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SOME ALMOST-HOMOGENEOUS COMPLEX STRUCTURES
ON $P^{2}\times P^{2}$

Mirella MANARESI

1. Introduction

It is well known that on $P^{1}(C)\times P^{1}(C)$ there exists an infinite sequence of different
complex stmctures, namely the Hirzebruch surfaces $\Sigma_{2m},$ $m\in N$. These surfaces are of the
form $P(\mathcal{O}_{P^{1}}(m)\oplus \mathcal{O}_{P^{1}}(-m))$ and are all almost-homogeneous (see [H]). In generalization of
this, Brieskom has studied $P^{n}$-bundles over $P^{1}$ and has proved that all complex stmctures
on $P^{1}\times P^{n}$ satisfying some supplementary conditions (see [Br], (5.3)) are such $P^{n}$-bundles.
All these structures are almost-homogeneous.

Motivated by these results, it is natural to consider complex stmctures on $P^{2}\times P^{2}$ of
the form $P(E)$ , where $E$ is a topologically trivial holomorphic vector bundle of rank 3 on
$P^{2}$ . In contrast with the situation on $P^{1}$ , a complete classification of such bundles is not
known, however Banica has classified all topologically trivial rank 2 vector bundles on $P^{2}$

(see [B], \S 2). In particular these bundles do not depend only on discrete parameters, but
also on ‘ ‘continuous” moduli. Using rank 3 vector bundles on $P^{2}$ of the form $E:=F\oplus 0_{\mu}$ ,

with $F$ topologically trivial of rank 2, one can easily constmct complex structures on
$P^{2}\times P^{2}$ , depending on “continuous” moduli, which are not almost-homogeneous.

Here we study some examples of almost-homogeneous complex stmctures on $P^{2}\times P^{2}$

of the form $P(E)$ , for homogeneous and almost-homogeneous $E$ . In \S 2 are studied the
cases when $E$ is $T_{P^{2}}(-1)\oplus O_{P^{2}}(-1)$ or its dual (together with $O_{P^{2}}^{\oplus 3}$ , these are the only

topologically trivial homogeneous rank 3 vector bundles on $P^{2}$ , see for example [M]). It
tums out that the automorphism group of $X_{1}$ $:=P(T_{P^{2}}(-1)\oplus O_{P^{2}}(-1))$ has an open orbit,

whose complement is an irreducible homogeneous hypersurface (hence $X_{1}$ gives

an example of the manifolds classified by Ahiezer [Ah]), while the automorphism group of
$X_{2}$ $:=P(T_{P^{2}}(-2)\oplus O_{P^{2}}(1))$ has an open orbit, whose complement is irreducible and
homogeneous of codimension 2. In \S 3 we consider the complex manifold $X:=P(F\oplus \mathcal{O}_{P^{2}})$

with $F$ a topologically trivial rank 2 vector bundle on $P^{2}$ of generic splitting type $(-1,1)$

and we prove that the automorphism group of $X$ has an open orbit, whose complement is
an irreducible hypersurface, which contains a whole fiber of $P(E)$ .
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Section 1.

In this section we introduce some notations and preliminary material.
Here a vector bundle is always a holomorphic vector bundle and we often identify vec-

tor bundles and locally free sheaves. Following the notations of [OSS] for a vector bundle
$ES\vec{\pi}$ we denote by $E(x)$ the fiber over a point $x\in S$.

Let $S$ be a complex manifold, $ES\vec{\pi}$ a rank $m$ vector bundle on $S$, and let $P(E)\vec{\prime}S$ be
the corresponding projective bundle. Set $X:=P(E)$ . We denote by
-Aut $(E)$ the group of all biholomorphic maps $E\rightarrow E$, which tranform fibers in fibers and

are linear on fibers;
-Aut $(P(E))$ the group of all biholomorphic maps of $P(E)$ into itself, which transform

fibers in fibers;
$-Aut_{S}(E),$ $Aut_{S}(P(E))$ the subgroups of all elements of Aut $(E)$ and Aut $(P(E))$ respec-

tively, which induce the identity on $S$;
-PGL $(E)$ the subgroup of all elements of $Aut_{S}(P(E))$ , which are induced by elements of

$Aut_{S}(E)$ ;
-Aut (X) the group of all biholomorphic maps of $X$ onto itself.

