quaternion’ com-
plex irreducible representation of G; on C*, and H" is C** with the G~invariant quater-
nionic structure (i.e., the right multiplication of j)(1=1, 2).

TYPE III) (R X 61 X Gz, (t®p1®p2)3, (C®C”1®C”2)R), nm=n=2, N=2nn,, p; is a
complex irreducible representatlon of G (1—1 2), teR™.

TYPE IV) (G1 X Gz, (pléé)pz)g, (C’“@C”Z)R), m=n,=2, N=2n,n,, p; is a complex ir-
reducible representation of G; on C*(i=1, 2), and p; ® p is not ‘real’.

LEMMA 3.6 Let p; be a linear representation on F™ of a compact Lie group K;, and denote
d;=2'm~dim K; where i=00Gf F=R), 1(if F=C), or 2(if F=H). Then
1) If 1=n<m;, then doh (K; x GF (n), p,(%)id, F”"@F”) =d;+n{2"'(n-3)+1}(=d;+3
if moreover n=3).
2) If 1=n<m; then doh (K;*xGFn), p,-C%)z’d, F"‘"@;)F”) 2d;+27 nn—1)—2} +n
(=d;+2 if moreover n=2 and i=1).

PROOF: doh (K; x GF(n), p,-(%}id, F""’@F") =dim F’”"@F"—dim K; x GF(n)=d;+2/(n—1)-
m;— (2'—1)n—2""n(n—1). Replacing m; by n(resp. n+1), we have (1)(resp. (2)). Q.E.D.

Supposes=1: L=L,® L, (cf. (3.4)). Then (é, id , RY) is equivalent as real representa-
tion to one of the followings:

TYPE V) (él, pi, R™); n,=3, N=n,, p; is a ‘real’ complex irreducible representation
of él on C", and R™ is a él—invariant real form of C™.

TYPE VI) (RxG,, (t®pl)n, (C®C”1)R) n, =2, N=2n,, and p, is a complex irreducible
representatlon of 61 on C"1

TYPE VII) (Gl, p1, C™); my=2, N=2n,, p, is a complex irreducible representation of
G, on C™", and p, is not ‘real’.
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LEMMA 3.7 If ny=n,, then GF(m)(=GF(ny) x {I,.,} in GF(n,) x GF(n)) transforms
any matrix X="[x, - - -, %, ]€F (ny, n)(x; € F™ for i=1, - - -, ny) to a form Y="[y1, -, ¥s]
eF(ny, n)(y;e F(1, ny) for i=1, - - -, my) such that'y;j;=c;d;; for some c;eR (i,j=1, - - -, ny)
by the action(3.2).

PROOF: There is A e GF(n,) such that A transforms X' Xe pF (n;) to a diagonal

G
form < e ) by the action(3.1).
Cn,

Then Y=AX satisfied the desired property. Q.E.D.

Suppose s=0: L=L, (cf. (3.4)). Then (G, id, R") is equivalent as real representation to
one of the followings:

TYPE VIII) (R, i, Cg); te R™.

TypE IX) (1, 0, R); 1 is the trivial group, and 0 is the trivial representation on R.

Note that the o.t.g. of type VIII is equivalent to O(SO(2), id, R?).

For general s=0, the estimate of coh (G, EV) is given in each cases i), ii), iii), if id:
G—SO(N) is real irreducible, by the following theorem. If moreover s=3, especially we
have coh (G, EY)=s.

THEOREM 3.8
(1) In case i), coh (G, EN)=coh of (3.5)=4"-37—67r—3q,
(2) In case ii), coh (G, EN)=coh of (3.6)=2°*1—3s—1,
(3) In case iii), coh (G, EN)=coh of (3.7)=225*'—3s—1.

ProOOF: (3) follows from (2). For (2), we may assume »n,= - - - =2#n,22. If s<3, then (2)
is trivial. Suppose s=3. If n,=n,- - -n,, then we denote f(n,, - - -, n,)=dim pC(ny- - -n;)
—dim SUmy) % - - - x SUm)=n%- - -n2—ni—- - - —n2+s—1. Then 3f/on;=2n; (nk- - - n>- - -
nZ—1) or 0=0. If n;<n,---m, then we denote f(n;, ‘-, n)=dim C’“(?- . -(?C”‘—
dim U(n) xSUmy) X - - - x SU(n,)=2n,- - ns—ni—---—nZ+s—1. Then af/on;=2(n, -
N n—n) Z2(nz - n—n,) 20. Therefore coh 3.6)=f(n,y, -+, m)=f(2, ---,2)
=2+1-35—1.

