TSUKUBA ]J. MATH.
Vol. 10 No. 2 (1986). 255-262

SOME ALMOST-HOMOGENEOUS COMPLEX STRUCTURES
ON P*x P?

Mirella MANARESI

1. Introduction

It is well known that on P}(C)x PY(C) there exists an infinite sequence of different
complex structures, namely the Hirzebruch surfaces 2,,,, me N. These surfaces are of the
form P(Opi(m) @D Op(—m)) and are all almost-homogeneous (see [H)). In generalization of
this, Brieskorn has studied P”-bundles over P! and has proved that all complex structures
on P! x P* satisfying some supplementary conditions (see [Br], (5.3)) are such P*-bundles.
All these structures are almost-homogeneous.

Motivated by these results, it is natural to consider complex structures on P2 x P? of
the form P(E), where E is a topologically trivial holomorphic vector bundle of rank 3 on
P2 In contrast with the situation on P!, a complete classification of such bundles is not
known, however Banica has classified all topologically trivial rank 2 vector bundles on P?
(see [B], §2). In particular these bundles do not depend only on discrete parameters, but
also on ““‘continuous’’ moduli. Using rank 3 vector bundles on PZ? of the form E :=F @ Op,
with F topologically trivial of rank 2, one can easily construct complex structures on
P?x P?, depending on ‘‘continuous’’ moduli, which are not almost-homogeneous.

Here we study some examples of almost-homogeneous complex structures on P2 x P?
of the form P(E), for homogeneous and almost-homogeneous E. In §2 are studied the
cases when E is Zp(—1)®@ Op(—1) or its dual (together with 0,6323, these are the only
topologically trivial homogeneous rank 3 vector bundles on P?, see for example [M)). It
turns out that the automorphism group of X; :=P(Zp:(—1) D Op(—1)) has an open orbit,
whose complement is an irreducible homogeneous hypersurface (hence X; gives
an example of the manifolds classified by Ahiezer [AL]), while the automorphism group of
X, :=P(7p(—2)P Op(1)) has an open orbit, whose complement is irreducible and
homogeneous of codimension 2. In §3 we consider the complex manifold X : =P(F® Op)
with F a topologically trivial rank 2 vector bundle on P? of generic splitting type (—1, 1)
and we prove that the automorphism group of X has an open orbit, whose complement is
an irreducible hypersurface, which contains a whole fiber of P(E).
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Section 1.

In this section we introduce some notations and preliminary material.

Here a vector bundle is always a holomorphic vector bundle and we often identify vec-
tor bundles and locally free sheaves. Following the notations of for a vector bundle
FE - S we denote by E(x) the fiber over a point x€S.

Let S be a complex manifold, E - S a rank m vector bundle on S, and let P(E) +Sbe

the corresponding projective bundle. Set X :=P(E). We denote by

—Aut (E) the group of all biholomorphic maps E—E, which tranform fibers in fibers and
are linear on fibers;

—Aut (P(E)) the group of all biholomorphic maps of P(E) into itself, which transform
fibers in fibers;

—Auts (E), Auts (P(E)) the subgroups of all elements of Aut (E) and Aut (P(EF)) respec-
tively, which induce the identity on S;

—PGL (F) the subgroup of all elements of Auts (P(E)), which are induced by elements of
Auts (E);

—Aut (X) the group of all biholomorphic maps of X onto itself.

(1.1) PROPOSITION.
With the same notations as above, let us suppose S simply connected. Then

Auts (P(E))=PGL (E).

PROOF: Let U be a simply connected open subset of S such that E|U is trivial. An
element ¢eAuty (P(E| U)) can be regarded as a holomorphic map ¢:U—PGL (m). Since U
is simply connected and SL (m) is a coverning space of PGL (m), the map ¢ can be lifted to
a holomorphic map @:U—SL (m), and this gives an element ®deAutg (E|U), which induces
.

Now let ¢eAuts (P(E)) and let U := {U;} s be an open covering of S such that every U;
is simply connected and E| U is trivial. Then for each U, there exists P cAuty, (E|U;) with
det @;=1, which induces ¢. On U;N U; the two matrices &; and ®; induce the same projec-
tive automorphism ¢, therefore they coincide up to the multiplication by an m-th root of
unity. Thus we obtain an element of H(S, u,,), where u,, is the locally constant sheaf of m-
th roots of unity. Since S is simply connected H(S, u4,,)=0, hence &;- ®;'=1,-A;"! where
A, A; are m-th roots of unity. Thus the A; - ®; can be glued together to give an element
®deAuts (E) which induces ¢.