(1.1) PROPOSITION.
With the same notations as above, let us suppose $S$ simply connected. Then

$Aut_{S}(P(E))=PGL(E)$ .

PROOF: Let $U$ be a simply connected open subset of $S$ such that $E|U$ is trivial. An
element $\phi\in Aut_{U}(P(E|U))$ can be regarded as a holomorphic map $\overline{\phi};U\rightarrow PGL(m)$ . Since $U$

is simply connected and SL $(m)$ is a coveming space of PGL $(m)$ , the map $\overline{\phi}$ can be lifted to
a holomorphic map $\Phi:U\rightarrow SL(m)$ , and this gives an element $\Phi\in Aut_{S}(E|U)$ , which induces
$\phi$ .

Now let $\emptyset\in Aut_{S}(P(E))$ and let $cu$ $:=\{U_{i}\}_{i\epsilon I}$ be an open covering of $S$ such that every $U_{i}$

is simply connected and $E|U_{i}$ is trivial. Then for each $U_{i}$ there exists $\Phi_{l}\epsilon Aut_{U_{i}}(E|U_{i})$ with
$\det\Phi_{i}=1$ , which induces $\phi$ . On $U_{i}\cap U_{j}$ the two matrices $\Phi_{j}$ and $\Phi_{j}$ induce the same projec-
tive automorphism $\phi$ , therefore they coincide up to the multiplication by an m-th root of
unity. Thus we obtain an element of $H^{1}(S, \mu_{m})$ , where $\mu_{m}$ is the locally constant sheaf of m-
th roots of unity. Since $S$ is simply connected $H^{I}(S, \mu_{m})=0$ , hence $\Phi_{i}\cdot\Phi_{j}^{-1}=\lambda_{i}\cdot\lambda_{j}^{-1}$ where
$\lambda_{i},$ $\lambda_{j}$ are m-th roots of unity. Thus the $\lambda_{i}^{-1}\cdot\Phi_{i}$ can be glued together to give an element
$\Phi\in Aut_{S}(E)$ which induces $\phi$ .

We recall the following

(1.2) DEFINITION.
Let $S$ be a homogeneous complex manifold and let $E\vec{\pi}S$ be a vector bundle on $S$.
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We say that $E$ is homogeneous if for all $g\in Aut(S)$ one has $g^{*}E\simeq E$.
We say that $E$ is almost-homogeneous if there exists a subgroup $G$ of Aut $(S)$ , one of

whose orbits is a Zariski open dense subset of $S$, such that $g^{*}E\simeq E$ for all $g\in G$ .

(1.3) COROLLARY.
Let $S$ be a homogeneous simply connected complex manifold, $ES\vec{\pi}$ a homogeneous vector

bundle on $S$ and let $P(E)\vec{p}S$ be the corresponding projective bundle.
Then there is the exact sequence

$0\rightarrow PGL(E)\rightarrow Aut(P(E))\rightarrow Aut(S)\rightarrow 0$ .

PROOF: This is an obvious consequence of (1.1).

Section 2.

In this section we show that the complex manifolds $X_{1}$ $:=P(T_{P^{2}}\oplus O_{P^{2}})$ and $X_{2}$ $:=$

$P(T_{p}(-3)\oplus \mathcal{O}_{P^{2}})$ are almost-homogeneous and we determine the orbits with respect to the
action of the group of automorphisms.

It is well known (see [A], th. 3) that in the decomposition $E:=E_{1}\oplus\cdots\oplus E_{n}$ of a vector
bundle over a compact variety into direct sum of indecomposable bundles, the bundles $E_{i}$

are uniquely determined up to order and isomorphy; however in general the bundles $E_{i}$ are
not uniquely determined as subbundles of $E$ .

