TSUKUBA J. MATH.
Vol. 9 No. 1 (1985). 171—183

PARTIAL COXETER FUNCTORS AND STABLE
EQUIVALENCES FOR SELF-INJECTIVE ALGEBRAS

By
Takayoshi WAKAMATSU

(Dedicated to Professor Hisao Tominaga on his 60th birthday)

Introduction.

The important notion of reflection functors was introduced into the representa-
tion theory of algebras by Bernstein-Gelfand-Ponomarev [8] Those functors were
defined only for hereditary tensor algebras given by quivers and species [12]
Then Auslander-Platzeck-Reiten arranged the notion by non-diagramatic treat-
ment so that it is possible to apply the concept for any algebras. Brenner-Butler
extended the Auslander-Platzeck-Reiten partial Coxeter functor and defined
the tilting theory. Further, Happel-Ringel generalized the Brenner-Butler
tilting theory and studied tilted algebras.

We regard the tilting theory as a powerful method of deforming algebras and
their module categories. A tilting functor, hower, is nothing but a Morita equiv-
alence, for any self-injective algebra. Hence, it is natural to search for a way of
applying the tilting theory to the study of self-injective algebras.

Let A be a basic indecomposable artin algebra. Denote by mod-A (resp. A-
mod) the category of all finitely generated right (resp. left) A-modules. Let D:
mod-A—A-mod be the ordinary duality functor. In the following, we shall con-
sider the trivial extension self-injective algebra R=AIX DA defined as follows: R
is A@DA as an additive group and its multiplication is given by (e,q)-(¢’,q")=
(a-a’,a-q"+q-a’) for any (a,q), (¢’,q)e APDA=R.

In the paper [19], Tachikawa started in the study of self-injective algebras R,
and in [20], he has proved that mod-R is equivalent to mod-S (S=BIxXDB) if A is
hereditary tensor algebra and B is given by reflection procedure from A. Here
mod-R is the projectively (=injectively) stable category of mod-R in the sense of
Auslander.

Let ec A be a primitive idempotent such that eA is simple non-injective and
7'¢eA®4 DA=0, where z~! (resp. ) denotes the Auslander-Reiten translation 77D
(resp. DTr). By putting T4=1-e)APr'eA and B=End (T4), the Auslander-
Platzeck-Reiten partial Coxeter functor is defined to be the functor Homy, (7, ?):
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mod-A—mod-B.
In the present paper, we shall generalize the above result of Tachikawa and
show the following

THeoREM. There is an equivalence F:mod-R—mod-S such that F(X)=Hom,
(T, X') for any A-module X not possessing ¢A as a direct summand.

As an application of our [Theorem|, making use of the Assem-Happel's char-
acterization of generalized tilted algebras [1], we shall prove that the trivial ex-
tension self-injective algebra R of a generalized tilted algebra A of Dynkin class
A, is always stably equivalent to a serial self-injective algebra.

Gabriel-Riedtmann proved that every DJK-algebra of a Brauer quiver is
stably equivalent to a serial self-injective algebra. It is easy to check that any
DJK-algebra of a Brauer quiver of multiplicity 1 is the trivial extension algebra
of a generalized tilted algebra of Dynkin class A,.. Therefore, our argument can
be seen as another proof of the result of Gabriel-Riedtmann in the case of DJK-
algebras of multiplicity 1. Notice that another case of DJ/K-algebras of multiplicity
greater than 1 can be reduced to our case.

Throughout this paper, we fix a commutative artin ring K and all algebras
are artin K-algebras and modules are finitely generated. D always denotes the
ordinary duality functor.

1. Preliminaries

Throughout this paper, we shall freely use the results on tilting theory proved
in [7], [9], and [15] and also the facts about modules over the trivial extension
self-injective algebras given by [13], and [20] But it is convenient to re-
member some of them which will be used frequently. In this section, we shall
recall the basic properties of partial Coxeter functors and trivial extension self-
injective algebras and fix the notations.

Let A be an artin algebra and e¢A a simple non-injective module with the
property r-'eAR®4DA=0. We assume that A is self-basic and indecomposable.
Let us put T4=(1—e)APr'eA and B=End (T4). It is easy to see that the module
T4 becomes a tilting module, that is, it satisfies the the following three conditions:

(1) proj.dim. T4=1,

(2) Ext'(T4,T4)=0 and

(3) There is a short exact sequence 0-—->A,—7T,—T {—0 with 7 and 7" are
direct summands of direct sums of copies of 7.