We recall the following

(1.2) DEFINITION.
Let S be a homogeneous complex manifold and let E - S be a vector bundle on S.
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We say that E is homogeneous if for all geAut (S) one has g*E~E.
We say that E is almost-homogeneous if there exists a subgroup G of Aut (S), one of
whose orbits is a Zariski open dense subset of S, such that g*E=E for all geG.

(1.3) COROLLARY.

Let S be a homogeneous simply connected complex manifold, E - S a homogeneous vector
bundle on S and let P(E) 5 S be the corresponding projective bundle.
Then there is the exact sequence

0 - PGL (E) — Aut (P(E)) = Aut (S) — 0.

Proor: This is an obvious consequence of (1.1).

Section 2.

In this section we show that the complex manifolds X; :=P(7p:® Op:) and X, :=
P(7p(—3) D Opz) are almost-homogeneous and we determine the orbits with respect to the
action of the group of automorphisms.

It is well known (see th. 3) that in the decomposition £ :=E,® - - - ® E,, of a vector
bundle over a compact variety into direct sum of indecomposable bundles, the bundles E;
are un'iquely determined up to order and isomorphy; however in general the bundles E; are
not uniquely determined as subbundles of E.

(2.1) LEMMA.
LetE, :=7p: D Ope. In this decomposition only the vector bundle Fy:=7p D 0 1is
uniquely determined as subbundle of E,.

PROOF: We first observe that the vector bundle G; :=0@® Op: is not uniquely deter-
mined as subbundle of E, since it is not invariant under an automorphism ¢eAuts (£;) of
the form

[id] v\
\ 0 | idopz/

with weHom (Op, 7p2), w#0.
On the other hand, from the Euler sequence
0= Op(—1) = OF = Tw(—1) = 0,

if follows that the vector bundle 7(—1) is generated by global sections, therefore F;(—1)
is the subbundle of E;(—1) generated by I'(P?, E;(—1)) and this characterizes F;(—1) as
subbundle of E;(—1).
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(2.2) COROLLARY.
Let Ey :=Tp(—3)® Ope. In this decomposition only the vector bundle G, :=0® Op: is
uniquely determined as subbundle of E,.

PROOF: Since E;, is the dual bundle of E; and G; consists of the linear forms on E,,
which are zero on F; := 7p @ 0, the assertion follows from (2.1).

(2.3) THEOREM.
Let E\ :=7p® Op and let X, :=P(E;). The group Aut (X,) has exactly two orbits:
A :=P(7p:®D0)and A, :=X,—A,.

PROOF: We first prove that A, is transformed into itself by all peAut (X;). By [S], th.
A, Aut (X;)=Aut (P(E))), hence ¢ determines an automorphism ¢eAut (S) and an isomor-
phism P(E,) = ¢*P(E,), which induces the identity on P2 and which can be identified
with ¢. Therefore E| is isomorphic to ¢*E; ® Om(k) and calculating the first Chern classes
one sees that 2=0. Thus ¢ induces an isomorphism &:E; = ¢*E;, which must transform
(Zp D0 )x) into (@*(Zp: @ 0))(x)=(Zp: @ 0)($(x)) for all xeP?. Therefore ¢(P(7p: @ 0))
=P(Zp P 0).

Now we prove that the action of Aut (X;) is transitive on both A, and A,, by showing
that for all xeP? the subgroup of Aut (X;), which fixes the fiber P(E,),, acts transitively on
AN P(E,), and on A,NP(E)),. Let ¢, £€'e A;NP(E,),. They correspond to lines 7, 7' of P2
through the point x. Let aeAut (P?) be such that a(x)=x and ()= and take an element
¢€Aut (P(E,)) such that $=c. It is easy to show that ¢(&)=¢".