(2.1) LEMMA.
Let $E_{1}$ $:=T_{P^{2}}\oplus O_{P^{2}}$ . In this decomposition only the vector bundle $F_{1}$ $:=T_{P^{2}}\oplus 0$ is

uniquely detemined as subbundle of $E_{1}$ .

PROOF: We first observe that the vector bundle $G_{1}$ $:=0\oplus\theta_{P^{2}}$ is not uniquely deter-
mined as subbundle of $E$, since it is not invariant under an automorphism $\phi\in Aut_{S}(E_{1})$ of
the form

with $\psi\in Hom(O_{P^{2}}, T_{P^{2}}),$ $\psi\neq 0$ .

On the other hand, from the Euler sequence

$0\rightarrow 0_{P^{2}}(-1)\rightarrow \mathcal{O}_{P^{2}}^{\oplus 3}\rightarrow T_{P}(-1)\rightarrow 0$ ,

if follows that the vector bundle $T_{P^{2}}(-1)$ is generated by global sections, therefore $F_{1}(-1)$

is the subbundle of $E_{1}(-1)$ generated by $\Gamma(P^{2}, E_{1}(-1))$ and this characterizes $F_{1}(-1)$ as
subbundle of $E_{1}(-1)$ .
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(2.2) COROLLARY.
Let $E_{2}$ $:=T_{P^{2}}(-3)\oplus \mathcal{O}_{P^{2}}$ . In this decomposition only the vector bundle $G_{2}$ $:=0\oplus \mathcal{O}_{P^{2}}$ is

uniquely $d\ell tem$ined as subbundle of $E_{2}$ .

PROOF: Since $E_{2}$ is the dual bundle of $E_{1}$ and $G_{2}$ consists of the linear forms on $E_{1}$ ,
which are zero on $F_{1}$ $:=T_{P^{2}}\oplus 0,$ the. assertion follows from (2.1).

(2.3) THEOREM.
Let $E_{1}$ $:=T_{p}\oplus O_{P^{2}}$ and let $X_{1}$ $:=P(E_{1})$ . The group Aut $(X_{1})$ has exactly two orbits:

$A_{1}$ $:=P(T_{P^{2}}\oplus 0)$ and $A_{2}$ $:=X_{1}-A_{1}$ .

PROOF: We first prove that $A_{1}$ is transformed into itself by all $\phi\in Aut(X_{1})$ . By $[S]$ , th.
$A$ , Aut $(X_{1})=Aut(P(E_{1}))$ , hence $\phi$ determines an automorphism $\overline{\emptyset}\in Aut(S)$ and an isomor-
phism $P(E_{1})\approx\overline{\phi}^{*}P(E_{I})$ , which induces the identity on $P^{2}$ and which can be identified
with $\phi$ . Therefore $E_{1}$ is isomorphic to $\overline{\phi}^{*}E_{1}\otimes O_{P^{2}}(k)$ and calculating the first Chem classes
one sees that $k=0$ . Thus $\phi$ induces an isomorphism $\Phi:E_{1}\Rightarrow\overline{\phi}^{*}E_{I}$ , which must transform
$(T_{P^{l}}\oplus 0)(x)$ into $(\overline{\phi}^{*}(T_{P^{2}}\oplus 0))(x)=(T_{P^{2}}\oplus 0)(\overline{\phi}(x))$ for all $x\in P^{2}$ . Therefore $\phi(P(T_{P^{2}}\oplus 0))$

$=P(T_{P^{2}}\oplus 0)$ .
Now we prove that the action of Aut $(X_{1})$ is transitive on both $A_{1}$ and $A_{2}$ , by showing

that for all $x\in P^{2}$ the subgroup of Aut $(X_{1})$ , which fixes the fiber $P(E_{1})_{x}$ , acts transitively on
$A_{1}\cap P(E_{1})_{X}$ and on $A_{2}nP(E_{1}).$ . Let $\xi,$ $\xi^{\prime}\in A_{I}\cap P(E_{1})_{x}$ . They correspond to lines $r,$

$r^{\prime}$ of $P^{2}$

through the point $x$ . Let $\alpha\in Aut(P^{2})$ be such that $\alpha(x)=x$ and $\alpha(r)=r^{\prime}$ and take an element
$\phi\in Aut(P(E_{1}))$ such that $\overline{\phi}=\alpha$ . It is easy to show that $\phi(\xi)=\xi^{\prime}$ .