Let F=Homy (7,?), F'=Ext! (T 4,?) be the functors from mod-A mod-B and
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G=(?®sT), G’=Tor,(?, sT) those from mod-B to mod-A. Let J={X|F(X)=0},
F={X|(X)=0} be the full subcategories of mod-A and X={Y|G(Y)=0}, Y=
{Y|G'(Y')=0} those of mod-B. Then, by Brenner-Butler or Happel-Ringel [15],
the following facts are known.

(@) (9,F) and (¥, YY) are torsion theories in the categories mod-A and mod-
B, respectively.

(b) The left module 7T is again a tilting module with End (37T )=A.

(¢) g and Y (resp. F and ¥) are category equivalent under the restrictions
of F and G (resp. ” and G’) which are mutually inverses.

We call our special kind of tilting functor F the partial Coxeter functor with
respect to a simple module eA, following Auslander-Platzeck-Reiten [7].

Since pT4 is balanced, it is proved that DA =.DTRsT+ and zDBz= BT &4
DTp as bimodules. Sometimes, we shall identify DA (resp. DB) with DTQsT
(resp. T®.4DT) by these isomorphisms. We denote by « the composite : DBRsT
=TRaDTQRsT=TR.4DA.

It is well known that the AR-sequence starting from eA is at the same
time the minimal projective resolution of r~leA:

(%) 0—eAS P10 450

From this sequence, by tensoring DA, we have the minimal injective resolution
of eA (note that r'¢eA®4+DA=0):

(5 0—eA—eAR4 DA% PR 4 DA—0

Applying the partial Coxeter functor F to the sequence (%), we have the minimal
projective resolution of the B-module F'(eA):

0—>F(P) L2 F(z-'e A)—F'(eA)—0

Since () is an AR-sequence, denoting by é the primitive idempotent element of
B corresponding to the direct summand r-'eA of T4, we see that F(P)=rad éB
and F'(eA)=topéB. Further, tensoring DB to the above sequence, we have the
minimal injective resolution of the B-module F'(eA):

0— F'(eA)
n
0—DHomy (eA, T)

F(P\Qs DB ZP%%5, F(r-eA)YRsDB —0
b N
DHom, (P, T) DHom 4 (z—'eA, T)—0

—_— —_—
DHom(e,T) DHom(8,T)

On the other hand, applying the functor F to the sequence (%), we have

0— FMeAR+DA) 222, RP®..DA)
I n
0—DHomy (eA, T) DHomy (P, T)

F'(eA) —0
IR
DHomy (z~'eA, T)—0

—_— _—
DHom(a,T) DHom(3,T)

Thus we have the following commutative diagram with exact rows:
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LEmMmAa 1.1.

0->FeAR 4 DA) L2820, PR+ DA) —— F'(eA) -0
N i N
0— F'(eA) F(P)®5DB) F(r'eA)Qs DB—0

—_—
F(3Q®DB

By the above diagram, we see that top éB=F'(eA)=F(r'eA) Qs DB=¢éDB, i.e.,
Bé is simple projective. Moreover, we have the following isomorphism :

DBRpr'Bée=DBXgDrF'(eA)
=DHompz (DzF'(eA), B)
=DHom3z (T ®4 Ae, B)
=DHomp (Te, B)=DHom,4 (T, eA)=0

Therefore, Homg (T, —): B-mod—A-mod is again a partial Coxeter functor. We
shall use this A-B-symmetry to define the desired functors.

For a given bimodule zUg4, there is always an adjoint pair of functors Hom,
(U, =) and (—®3aU). Denote by 7Y :1lne-s—Hom4 (U, (—®sU)) (resp. eV :Homy
(U, =)®8U~>1mos-4) the unit (resp. the counit) of this adjunction.

In the later part of the paper, the natural transformation 77,gpr-eZ,&@DT:
F(—)®s DB—->F(—®4DA) will appear frequently. We shall denote by # this nat-
ural transformation. It should be noted that #p is an isomorphism for any projec-
tive A-module P not possessing ¢A as a direct summand.