/ End Tp: ‘ Hom (Op2, Te2)
Since End E =
\ Hom (sz, 01:2)

and since Autpz (7p:)=Autp(Op:)=C* the action on P(E,), of an element of PGL (E;) can
be thought as the action on P?, with projective coordinates (x1:25:x3), of a matrix like

End 01:2

A0 a,
0 1 a with A, ueC*, a,, a,eC.
0 0 u

In this P2, A;N P(E)), can be identified with the line x;=0 and A, N P(E,), with the comple-
ment of such a line; therefore it is clear that PGL (E) acts transitively on A,N P(E,).

(2.4) THEOREM.
Let Fy : = 7Tp(—3) D Ope and let X, := P(E,). The orbits of X, with respect to the action of
Aut (X,) are exacty B, :=P(0® Op) and B, :=X,—B,.

PrOOF: With an argument similar to the one used in prop. (2.3) and using (2.2), one
has that all geAut (X,;)=Aut (P(E,)) transform B, into itself.
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Since for all xeP?, B;N P(E,), consists exactly of one point, we have only to prove that
for all xeP? the action of the subgroup = of Aut (X,), containing all automorphisms, which
fix the fiber P(E)),, is transitive on B;NP(E,),.

Let (x1:x5:x3) and (y;1:¥4:y3) be two points in B, N P(E,),. With an argument similar to the
one used in proving prop. (2.3), there exists ¢eX, which transforms (x;:x5:x3) into (y1:y2:¥3).
Now there exists an element y in PGL (E,) (whose action on P(E5), can be thought as the
action on P? of a matrix like

A 0 O
0 2 0 with A, ueC*, a;, a,eC), which transforms (y;: yo: ¥3) in (31: y5: ¥3).
a Gy U

Section 3.

In this section we show that the complex manifold P(F @ Opz), where F' is a rank 2
topologically trivial vector bundle on P? of generic splitting type (—1, 1), is almost-
homogeneous.

(3.1) PROPOSITION.
Let F be a rank 2 topologically trivial vector bundle on P? of generic splitting type (—1, 1).
Then

i) there is an exact sequence:
(+) 0= Op(l) > F 2 9(=1) >0,

where Z is a simple point of P2, which determines the bundle F up to isomorphy;
i) F=FV (that is F is self-dual);
iii) F is almost-homogeneous.

ProoF: i) The existence of the exact sequence (%) has been proved by Banica (see

lemma 4).

Now let F' be a vector bundle on P?, which makes exact the sequence
00— Op:(l) = F = g,(—1) = 0.

Both F and F’ correspond to elements 7, ' €Ext(9;(—1), Op(1)), which are not zero, since
the trivial extension Op(1)@J,(—1) is not a vector bundle. But, from [B] §2,
dim Ext(9,(—1), Op(1))=1, therefore n=an’ with aeC*, hence F=F".

il) Since F has rank 2, we have FV=F ® det FV=F.
ili) Let G := {geAut (P?)|g(Z)=Z}, and let geG.

The vector bundle g*F makes exact the sequence

0> 0p—g*F—>9,(—-1)—0
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and with the same argument used in (i), g* F=~F.

(3.2) LEMMA.
Let E :=F @ Om, with F as in (3.1), and let V; :=a(Op(1)) D0, V :=c(Op(1)) D Ope.
The filtration V,C VCE is invariant with respect to Aut (E).

PrOOF: From the exact sequence (), one has I'(P?, F)=TI"(P?, a(Op(1))). It follows
V=0p-'(P? E). In the same way, from the exact sequence

0= Op =2 F(-1) rs 9(—2)—-0
one has I'(P?, F(—1))=I'(P?, a'(Og)), hence V,(—1)=0Op - I'(P% E(—1)).

(3.3) THEOREM.

Let E :=F @ Ope, with F as in (3.1), and let X :=P(E). The action of Aut (X) on X has
an open orbit, whose complement is an irreducible hypersurface HC X, which can be described
as follows: let V be the subbundle of E|P*—Z defined by V :=(a(Op(1)) D Ope) | P2—2Z. Then
H=P(V)UP(E),.

PROOF: We first observe that, from the fact that Z is characterized by the property
that every non-zero section of E(—1) vanishes exactly on Z (see the proof of (3.2)), it
follows that every ¢eAut (X) (=Aut (P(E)) by [S], th. A) transforms P(E); into itself. By
lemma (3.2), with an argument similar to the one used in proving prop. (2.3), one has that
every ¢eAut (X) transforms also P(V) into itself.