Since End $E_{1}=\left(\begin{array}{llll}End & T_{P^{2}} & Hom(\theta_{P^{2}}, & T_{P^{2}})\\Hom(T_{P^{2}},\mathcal{O}_{P^{2}}) & O_{P^{2}} & End & \end{array}\right)$

and since $Aut_{P^{2}}(T_{P^{2}})\simeq Aut_{P^{2}}(O_{P^{2}})\simeq C^{*}$ the action on $P(E_{1})_{X}$ of an element of PGL $(E_{1})$ can
be thought as the action on $P^{2}$ , with projective coordinates $(x_{1}:x_{2}:x_{3})$ , of a matrix like

$\left(\begin{array}{lll}\lambda & 0 & a_{1}\\0 & \lambda & a_{2}\\0 & 0 & \mu\end{array}\right)$ with $\lambda,$ $\mu\in C^{*},$ $a_{1},$ $a_{2}\in C$.

In this $P^{2},$ $A_{1}\cap P(E_{1})_{x}$ can be identified with the line $x_{3}=0$ and $A_{2}\cap P(E_{1})_{x}$ with the comple-
ment of such a line; therefore it is clear that PGL $(E)$ acts transitively on $A_{2}\cap P(E_{I})$ .

(2.4) THEOREM.
Let $F_{2}$ $:=T_{P^{2}}(-3)\oplus\Theta p$ and let $X_{2}$ $:=P(E_{2})$ . The orbits of $X_{2}$ with respect to the action of

Aut $(X_{2})$ are exacty $B_{1}$ $:=P(0\oplus \mathcal{O}_{P^{z}})$ and $B_{2}$ $:=X_{2}-B_{1}$ .

PROOF: With an argument similar to the one used in prop. (2.3) and using (2.2), one
has that all $\emptyset\in Aut(X_{2})=Aut(P(E_{2}))$ transform $B_{1}$ into itself.
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Since for all $x\in P^{2},$ $B_{1}\cap P(E_{2})_{x}$ consists exactly of one point, we have only to prove that
for all $x\in P^{2}$ the action of the subgroup $\Sigma$ of Aut $(X_{2})$ , containing all automorphisms, which
fix the fiber $P(E_{2})_{x}$ , is transitive on $B_{2}\cap P(E_{2})_{x}$ .

Let $(x_{1}:x_{2}:x_{3})$ and $(y_{I}:y_{2}:y_{3})$ be two points in $B_{2}\cap P(E_{2})_{x}$ . With an argument similar to the
one used in proving prop. (2.3), there exists $\emptyset\in\Sigma$, which transforms $(x_{I}:x_{2}:x_{3})$ into $(y_{I}:y_{2}:y_{3}^{\prime})$ .
Now there exists an element $\psi$ in PGL $(E_{2})$ (whose action on $P(E_{2})_{x}$ can be thought as the
action on $P^{2}$ of a matrix like

( $a^{\lambda_{1}}0$ $a^{0}\lambda_{2}\mu 00$ with $\lambda,$ $\mu\in C^{*},$
$a_{1},$ $a_{2}\in C$), which transforms $(y_{I}:y_{2}:y_{3^{\prime}})$ in $(y_{1}:y_{2}:y_{3})$ .

Section 3.

In this section we show that the complex manifold $P(F\oplus O_{P^{2}})$ , where $F$ is a rank 2
topologically trivial vector bundle on $P^{2}$ of generic splitting type $(-1,1)$ , is almost-
homogeneous.