(1) Suppose s=2r+¢q=2. If r,q=<1, then (1) is trivial. If »=0, g=s=2, then (1)
follows from Prop. 3.3. If s=3, then (1) follows from Prop. 3.4. Assume s=4. Suppose
r=0: Then we may assume 7= - =n,=3. If n;=n,- - -n,, then denote f(n,, - - -, n,)=
dim pR(n,- - -m,)—dim SOMmy) X - - - XSO, )=n%- - -n2+ny - n—ny—---—n24+ny,+---
+n,)/2. Then df/on,=n;(n3- - -n?-- -n2—1)+ny- - -n;- - -n;+1)/2 or 020. If n;<n,- - -n,
then denote f(ny, ---, n;)=dim R"‘%)- . -@R”‘—dim SOny) x --- xSOMm,)=n,- - -n,—
(n3+ - +nd)/2+4(n,+ - - - +n,)/2. Then af/dn=n,- - -n; - -n,—m;+1/22Zn,- - -n,—n,+1/
521/2. Therefore coh (3.5)=f(ny, - -, n)=f(3, -+, 3)=3"—3s=37—3¢q. Suppose ¢=0:
Then we may assume 7,2 - - - =n,=2. If nyn,=n;- - -n,, then denote g(n,, - - -, n,)=dim
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pR(ng- - -n)—dim  Sp(ns/2) x - - - X Sp(n,/2)=(n3- - -ni+ng - -n—ni—- - —ni—my—
—n,)/2. Since dg/dn;=0 (z=1, ---,s), coh (38.5)=g(ny, ny, n3, - -+, n) Zg(ny, ny, 2, - -2)
=2%"54273-3(s—2)=2712%%+2"%)—6r+6=4"—67. If nn,=mn;z---n, then denote
h(ny, - - -, ny)=dim H’“/Z%- . -(?H"s/z—dim Sp(nl/Z)X X Sp(ng/2)=m, - my— i+

+n24+n+ - - +n)/2. Since dh/on;=n;- - 0 m—mi—1/22ny- - ng—my—1/2Zmns—n,
_1/2g2'4_2_1/2>0 (i=1) ”'ys); COh(3-5)gh(n1, '..yns)=h(n3’ n3, N3, Ny, ”')ns)
2 h(ny, ng, Na, Bay N5, -+, B)ZH(2, - - -, 2)=2°—3s=4"—67. Finally suppose 7, g=1: Then

Wwe may assume 7;= - - 03,22 and Ng, 1= - - - SHo4,=3. If myny=ng- - -0, then denote
g(ny, -+, n)=dim pR(nz - - - n)—dim Sp(ns/2) x - - - X Sp(n5,/2) X SO(M3,+1) X - - - X SO(M2+)
=3 - nltng o ng—ni—- - —ni—mz— - =Nyt Nyt +1g4,)/2. Since dg/dn;
=0 (i=1, ---,s), coh(3.5)=g (ny, -+, n)=g (ny, n2,2, -+, 2, 3, -+, 3)=2%-392%75.3¢

+27%+6—6r—3q=4"-37—6r—3q. If myny<m;---n, then deilote h(ng, -+, ny)=

dim (H™/ 2(;?- . -(?H narl 2)@R”2’“§>;)- . -(;)R”Z’“' —dim Sp (1,/2) % - -+ X Sp (n3,/2) x SO (ng,+1)

X+ XSO (Mgyg)=m1- M= M5+ - - +nZ+m+ - +0y—Nyp1— - —Nysy) /2. Since

oh/an;Zny- - n—n,—1/22Zn,(mn3—1)—1/222(22—1)—1/2>0, coh (3.5 =4 (ny, - - -, ny)

gh (n3’ Nz, N3, Ny, *°*, ns)gh (n4s Ny, Ny, Ny,Ns5, * -, ns)gh (2y Y 27 3’ Tt 3)=4r.3q_67,
~———

—349. Q.E.D. ?

4. Orthogonal transformation groups of cohomogeneity at most 3

(I) Let (G, EY) be a real irreducible o.t.g. of type 1.

PROPOSITION 4.1 coh (G, EN)<3 if and only if (é, z'd~, RY) is equivalent as real represen-
tation to one of the followings:

coh=1: none,

coh=2: none,

coh=3: (1) (A;%xA4, (2/11)'@(2/11)*, R°QRY),
(2) (Asx Ay, A56@2A), R°QR),
(B) (CoxAi, 45RQAY, RORY),
(@) (Bex Ay, ATQEAY, R*QRY; k23,
(5) (Dyx A, AE%}(ZAI)’, R*QRY): kz4,
(6) (Bsx Ay, 45024, R°ORY),
(7) (Dyx A, A{C%)(ZAI)', R'®RY); i=34.