Denote by 7(A) (resp. T(B)) the trivial extension self-injective algebra AIXDA
(resp. Bix DB). See Introduction for definition. Since there is an algebra epi-
morphism 7T(A)—»A—0, each A-module can be seen as a 7(A4)-module. We call
such T(A)-modules being of 1st kind and others 2nd kind, following Tachikawa
[19]

On the other hand, since A is a subalgebra of T(A), any 7(A)-module can be
seen as an A-module and we call it the underlying A-module. Hence, a 7(A)-
module X4, is given by its underlying A-module X, with its multiplication by
DA: X®.DASX. Note that (X-DA)-DA=0, i.e., ¢-(¢@DA)=0. We shall indicate
this structure of Xrc4, by the pair (X4, ¢). For a T(A)-morphism f from Xrs)=
(X4, ¢) to Xpy=(X4, ¢'), it can be seen as an A-morphism between underlying A-
modules such that the following diagram commutes:

X&®a DA—g——) X
f®DA | | r
X'®4 DA—— X’
¢I
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Since the torsion theory (I, &) is splitting, each A-module X, can be de-
composed as X=L PV with L,eF and V4yegd. Further, DA is in g and so is
X®a4 DA, thus Homy (X®4 DA, L)=0. Therefore, any 7(A)-module has to be of
the form XT(A)=(L@ v, (2 g)) with L.eF and Va.ed.

In the above argument, we considered that the operation XX DA—X of a
T(A)-module Xrc4, is given by X®4+DA—X. But by the adjunction isomorphism
Hom, (X®4 DA, X)=Hom, (X, Hom,4 (DA, X)), we may consider that the operation
is given by X—Homy (DA, X). We shall say Xrca,=(Xa4, @) to be T-form (resp.
H-form) if geHom4 (X®4 DA, X) (resp. peHom, (X, Hom, (DA, X))). In this paper,
we shall study modules only by 7-forms.

For any object of &, as L4 is a direct sum of copies of eA, we can define
the sequence:

0L —%» P(L) s T(L)—0

by taking the direct sum of the sequence (x). We shall use this sequence fre-
quently.

By the A-B-symmetry, in the category of left B-modules, we may consider
the sequence similarly above. Applying the duality functor D to this sequence,
we have the following sequence in the category of right B-modules mod-B:

0->WE) —E> I(K) —%> K0,

where K is an object in ¥, i.e., Kz is a direct sum of copies of éDB=Ext} (T, eA)
=F'(eA) and I(K) is a direct sum of copies of F(P®4DA)=F(P)QsDB, rk is
isomorphic to @F(B)RDB and dx is isomorphic to PFa@DA). These sequences
also appear frequently.

Note that any module of the category mod-B has to be of the form W@HK
with Wed and Kes¢, since the torsion theory (2, ) is also splitting.

2. Stable functor F: mod-7(A)—mod-7(B)

At first, we shall constract the correspondence F mod®-T(A)—mode-T(B) which
will be used to define the stable functor ﬁ:@_@:T(A)—»M—T(B), where mod®-7(A)
and mod®-T(B) are the full subcategories of mod-7(A) and mod-7(B) whose classes
of objects consisting of modules not possessing as direct summands e7(A) and
éT(B), respectivery.

Lemma 2.1 Let Xroo=(L@®Y, @ g)) be a T(A)-module with VeT and Led.
If Xrcayemod®T(A) then there is a morphism 4 such that the following diagram

commutes:
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ar@DA
0—>L—>LR®4s DA ————> P(L)Ra4 DA -0
A
} z
|4

Proor. Denote by v;:eA—L the i-th injection of L=@;eA. If 2 does not
factor through a.QDA, i2-viQDA is a monomorphism for some i, hence there is
a T(A)-monomorphism :

Vi 0 -
eT(A)=eAPe AR 4+ DA->X=LPV.

However, this is a contradiction since eT(A)rcs, is injective and Xrcs, has not
eT(A) as a direct summand.

Using the extended morphism 4, we shall construct a 7(B)-module F (X) as
follows:

F<X>=(F<P<L>>@F<V)@F(T(L»@B DB,

0 0 0
FBL®DB 0 0
#*=(F(P(L)®» DB =5 F(P(L)®4DA) £% F(V)) and
g*=(F(V Qs —» RV D4 DA) T4 RVY).

LemMa 2.2, F(X) is a T(B)-module.

Proor. It is sufficient to verify that ¢*-2*®DB=0 and ¢*-¢*QDB=0. For
the first equality, consider the following commutative diagram :

F(P(L)®3s DBRs DB =22 F(P(L)R4DARs DB %22, RV Qs DB
”P(L)®0Al l"v

F(P(LY®4DAR4DA) KV ®4DA)—FV).

—_—
FU@DA) F(g)

By the deﬁnition, ¢* . 2*®DB= F(¢) . 0VF(2)®DB . 0P(L)®DB= F(¢) . F(j@DA) . 6P(L)®DA '
0py®DB=0 since ¢-i®DA=0. The second equality can be proved similarly.

LEMMA 2.3. F(X)rs,emodt-T(B).