(3.1) PROPOSITION.
Let $F$ be a rank 2 topologically trivial vector bundle on $P^{2}$ ofgeneric splitting lype $(-1,1)$ .

Then
i) there is an exact sequence:

$(*)$ $0\rightarrow \mathcal{O}_{P^{2}}(1)\rightarrow Fg_{Z}(-1)\alpha\vec{\beta}\rightarrow 0$ ,

where $Z$ is a simple point of $P^{2}$ , which determines the bundle $F$ up to isomorphy;
ii) $F\simeq F^{\vee}$ (that is $F$ is self-dual);

iii) $F$ is almost-homogeneous.

PROOF: i) The existence of the exact sequence $(*)$ has been proved by $B\check{a}nic\check{a}$ (see

[B], lemma 4).

Now let $F^{\prime}$ be a vector bundle on $P^{2}$ , which makes exact the sequence

$0\rightarrow \mathcal{O}_{P^{2}}(1)\rightarrow F^{\prime}\rightarrow \mathcal{J}_{Z}(-1)\rightarrow 0$ .

Both $F$ and $F^{\prime}$ correspond to elements $\eta,$
$\eta^{\prime}\in Ext^{1}(g_{Z}(-1), O_{P^{2}}(1))$ , which are not zero, since

the trivial extension $O_{P^{2}}(1)\oplus \mathcal{J}_{Z}(-1)$ is not a vector bundle. But, from [B], \S 2,
$\dim Ext^{1}(J_{Z}(-1), \mathcal{O}_{P^{2}}(1))=1$ , therefore $\eta=a\eta^{\prime}$ with $a\in C^{*}$ , hence $F\simeq F^{\prime}$ .

ii) Since $F$ has rank 2, we have $F^{\vee}\simeq F\otimes\det F^{\vee}\simeq F$.
iii) Let $G:=\{g\in Aut(P^{2})|g(Z)=Z\}$ , and let $g\in G$ .

The vector bundle $g^{*}F$ makes exact the sequence

$0\rightarrow 0_{P^{2}}\rightarrow g^{*}F\rightarrow g_{Z}(-1)\rightarrow 0$
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and with the same argument used in (i), $g^{*}F\simeq F$.

(3.2) LEMMA.
Let $E:=F\oplus \mathcal{O}_{p}$ , with $F$ as in (3.1), and let $V_{1}$ $:=\alpha(\mathcal{O}_{P}(1))\oplus 0$ , K2: $=\alpha(\Theta_{P}(1))\oplus \mathcal{O}_{P}$ .

The filtration $V_{1}\subset V\subset E$ is $inva\dot{m}nt$ with respect to Aut $(E)$ .

PROOF: From the exact sequence $(*)$ , one has $\Gamma(P^{2}, F)=\Gamma(P^{2}, \alpha(\mathcal{O}_{p}(1)))$ . It follows
$V=O_{P^{2}}\cdot\Gamma(P^{2}, E)$ . In the same way, from the exact sequence

$0\rightarrow \mathcal{O}_{P^{2}}\rightarrow,$
$F(-1)g_{Z}(-2)\alpha\vec{\beta^{\prime}}\rightarrow 0$

one has $\Gamma(P^{2}, F(-1))=\Gamma(P^{2}, \alpha^{\prime}(\mathcal{O}_{P^{2}}))$ , hence $V_{1}(-1)=\mathcal{O}_{P^{2}}\cdot\Gamma(P^{2}, E(-1))$ .

(3.3) THEOREM.
Let $E:=F\oplus 0_{p}$ , with $F$ as in (3.1), and let $X:=P(E)$ . The action of Aut (X) on $X$ has

an open orbit, whose compkment is an irreducible hypersuiface $H\subset X$, which can be described
as follows: let $V$ be the subbundk of$E|P^{2}-Z$ defined by $V:=(\alpha(\Theta_{P^{2}}(1))\oplus O_{\rho})|P^{2}-Z$. Then
$H=P(V)\cup P(E)_{Z}$ .