PROOF: Suppose coh (G, E¥)<3. Then (é, id , R") is equivalent as real representa-
tion to (1), - - -, (6), or (7) owing to Prop. 3.3(2)(4), Prop. 2.17, Lemma 3. 6(1)(F—R 1=0,
n=3), 3=doh (G, EN)=d,+3, Prop. 2.1 (d;=3), doh (A, x A4,, (Al + A ®(2A y, R4mAr
C;;)R3) 2dim A;,—3=13 (k=2), Prop. 2.5, doh (C,xA4,, (24, )’®(2A1)’ Rdlm C”®R3)—
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2dim C,—3=17 (k=2), doh (C,xA,, Az®(2A1)’ R*k=D~ 1@R"*‘)—élk(k 1)—6=18(k=3),
Prop 2.8, doh (B, x A,, A2®(2A1)’ Rd"“B*®R3) 2dim B,— 3239(k>3) doh (Byx Ay, A}
®(2A Y, R‘6®R3) 9, Prop 2.11, doh (D,, X A, 2%(2A1)’ R4m D‘®R3) 2dim D,—3=
53(k24) the equivalence of o.t.g.’s O(D,;xA,, 'Cﬁ)(ZAl)’ Rs(;?Rs) for 1=1, 3,4 (cf.
Remark 2.13), Prop. 2.15, Remark 2.16, 2dim Ez3—3=2dim E;—3=2dim Eg—3=2dim
F,—3=22dim G,—3=25, doh (Fyx A,, AZ@(ZAI)’, st%R3)=23, doh (G; x A;, A;QE)(ZAI)’,
R7§R3)=4.

Conversely if (G, EV) is induced from (1), - - -, (5), or (7), then (G, E¥) can also be in-
duced from (SO(n,) X SO(3), idC%)id, R”‘%)Ra) for some n,#4. So coh (G, EY)=3(cf. Prop.
3.3(2)(4)). An o.t.g. induced from (6) is of coh 3. In fact Spin (7) x SO(3) acts on R(8, 3)
through 1 by the action [3.2)(cf. Prop. 3.3 Proof), and the isotropy subgroup at

-
X2
x3 |, where |x;| (=1, 2,3) are non-zero distinct real numbers, is locally

isomorphic to SU(2)(cf. Yokota [24, Theorem 5.27, Theorem 5.2]). Q.E.D.
(II) Let (G, E") be a real irreducible o.t.g. of type II.

PROPOSITION 4.2 coh (G, EN)<3 if and only if (G, id, R™) is equivalent as real represen-
tation to one of the followings:
coh=1: (8) (A;xA,, AIC%AI, HRH),
) (Cox Ay, Moy, H'QH); k22,
coh=2: (10) (Cyx Cy, AI@AI, H'QH?); k22,
(1) (A% A4y, 34,04, H'QH),
coh=3: (12) (CixCs, AI@AI, H'QHY); k23,
(13) (Cix A, AI<§;3A1, H'QH?); k22,

PROOF: Suppose coh (G, EN)<3. Then n,=3(cf. Prop. 3.3(1)(4)). Assume 7,=3.
Then (G~2, p2, H™) is equivalent as complex representation to (Cs, A,, H®) owing to Prop.
2.20 and coh (Sp(n,) xA,, id§)5/11, H’l‘@fﬂ);doh (A, pH(3))=12(cf. Prop. 3.3(1)). So
(G, 171, RY) is equivalent as real representation to (12) owing to Lemma 3.6(1)(F=H, i=2,
my=mny, n=n,=3, d;+k {2 (k—3)+1} =d,+3), 3=doh (G, EN)=d,+3, Prop.’s 2.4, 2.7,
2.10, 2.14, doh (D¢ X C;, A,@Al, H‘G@H3)=105(i=5, 6), Prop. 2.15, Remark 2.16, doh
(E7 % Cs, 4660, HEQH)=171.

Assume n,=2. Then (G, p;, H™) is equivalent as complex representation to (C,, A;,
H? or (A,, 34,, H? owing to Prop. 2.20, deg p;=2n,>4(cf. Prop. 2.20 and doh (4, x A,
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3/11@3/11, H*®H?)=10). So (G, id, R") is equivalent as real representation to (10) or (13)
owing to Lemma 3.6 F=H, i=2, my=n,>n=n,=2), 3=doh (G, E¥)=d,+2, deg
pr>4, Prop.’s 2.4, 2.7, 2.10, 2.14, doh (D5 x Ay, 4,634, H"QH?) Zdoh (Dsx Cy, A4,
Hm(;?Hz)=52(i=5, 6), Prop. 2.15, Remark 2.16, doh (E;xA,, A6(§3A1, HZSC;?HZ);doh
(B % C;, 461, H*@H?)=59.