Now we show that Aut (X) acts transitively on A :=X—(P(V)UP(E);), by proving
that for all xeP%—Z the subgroup PGL (E) of Aut (X) acts transitively on ANP(E),.

End F ' Hom (Op, F) \
Hom (F, Op) |End O )

From the exact sequence (k) we get the exact sequence

We observe that End E =<

(%) 0 — Hom (F, Op:(1)) - End F g Hom (F, 9z(—1)) — - --

" Since the endomorphisms of F, which are in Im ¢=Ker t, cannot be surjective, id-€Ker 7,
hence dim (Hom (F, 9z(—1)))=1. On the other hand, from (x) we have also the exact
sequence

0 = Hom (9z(—1), 9z(—1)) = Hom (F, 9z(—1)) = Hom (Op(1), I(—1)) = ---

where Hom (Op:(1), 92(—1)) Hom (Ope(1), Ope(—1))=0. Therefore Hom (F, 9z(—1))
~Hom (92(—1), 9,(—1)) Hom (9z(—1), Op(—1)) and the last, by Riemann’s exten-
sion theorem, is isomorphic to Hom (Op(—1), Opz(—1))=C. Therefore, Hom (F, 92(—1))
=(C, and, since 1(idr)#*0, the morphism 7 of (+#) is surjective and (»+) becomes

(xs) 0 - Hom (F, O(1)) = End F - Hom (F, 9(—1)) = 0.
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Again from (), we have the exact sequence
0 = Hom (9z(—1), Op(1)) = Hom (F, Op(1)) = End (0p(1)) — 0,
since HY(Hom (9z(—1), Op(1))=H Op:(2))=0

as codim Z=2. Moreover, since Hom (9z(—1), Op(1))=Hom (Op(—1), Op:(1))= Op(2) and
End (Op:(1)) = Op: are globally generated, for any point x in P?>—Z every homomorphism of
F(x) into (Op2(1))(x) is induced by an element of Hom (F, Or:(1)). Now we fix a point x in
P?—Z and a base vy, v, of F(x) such that v;e(a(Op(1))(x). With respect to such a base the
automorphisms of F(x) induced by global automorphisms of F can be represented by

matrices of the type < g Ic) ) with a, ceC*, beC. From (x) we have the exact sequence

0 —» Hom (Opz, Opz(1)) = Hom (Ope, F') = Hom (Ope, 92(—1)=0,

hence Hom (Opz, F)=Hom (Op:, Op(1)), that is every homomorphism of Op: into F has
values in o(Op:(1)). From (%) we have also

0 = Hom (9z(—1), Op) = Hom (F, Opz) = Hom (Op:(1), Ope) =T (P2, Ope(—1))=0,

hence Hom (F, Opz)=~Hom (9z(—1), Op:), that is every homomorphism of F into Op: is zero
on a(Op(1)). Now we complete the base v;, v, of F(x)=(F® 0)(x) to a base vy, v,, v;€F (x) by
adding a vector v3e(0 @ Op:)(x). With respect to such a base the automorphisms of E(x) in-
duced by global automorphisms of E can be represented by a matrix of the type

a b d

< 0 ¢cO > with aq, ¢, feC*, b, d, eeC.
0 e f

Since AN P(E), can be identified with the complement of the line x,=0, an easy computa-

tion shows that the action of PGL (£) on ANP(E), is transitive.

Now we prove that H :=P(V)U P(E), is an irreducible hypersurface in X, by showing
that H=P(V). Let U be an open neighbourhood of Z, over which the bundles F and @pz(1)
are trivial and let (e;, ¢;) and e bases of F'|U and Og:(1)| U respectively. With respect to
these bases, the morphism o«:0p:(1)—F can be described as ale)=f,e,+f¢,, Where fi, f>
are holomorphic functions on U, which have exactly one common zero in the point Z.
In P(E)|U=Ux P? we have

PW)I|U-Z= {(p; tiity:t3)e(U—2) XP2|t1f2(P)"t2f1(P)=0} ,
hence

P(V)|U=Z= {(p; hi:tz:t3)eUx P2t fo(p)— L2 /1(p) =0}
=P(V)I(U-Z)UP(E),.
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