PROOF: We first observe that, from the fact that $Z$ is characterized by the property
that every non-zero section of $E(-1)$ vanishes exactly on $Z$ (see the proof of (3.2)), it
follows that every $\phi\in Aut(X)$ ( $=Aut(P(E))$ by [S], th. A) transforms $P(E)_{Z}$ into itself. By
lemma (3.2), with an argument similar to the one used in proving prop. (2.3), one has that
every $\phi\in Aut(X)$ transforms also $P(V)$ into itself.

Now we show that Aut (X) acts transitively on $A:=X-(P(V)\cup P(E)_{Z})$ , by proving
that for all $x\in P^{2}-Z$ the subgroup PGL $(E)$ of Aut (X) acts transitively on $A\cap P(E).$ .

We observe that End

From the exact sequence $(*)$ we get the exact sequence

$t**)$ $ 0\rightarrow Hom(F, O_{P^{2}}(1))\rightarrow\sigma$ End $ F\rightarrow Hom\tau(F, g_{Z}(-1))\rightarrow\cdots$

Since the endomorphisms of $F$, which are in ${\rm Im}\sigma=Ker\tau$, cannot be surjective, $ id_{F}\not\in Ker\tau$,

hence $\dim(Hom(F, \mathcal{J}_{Z}(-1)))\geqq 1$ . On the other hand, from $(*)$ we have also the exact
sequence

$ 0\rightarrow Hom(g_{Z}(-1), J_{Z}(-1))\rightarrow Hom(F, J_{Z}(-1))\rightarrow Hom(\mathcal{O}_{p}(1), 9_{Z}(-1))\rightarrow\cdots$

where $Hom(O_{P}(1), \mathcal{J}_{Z}(-1))$ $Hom(\Theta_{P}(1), \Theta_{P^{2}}(-1))=0$ . Therefore $Hom(F, \mathcal{J}_{Z}(-1))$

$\simeq Hom(g_{Z}(-1), J_{Z}(-1))$ $Hom(\mathcal{J}_{Z}(-1), O_{P}(-1))$ and the last, by Riemann’s exten-
sion theorem, is isomorphic to $Hom(\Theta_{P}(-1), \Theta_{P^{2}}(-1))\simeq C$. Therefore, $Hom(pg_{Z}(-1))$

$\simeq C$, and, since $\tau(id_{F})\neq 0$ , the morphism $\tau$ of $t**$ ) is surjective and $(**)$ becomes

$(**)^{\prime}$
$ 0\rightarrow Hom(F, \mathcal{O}_{P^{2}}(1))\rightarrow\sigma$ End $F\rightarrow Hom\tau(pg_{z}(-1))\rightarrow 0$ .



Some Almost-Homogeneous Complex Structures on $P^{2}\times P^{2}$ 261

Again from $t*$ ), we have the exact sequence

$0\rightarrow Hom(g_{Z}(-1), O_{P^{2}}(1))\rightarrow Hom(F, O_{P^{2}}(1))\rightarrow End(O_{P^{2}}(1))\rightarrow 0$ ,

since $H^{1}(Hom(\mathcal{J}_{Z}(-1), \mathcal{O}_{P^{2}}(1))\simeq H^{1}(\mathcal{O}_{P^{2}}(2))=0$

as codim $Z=2$ . Moreover, since $Hom(9_{Z}(-1), \mathcal{O}_{P^{2}}(1))\simeq Hom(O_{P^{2}}(-1), O_{P^{2}}(1))\simeq \mathcal{O}_{P^{2}}(2)$ and
End $(\theta_{P^{2}}(1))\simeq\Theta_{P^{2}}$ are globally generated, for any point $x$ in $P^{2}-Z$ every homomorphism of
$F(x)$ into $(O_{P^{2}}(1))(x)$ is induced by an element of $Hom(F, \mathcal{O}_{P^{2}}(1))$ . Now we fix a point $x$ in
$P^{2}-Z$ and a base $v_{1},$ $v_{2}$ of $F(x)$ such that $v_{1}\in(\alpha(O_{P^{2}}(1))(x)$ . With respect to such a base the
automorphisms of $F(x)$ induced by global automorphisms of $F$ can be represented by

matrices of the type $\left(\begin{array}{ll}a & b\\0 & c\end{array}\right)$ with $a,$ $c\in C^{*},$ $b\in C$. From $(*)$ we have the exact sequence