Assume n,=1. Then (G,, p,, H™) is equivalent as complex representation to (A4, 4,

H) by Prop. 2.20. So (C~;, zﬁ, RY) is equivalent as real representation to (8), (9) or (11) ow-
ing to Lemma 3.6(1)(F=H, i=2, my=mny, n=1, di+n{2"(n—3)+1} =d,—3), 3=doh (G,
EM)=d,—-3, Prop. 2.4, coh (Asx A,, A 3(%A1, H IO@H Y=4(cf. The linear isotropy represen-
tation of the symmetric pair (Egs, SU(6)-SU(1)) of rank 4 is characterized as a real 40
dimensional irreducible almost faithful representation of Asx A; owing to Section 2), Pro-
p.’s 2.7, 2.10, 2.14, Remark 2.13, coh (Dg x A,, A,—%}Al, H”’%)H)=4(i=5, 6)(cf. The linear
isotropy representation of the symmetric pair (E;, Spin (12)-Sp(1)) of rank 4 is characteriz-
ed as a real 64 dimensional irreducible almost faithful representation of Dg % A; owing to
Section 2), Prop. 2.15, Remark 2.16, coh (E;x A,, A&%}Al, H ZS@H )y=4(cf. The linear
isotropy representation of the symmetric pair (Eg, E;-Sp(1)) of rank 4 is characterized as a
real 112 dimensional irreducible almost faithful representation of E; X A, owing to Section
2).
The linear isotropy representation of the symmetric pair (E7, Spin(12) -Sp(1)) of rank 4 is
characterized as a real 64 dimensional irreducible almost faithful repfesentation of Dgx A,
owing to Section 2), Prop. 2.15, Remank 2.16, coh (E; X A, ASC%Al, HZS(%H) =4(cf. The
linear isotropy representation of the symmetric pair (Egs, E;-Sp(1)) of rank 4 is characteriz-
ed as a real 112 dimensional irreducible almost faithful representation of E; X A; owing to
Section 2).

Conversely an o.t.g. induced from (8) or (9) is of coh 1 by Prof. 3.3(1) (4) (F=H,
n,=1, K=5Sp(1)). An o.t.g. induced from (10) is of coh 2 by Prop. 3.3 (1) (4) (F=H, n,=2,
K=5p(2)). An o.t.g. induced from (12) is of coh 3 by Prop. 3.3 (1) (4) (F=H, n,=3,
K=3S5p(3)). An o.t.g. induced from (11) is of coh 2(cf. The linear isotropy representation of
the symmetric pair (G,, SO(4)) of rank 2 is characterized as a real 8 dimensional irreduci-
ble almost faithful representation of A; X A, owing to Prop.’s 2.1, 2.2, 2.4). If (G, E") is in-
duced from (13), then coh (G, EN)=coh (A,, pH(2))=doh (A;, pH(2)) =3(cf. Prop. 3.3)
and coh (G, EY)=coh (4,, hH(2)) =coh (A, ' ® (44,)", R® R% =1+coh (4;, (44,)", R®)
=3(cf. The linear isotropy representation of the symmetric pair (SU(3), SO(3)) of rank 2 is
characterized as a real 5 dimensional irreducible representation of A, owing to Prop.’s 2.1,
2.2, 2.4), where the action of A, on pH(2) is given as Prop. 3.3 and Lemma 3.2. Q.E.D.
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(III) Let (G, E") be a real irreducible o.t.g. of type III.

PROPOSITION 4.3 coh (G, EN)<3 if and only if (G~, id, R") is equivalent as real represen-
tation to one of the followings:

coh=1: none,

coh=2: (14) (RxAyxA,, f@)Al(%Al, CC?C’”‘%)CZ); k=1,teR™.

coh=3: (15) (RxA,xA,, f(?Al(@Al, C(?C“l(?Cs); k=2 teR™.
(16) (RxCyxA,, f(%}Al(?Al, C(?C”(?CZ); k=2, teR™.

PROOF: Suppose coh (G, EN)=<3. Then n,=<3(cf. Prop. 3.3(1)(4)).