Proor. If ¢T(B) is a direct summand of F(X) as a T(B)-module then so is
as a B-module, therefore éBRs DB=F(r"'eA)RQs DB is a summand of F{T(L))Qs DB
by Krull-Remar-Schmidt theorem. Thus there is an A-morphism f such that
F(BL)YRDB-2*- F(f) QDB coincides with this injection map. This is a contradiction
since Homy (z~'eA, P)=0.
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Thus we have defined the correspondence F: mode-T(A)—>mode-T(B) as an-
nounced at the beginning of this section. In the following, we shall show it is
possible to make F a stable functor : mod-T(A)—mod-T(B).

Let Xi= ( @V (5, ¢)) (i=1,2) be T(A)-modules in mode-T(A) and = ( )

X,—X, a T(A)-morphism. Since 0—eA-SP-5r-1¢A—0 is an AR- -sequence, we can
define A-morphism ¢’, ¢” and 4’ by the following commutative diagrams:

ar, Br,
0»>L, —— PAL,) —— T(L,)—0

g l gl l gll
0—L, —> P(L;) —> T(L:;)—0 and
QL, 8L,

0L, SRAAIN P(L)) —BL—'——> (L) —0

Izl /

Here, ¢/, and ¢” are uniquely determined by ¢ since Homy, (r7'eA, A)=0 but A’ is
not by 4.

For a given T(A)-morphism 0=(‘/’l ]9), fixing the representative 4’ of 4, we
shall define the 7(B)-morphism :

Fg) 0 0
F(a):(F(h') F(f) 0 ):ﬁ‘(X1>->ﬁ(X2)

0 0 Fg)QDB
LemMa 2.4. F(#) is a T(B)-morphism.

Proor. We have to verify the following three properties:

(i) 6% -F(fYQDB=F(f)-¢¥,
(ii) F(8.,)®DB- F¢Y®DB=F(¢"YQDB-F(8.,)®DB and
(iii) ¥ F(¢)®DB+¢¥- FW)YQDB=F(f)- z .

(i) and (ii) are easily verified. We shall show (iii) only. Since 8p,;  F(g")YRDB=
F(¢’®DA)-0p, and Oy - F(W')=FHW QDA)-0p,;, we have following equalities:
F(2)-0pLy - Flg")QDB=F(4)-F(g’®DA)-0p,, and
F(p2)-0v,- F(h')=F(¢2)- FW QDA)-0pwy, ,
thus it is enough to show F(i)-F(g’QRDA)+F(¢:)- FWQDA)=F(f)-F). From
the equalities f-2;=2:-gQDA+¢:- hAQDA, A2=12:-az, and AQDA=IRDA-ar,QDA,
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we have f 21 . a’L1®DA: (22 . g’@DA+¢2 . h’@DA) . C([,1®DA and f' 21 = 22 . g’@DA-}—
¢ QDA since az, QDA is an epimorphism. Hence we obtain the desired equality.

LemMMA 2.5. F(0) is uniquely determined in the stable category mod-7(B) for
a morphism 6.

Proor. Llet A'-ap,=h=h'-a;, and &' —h'=2z-B, :

ar, Br,
) A—
: | .
Ve

Let F(#) be the morphism constructed from 6 and %#”. Then Feo)-F (6)" factors
through projective: F(X,)—"»Q—C>F(X2), where y, { and @ are defined as follows:

Q=<F<T(L)>@F<T<L1)>®B DB, ( 0 °>> and

lrrcr,ygps 0

0 0
F 0 0
x=< ((/le) - ) t=| Fz) o),
F(T(L QDB 0 0

We have shown the main property of the correspondence F.

It is easy to see that F maps any projective module in mod®-7(A) to projective
T(B)-module and it induces a stable functor: mod-7(A)—»mod-7(B). In fact, if ¢
factors through e¢7(A) then F(9) factors through F(P)RsT(B).

By the symmetry of the partial Coxeter functor, we can define a stable functor
Fre T(B)-mod—T(A)-mod. Using this functor F’, we define the stable functor G :
mod-T(B)—»mod-T(A) as the composite D-F’.D. In the next section, we shall
show the equivalence é-ﬁzln_l_og-T(A).

3. Proof of

In order to compute G-F, it is convenient to give G(Y) concretely for a T(B)-
module Y7, in modé-7(B).

Let Yrco=(WOK, (¥ 0)) be a T(Bymodule with Wedj and Ke. If Yra

is in mod®-7(B), then there is a morphism g such that pg=7yx-g. Using this mor-
phism g, 5(Y) is defined as follows:

0 0 0
G(Y)=| Homs (DA, W(K)RsT DI K Qs TOW ®5T, (5K®T-e,%m®, 0 p* )
0 0 ¢*
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p*=pQT and ¢*=¢QT.