$0\rightarrow Hom(\mathcal{O}_{P^{2}}, \Theta_{P^{2}}(1))\rightarrow Hom(\mathcal{O}_{P^{2}}, F)\rightarrow Hom(O_{P^{2}},9_{Z}(-1)=0$ ,

hence $Hom(\mathcal{O}_{P^{2}}, F)\simeq Hom(\mathcal{O}_{P^{2}}, \mathcal{O}_{P^{2}}(1))$ , that is every homomorphism of $\mathcal{O}_{P^{2}}$ into $F$ has
values in $\alpha(\mathcal{O}_{P^{2}}(1))$ . From $(*)$ we have also

$0\rightarrow Hom(g_{Z}(-1), \mathcal{O}_{P^{2}})\rightarrow Hom(F, O_{P^{2}})\rightarrow Hom(O_{P^{2}}(1), O_{P^{2}})=\Gamma(P^{2}, O_{P^{2}}(-1))=0$ ,

hence $Hom(F, \mathcal{O}_{l^{R}})\simeq Hom(g_{Z}(-1), O_{P^{2}})$ , that is every homomorphism of $F$ into $\Theta_{P^{2}}$ is zero
on $\alpha(O_{P^{2}}(1))$ . Now we complete the base $v_{1},$ $v_{2}$ of $F(x)\simeq(F\oplus O)(x)$ to a base $v_{1},$ $v_{2},$ $v_{3}\in E(x)$ by
adding a vector $v_{3}\in(0\oplus O_{P^{2}})(x)$ . With respect to such a base the automorphisms of $E(x)$ in-
duced by global automorphisms of $E$ can be represented by a matrix of the type

$\left(\begin{array}{lll}a & b & d\\0 & c & 0\\0 & e & f\end{array}\right)$ with $a,$ $c,f\in C^{*},$ $b,$ $d,$ $e\in C$.

Since $A\cap P(E)_{x}$ can be identified with the complement of the line $x_{2}=0$ , an easy computa-
tion shows that the action of PGL $(E)$ on $A\cap P(E)_{x}$ is transitive.

Now we prove that $H:=P(V)\cup P(E)_{Z}$ is an irreducible hypersurface in $X$, by showing
that $H=\overline{P(V)}$ . Let $U$be an open neighbourhood of $Z$, over which the bundles $F$ and $\mathcal{O}_{P^{2}}(1)$

are trivial and let $(e_{1}, e_{2})$ and $e$ bases of $F|U$ and $O_{P^{2}}(1)|U$ respectively. With respect to
these bases, the morphism $\alpha;\mathcal{O}_{P^{2}}(1)\rightarrow F$ can be described as $\alpha(e)=f_{1}e_{1}+f_{2}e_{2}$ , where $f_{1},$ $f_{2}$

are holomorphic functions on $U$, which have exactly one common zero in the point $Z$.
In $P(E)|U\simeq U\times P^{2}$ we have

$P(V)|U-Z=\{(p;t_{I}:t_{2}:t_{3})\in(U-Z)\times P^{2}|t_{1}f_{2}(p)-t_{2}f_{1}(p)=0\}$ ,

hence

$\overline{P(V)|U-Z}=\{(p;t_{1}:t_{2}:t_{3})\in U\times P^{2}|t_{1}f_{2}(p)-t_{2}f_{1}(p)=0\}$

$=P(V)|(U-Z)\cup P(E)_{Z}$.
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