Assume n,=3. Then (éz, p2, C™) is equivalent as complex representation to (A4,, A;,
C® owing to Prop. 2.18, Remark 2.19 and coh (U(n,) X 4;, id(%)ZAl, C”‘@é)CS)gdoh (4,,
bC(3)=6.1f py is ‘real’ and n, 26, then coh (G, EY)=coh (U(1) x Gy x A, idp: A1, 02
Cm@CH)=coh (G x (U(1) X A7), pi&Nid@A1)n, R"(CRC)p) Zcoh (SO(n) x U(3), id%
tdp, R”‘Cz)Cﬁ;)=coh (U@), pR(6))=doh (U(3), pR(6))=12(cf. Prop. 3.3). So (Gy, p1, C™) is
not ‘real’ or n;=5. Then (G, iz, R") is equivalent as real representation to (15) owing to
Lemma 3.6(1(F=C, i=1, m;=n,, n=n,=3), 3=coh (G, EN)=d,+3, Prop. 2.2(A,(k=3)
is ‘real’ of degree 6), Remark 2.3, doh (RxAsx As, 124,61, COCHM=120C?)
=(k+1)(2k—1)—8=27(k=4), Prop. 2.6(A;(k=2) is ‘real’ of degree 11), doh
(Rx Cyx A, 102,841, CRC®C) =5, coh (Rx Cyx Ay, 94,4, C9C*©CY) zdim €
(?C”C?Cs—dim RxC,xA;+dim C,_3=6(cf. Any isotropy subgroup contains C;-_j),
Prop. 2.9 (A4,(kZ3) is ‘real’ of degree27), doh (RXByx A, i0MSM:, CQC*OCY
=3-2M*1-2k*—k—9218(k=3), Prop.2.12 (A,(k=4) is ‘real’ of degree=8), doh
(RxD,xAs,, @A;@Al, C%)C’Z*_I@Ca)=3 28—k(2k—1)—9211 for-i=k, k—1 (if k=4),
Prop.2.15,  Remark2.16,  doh (RxEsx A, {®A:84,, COC"®C%)=75,  doh
(Rx By x Ay, 01841, COCHDCY)=194.

Assume 7n,=2. Then (G,, p;, C™) is equivalent as complex representation to (A4, A,
C? by Prop. 2.18. If (él, p1, C™) is ‘real’ of degree n,=4, then coh (G, EN)=coh (U(1) x
Gix Ay, id@p &, CRC"RC)=coh (Gix (UM x AD, piQid&A)r, R"Q(CHCHR)Z
coh (SO(n,) x U(2), id(%idg, R’”(%C%)r-coh (U(2), pR(4))=doh (U(2), pR(4))=6. So (él,
p1, C™) is not ‘real’ or n;<3. Then (G, id, R") is equivalent as real representation to (14) or
(16) owing to Prop. 2.18, Lemma 3.6(2)(F=C, i=1, m;=n,>n=n,=2), 3=coh (G, EV)
Zdy+2, Prop. 2.2(A,(k=3) is ‘real’ of degree 6), Remark 2.3, doh (Rx Ayx A, 79,8
Ay, CRCH Q") =k ~4212(k24), doh (RX A4x Ay, #924,604,, CQCH I+ C?)
=(k+1)(k+3)—3=5(k=1), Prop. 2.6(A;(k=2) is ‘real’ of degree 11), Prop. 2.9(A,(k=3)
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is  ‘real’ of degree=7), doh (RxB,XA,, f@Ak(%)Al, C@CzkéchZ)=2’”2—k(2k+ 1)—
4=7(k=3), Prop. 2.12(A,(k=4) is ‘real’ of degree=8, A;(k=4) for =3, 4 are ‘real’ of
degree 8), doh (RxD,xA,, f(%)A,-(%)AI, C(?Cz"_léé)cz)=2k“—k(2k-1)—-4215 for
i=k—1, k(f k=5), Prop.2.15, Remark 2.16, doh (RxEsxA,, f(%Al(%)Al, CRCTRCY
=26, doh (RX E; x A, t@Ae@Al, CRC*RCH=8T.

Conversely an o.t.g. induced from (14)(resp. (15)) is of coh 2(resp. 3)(cf. Prop. 3.3(1)
(4)). If (G, E™) is induced from (16), then coh (G, E¥)=coh (U(1) x C; X A, id(%)AlC%)Al, c
®CH#RC?) =coh (U(1) X (Cy x Ay), id(A4:84,)°, CRH*QH)®)=coh (SO(2) X (Cix Ay,
id@(A:841), RUQ(HQH)=coh (C;x (SO@2) x A), 1:Q(idD4),  H'Q(R*QH))=coh
(SO(2) x A,, pH(2))=coh (SO(2), pR(2))+coh (4, (2A;), R®)=2+1=3(cf. Prop. 3.3).
Q.E.D.