It is easy to see that K=F(T(L)), W=FP(L)DFV) and 9[’:(12 ¢Q'<>’ =
(F(8.)®DB, 0) if we put V=KX ). From here, the following Lemma is proved
directly.

LemmAa 3.1. For a given T(A)-module X=(L(—B V, (9 g)) with Veq and Le&.

If Xrcy has no direct summand isomorphic to eT(A), then G F (X)rcay is of the
0 0 00
0 0 00
form L(—BP(L)@P(L)@A DA@ V, (XL®DA 1P(L)®DA 00
0 y 00

Now we shall show G - F Xrap=PL)RT(A)PX, by making use of the form
in the above Lemma.
Let us define two 7(A)-morphisms y and {.

21 PL)®4 T(A)=(PLSPLIR4 DA, (1,0 0))

(lpﬁp 5
0 1p(1)®pA
- 5 G-F(X)=L@®P(L)YDP(L)YR4 DADV,

—1L000
0 0 —-21

— X=LDV.

£:G-F(X)=L®OP(LYDP(LYR+ DADV

Then it is easy to verify that y is a 7(A)-monomorphism and ¢ is a 7(A)-epimor-
phism and {-y=0. Further, the sum of lengths of P(L)R4T(A) and X is just that
of é-F(X). Hence we know that the sequence O—»P(L)®AT(A)i>5-F‘(X)—C>X——>O
is exact. Since P(L)®4T(A)rcs, is injective, the above sequence splits. There-
fore, G.F (X) is isomorphic to the direct sum of X and P(L)Q®4T(A). It is easy
to prove that the isomorphism G F (X)=X in the category mod-7(A) has natura-
lity on X. This completes the proof of F.G Zlmoarm is given by the
symmetry of partial Coxeter functor.

4. An Application

As an application of our [Theorem| we shall prove that any DJK-algebra of a
Brauer quiver of multiplicity 1 is stably equivalent to a serial self-injective algebra
as announced before.

It is easy to show that any DJK-algebra of a Brauer quiver of multiplicity 1
is a self-injective trivial extension of some algebra A. By the characterization of
generalized tilted algebras of Dynkin class A, which is given by Assem and Happel
[1], we know that the algebra A has to be a generalized tilted algebra of Dynkin
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class A,. Hence, A is the algebra of a connected finite full subquiver of the fol-
lowing infinite tree:

. 00 * o0 L]

(¥+6=0=¢"¥)

Clearly, there is a joint whose branches have no joints except at most one

branch. Here, a vertex is said to be a joint if it has at least three neighbours.
Consider such a joint ey as follows:

The starting point e, of a branch B, corresponds to a simple projective module
eiA. Thus, A is of the form:

< e1Ae, 0 >_ Ae,; X (1—e)A(l—e)IX(1—e)A
(1—e))Ae; (1—e)A(l—e)) —ada @ é €1)Ae; .

Le us put

A'=e,Ae;x (1€)AL —A)IX D((l—el)Ae1)=<e‘Ae1 D((1—e,)Aey) >

0 (-e)A(l—ey)/’

Then T(A) and T(A’) are isomorphic to each other as algebras. The quiver of
the algebra A’ is as follows:
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The length of the branch B; (resp. Bj;) is shorter (resp. longer) than that of B,
(resp. B:) just 1.
We can continue this process and have an algebra A” of the following quiver:

Then we apply the reflection processes (these correspond to partial Coxeter
functors defined at the vertices 4, /.-, ---) to the algebra A” and finally, we
have an algebra B of the following quiver :

/Pem
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Further, we apply the inverse processes of Al1—»A’ to the algebra B, then we
have an algebra B’ of the following quiver:

Z 22,

Ce,

i

At last, we apply the reflection processes to B’, then it becomes an algebra
Aq, for which the number of joints in the quiver is smaller than that of the
original algebra A:

///////' v R e SR SELLN

Hence, iterating the processes Al>Aq,l>Aw—Aw -+, we have a hereditary
algebra of the quiver:

o—?o.—-)o.%o ee s s s s e o-—?o-.}o—;o

By our it is easy to see that T(A) is stably equivalent to the trivial
extension algebra of the final hereditary algebra. On the other hand, the trivial
extension algebra of the above hereditary algebra is clearly serial. Thus every
DJK-algebra of a Brauer quiver of multiplicity 1 is stably equivalent to a serial
self-injective algebra.
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