(IV) Let (G, EV) be a real irreducible o.t.g. of type IV.

PROPOSITION 4.4 coh (G, E¥)<3 if and only if (G, id, R") is equivalent as real represen-

tion to one of the followings:

coh=1: none,
coh=2: (17) (AxxA,, A&E)Al, CHIQCY; k2,
coh=3: (18) (A,x A, A@Al, CHIRCY); kZ3.

PROOF: Suppose coh (G, EN)<3. Then (G, id, RY) is equivalent as real representa-
tion to (17) or (18) owing to Prop. 4.3. In fact, (C,xA,, 1®A1, Cz”®Cz)(k22) and
(A xA,, A1®A1, CZ®CZ) are ‘real’, so they are not real 1rredu01b1e and coh (A, xA,, A1®
Ay, C3®Cs) 4 since (U(l) XA, %X A, zd®A1®A1, C®Cs®C3) is equivalent to the lmear
1sotropy representation of the Hermitian symmetrlc pa1r (SU (6), S(U(3) x U(3))) of rank 3
whose restricted root system is of type C(cf. Tasaki-Yasukura[22], Helgason[7]).

Conversely an o.t.g. induced from (17)(resp. (18)) is of coh 2(resp. 3) since (U(1)
X Ayx Ay, id@A,R A1, CYCIRC?) of kz2(resp. (U(1)x Ayx Az, id6A:84;, CRCH'Q
C®) of h=3) is equivalent to the linear isotropy representation of the Hermitian symmetric
pair (SU(k+3), S(U(k+1) x U(2))) of rank 2(resp. (SU(h+4), S(U(h+1) x U(3))) of rank
3) whose restricted root system is of type BC(cf. [22], [7]). Q.E.D.

(V) Let (G, E¥) be a real irreducible o.t.g. of type V.
PROPOSITION 4.5 coh (G, EN)<3 if and only if (é, z?i, RY) is equivalent as real represen-
tation to one of the followings:

coh=1: (19) (A4, 2A,), Rd), (20) (As, A3, RY),
(21) (Cs, A3, RY), (22) (B, A7, R**); k23,
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(23) (D4, A%, R*); k24, (24) (D4, A], RY); i=3, 4,
(25) (B, A3, RY) (26) (B, A5 RY),
27) (G,, 43, RY),
coh=2: (28) (A, (A;+4,), RY), (29) (A1, (44,), RY),
(30) (Cs, A3, R™Y), 31) (G, (24,), RY),
(32) (G, A%, RY), (33) (Fy, A%, R®),
coh=3: (34) (4; (M+43), RY), (35) (Cs, 24y), R™),
(36) (Cy, A3, R*), (37) (Bs, A5, R*)..

PROOF: Suppose coh (G, EY)<3. Then (G~, zﬁ, RY) is equivalent as real representa-
tion to one of (19)~(37) owing to Prop. 2.1, coh (A4, (A;+A,), Ri™4)=F Prop.
2.5, coh (Cy, (2A4,), RI™ )=k coh (C,, A, R*" V&)= —1(cf. O(Cs, A, R D2k+D) jg
equivalent to the linear isotropy representation of the symmetric pair (SU(2k), Sp(k)) of
rank £—1), Prop. 2.8, coh (B, A3, RY¥™ B)=Ek, Prop. 2.11, coh (D,, A5, R¥™ >*)=F, the
equivalence of O(D,, A}, R®) for i=1, 4, 3, Prop. 2.15, coh (F,, A7, R**)=4, coh (Es, A5,
R™®)=6, coh (E;, A}, R*)=7, coh (Es, A7, R**8%)=8.

Conversely an o.t.g. induced from one of (19) ~ (24) is equivalent to (SO(n), id, R") for
some n¥*4, which is of coh 1. An o.t.g. induced from (25), (26) or (27) is of coh 1(cf.
Yokota [24, Theorems 5.27, 5.50, 5.3]. O.t.g.’s (28) ~(33) are equivalent to the linear
isotropy representation of the symmetric pairs (SU(3) x SU(3), SU(3)), (SU(3), SU(2)),
(SU6), Sp(3)), (Sp(2) x Sp(2), Sp(2)), (G2 % G, Gy), (Eg, Fy) of rank 2 respectively (cf. Pro-
p.’s 2.1, 2.5, 2.15). O.t.g.’s induced from (34) ~ (37) are equivalent to the linear isotropy
representations of the symmetric pairs (SU(4) x SU4), SU4)), (Sp(3) xSp(3), Sp(3)),
(SU@B), Sp(4)), (SO(7) x SO(7), SO(7)) of rank 3 respectively (cf. Prop.’s 2.1, 2.5, 2.8).
They are also characterized by their degrees among ‘real’ complex irreducible representa-
tions. Q.E.D.

(VI) Let (G, E") be a real irreducible o.t.g. of type VI.

PROPOSITION 4.6 coh (G, EY)=3 if and only if (é, t?i, R") is equivalent as real
representation to one of the followings:
coh=1: (38) (RxA,, fc%Ml, CRCHY; kz1, teR™,
(39) (RXC, f(%)Al, CRC™); k22, teR™,
coh=2: (40) (R B,, f@g)Al, CRC**Y); k23, teR*,
(41) (RxD, f(%)Al, CRC™); kz4, teR™,
42) (RxD,, f@Ai, CRC?); i=3, 4, teR",
43) (RxAl,@zAl, CRCY); teR™,
(44) (RxAs, fc%)Az, CRC); teR*,
45) (RXC,, f@C)Az, CRC?); teR™,
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46) (R X Gy, f&A,, CRC); teR*,
(47) (R Bs, f94;, COC?); teR*,
(48) (RxDs, f(%)As, CRC); teR™,
49) (Rx A, FQA,, CRCY); teR™,
coh=3: (50) (RxA,, f@é)ZAl, C(?CG); teR™,
(51) (RxAs, t‘(%)Az, CRC™); teR™,
(52) (RxAs A, CRC™); teR™,
(63) (Rx By, 604, CRC™); teR*,
(54) (RXEs, f(%)Al, CRC?); teR*.

PROOF: Suppose coh (G, EN)<3. Then (G, id, R") is equivalent as real representa-
tion to one of (38)~ (54) owing to Lemma 3.6(1)(F=C, i=1, n=1), Prop. 2.2, Remark 2.3,
coh (U(1) X Ay, id& A, COCH ) =[(k+1)/2] (cf. (U (1) X Ay, idD 45, COC is equiva-
lent to the linear isotropy representation of the symmetric pair (SO2k+2), U(k+1)) of
rank [(2+1)/2]), [(k+1)/2]=4(k=7), Prop. 2.6, Prop. 2.9, Prop. 2.12, Remark 2.13, coh
(U(1)  Ds, id&As, COC?) Z4(cE. (U(1)% Ds, id2As, CHC®) is contained in the linear
isotropy representation of the symmetric pair (£, Sp(1)-Spin(12)) of rank 4), Prop. 2.15,
Prop. 2.16, coh (U(1) X F,, idC;\CbA4, C(?CZG);?(cf. Each isotropy subgroup contains a
group which is isomorphic to SU(3) c G,C Spin(7) C Spin(8) C F, by Yokota[24, Prop.’s
5.45, 5.48, Thm'’s 5.33,5.27, 5.2]), coh (U(1) x By, id84e, CQC®) Z4(ct. (U(1) % Er, id®
Asg, CQ(;)C“) is contained in the linear isotropy representation of the symmetric pair (Ej,
Sp(1)-Er) of rank 4), doh (U(1) X G, id®A;, CYC*)=13, doh (U(1) X Fy, idQA1, CRC™)
=51, doh (U()x By, id®4s, CHC™)=77, doh (U(1)x Er, id@A;, CRC'*)=132, doh
(U(1) % By, id&A7, COC™*)=247.

Conversely coh (38)=coh (39)=1 since SU(k+1) and Sp(k) are transitive on
hyperspheres in the representation spaces. (40) ~ (45) are equivalent to (SO(2) x SO(n), id
C%)id, Rzgé)R”) for some n#4 of coh 2. The o.t.g. induced from (46) is equivalent to

0(S0(2) x G, id(%/lg, RZC?IW) and the isotropy subgroup at ( aﬂ > inR2,7) :RZC?R7

(a>B>0) is isomorphic to SU(2) by Yokota [24, Example 5.1], so coh (46)=2 (cf. Prop.
3.3(1)(4)). The o.t.g. induced from (48) is equivalent to the linear isotropy representation
of the symmetric pair (Eg, U(1) Spin (10)) of rank 2 by Prop. 2.12 and Remark 2.13
since it is characterized by its degree up to equivalence. Since [(k+1)/2]=2 for k=4,
coh (49)=2. The o.t.g. induced from (50) is equivalent to the linear isotropy representation
of the symmetric pair (Sp(3), U(3)) of rank 3 by Prop. 2.2 and Remark 2.3. Since
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[(B+1)/2]=3 for k=5 or 6, coh (51)=coh (52)=3. The o.t.g. induced from (53) is equiva-
lent to O(SO(2) x Spin(9), idC%)AZ, RZC;?RIG). Any element of R(2, 16):R26‘;)R16 to the
«a00---00000---0
0B0---0yde0---0
if a?#p%+y?+ 6%+ €% owing to the use of the mapping f in Lemma 3.2 and Yokota [24,
Theorems 5.51, 5.27, 5.2]. So coh (53)=3. The o.t.g. induced from (54) is equivalent to the
linear isotropy representation of the symmetric pair (E£;, U(1)- Eg) of rank 3 by Prop. 2.15
and Remark 2.16. So coh (54)=3. Q.E.D.

form < >, and the isotropy subgroup is isomorphic to SU(3)

(VII) Let (G, E") be a real irreducible o.t.g. of type VII.

PROPOSITION 4.7 coh (G, E¥)<3 if and only if (G, id, RY) is equivalent as real represen-
tation to one of the followings:

coh=1: (55) (A, A, C**Y); k=1,
(56) (Ci, Ay, C*); k=2,
coh=2: (57) (Ds, A5, C),
(58) (A4, Az, CY),
coh=3: (59) (As, A,, C?).

PROOF: Suppose coh (G, EN)=<3. Then (é, iE, RY) is equivalent as real representa-
tion to (55)~(58) or (59) by Prop. 4.6. In fact, (B, Ay, C**Y), (D,, A1, C*), (A;, 24,4, C?),
(As, Az, €%, (C,, Ay, €, (G,, As, C7), (Bs, A3, C¥), (B, Ay, C'®) are ‘real’ and not real ir-
reducible, so they are not of type VII, and coh (A4,, 24,, C®)=coh (4s, A,, C*%)=coh (E,,
A,, C*)=4 since the restricted root systems of (Sp(3), U(3)), (SO(12), U(6)), (E;, UQ1)
- Eg) are of type BC (cf. [7], [22]).

Conversely coh (55)=coh (56)=1 is evident. O.t.g.’s induced from (57), (58) are of
coh 2 since the restricted root systems of (Eg, U(1)-Spin(10)) and (SO(10), U(5)) are of
type BC. The o.t.g. induced from (59) is of coh 3 since the restricted root system of
(SO(14), U(7)) is of type BC (cf. [7] and [22]). Q.E.D.

Now we have the following result.

THEOREM 4.8 Let (G, EM) be an o.t.g. such that the identily representation id:
G—SO(N) is real irreducible. Then coh (G, EN)=<3 if and only if (G, id, R") is equivalent as
real representation to one of the followings:

coh=1: (IX), (VIID), (8), (9), (19), (20), (21), (22), (23),
(24), (25), (26), (27), (38), (39), (55), (56).

coh=2: (10), (11), (14), (17), (28), (29), (30), (31), (32),
(33), (40), (41), (42), (43), (44), (45), (46), (47),
(48), (49), (57), (58).
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coh=3: (3.7), (1), (2), 3), (4), (5), (6), (7), (12), (13),
(15), (16), (18), (34), (35), (36), (37), (50), (51),
(52), (63), (54), (59).

PrROOF: Unifying (3.7) of Theorem 3.5, Propositions 4.1~4.7 and type VIII, IX in
Section 3, we have the result. Q.E.D.

REMARK 4.9 0.t.g.’s induced from (25), (26), (27), (39), (55), (56), (17), (46), (47),
(57), (58), (6), (18), or (59) are not maximal. O.t.g.’s induced from (13), (16), or (53) are
not obtained from the linear isotropy representations of any Riemannian symmetric pairs.
Others are equivalent to the linear isotropy representations of some Riemannian sym-
metric pairs of rank at most 3 if they are maximal. (26) is obtained from the linear isotropy
representation of (F4, Spin(9)). The o.t.g. induced from (24) (resp. (42), (7)) is equivalent
to one from (23)(resp. (41), (5)) of k=4.

REMARK 4.10 O.t.g.’s induced from (13) or (16) are missed in the Theorem 7 of
Hsiang-Lawson [11] if 2 and 3 are relatively prime and k2=4, since the dimension of the
representation spaces of (13) or (16) is 8% and the others of cohomogeneity 3 are of dimen-
sion 3m for some integer m except (53) of dimension 16.
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