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CERTAIN MINIMAL OR HOMOLOGICALLY VOLUME
MINIMIZING SUBMANIFOLDS IN COMPACT

SYMMETRIC SPACES

By

Hiroyuki TASAKI

1. Introduction.

In this paper we shall study minimal submanifolds in compact symmetric
spaces and homologically volume minimizing submanifolds in compact simple Lie
groups and quanternionic K\"ahler manifolds.

The first subject is studied by computing the second fundamental forms of
submanifolds. In Section 2 using the structure theorem of the first conjugate
loci of compact symmetric spaces (Takeuchi [5]) we compute the second funda-
mental form of a certain submanifold which is open and dense in the first con-
jugate locus of a compact symmetric space and prove the minimality of it.
Moreover we show that the submanifold has no geodesic point.

The second subject is studied by using the notion “ calibration” introduced
by Harvey and Lawson [2]. This notion is used in Sections 3 and 4. The funda-
mental 2-form of a K\"ahler manifold is one of important examples of calibrations.

It satisfies Wirtinger’s inequality, which can be stated as follows. Let $M$ be a
K\"ahler manifold with fundamental 2-form $\omega$ . Then

1
$\overline{k!}^{\omega^{k}|_{\xi}\leqq vo1_{\xi}}$

for $1\leqq k\leqq\dim_{C}M$ and any oriented tangent $2k$-plane $\xi$ on $M$. The equality holds
if and only if $\xi$ is a complex plane with a suitable orientation. From the above
inequality it follows that a compact K\"ahler submanifold of a K\"ahler manifold is
homologically volume minimizing. Only closedness and the above inequality are
needed to prove this assertion.

Here we explain the notion of calibration. Let $M$ be a Riemannian manifold
with a closed p-form $\phi$ on $M$ which satisfies the following inequality:

$\phi|_{\xi}\leqq vo1_{\xi}$

Received June 1, 1984.



118 Hiroyuki TASAKI

for any oriented tangent $p$-plane $\xi$ on $M$ Such a form $\phi$ is called a calibration.

Then any compact oriented $p$-dimensional submanifold $N$ in $M$ with the property:

$\phi|_{N}=vo1_{N}$

is homologically volume minimizing in $M$, that is,

$vol(N)\leqq vol(N^{\prime})$

for any compact oriented $p$-dimensional submanifold $N^{\prime}$ such that $[N]=[N^{\prime}]$ in

the homology group $H_{p}(M;R)$ . In fact

$vol(N)=\int_{N}vo1_{N}=\int_{N}\phi=\int_{N},\phi\leqq\int_{N},vo1_{N^{\prime}}=vol(N^{\prime})$ .

The equality holds if and only if $\phi|_{N^{\prime}}=vo1_{N^{\prime}}$ . Even if $N$ is noncompact, a similar
argument shows that $N$ is minimal and stable under variations of compact sup-

ports.
The purpose of Section 3 is to construct a calibration of degree 3 on a com-

pact simple Lie group and to show that a 3-dimensional compact simple Lie sub-
group associated with the highest root is homologically volume minimizing and

that a certain submanifold which is open and dense in the first conjugate locus

is stable under variations of compact supports. Note that the codimension of the

first conjugate locus of a compact simple Lie group is equal to 3.
In Section 4 we shall prove a quaternionic version of Wirtinger’s inequality,

that is, on a quaternionic Kahler manifold $M$ with the fundamental 4-form $\Omega$

$\frac{1}{k!}\Omega^{k}|_{\xi}\leqq vo1_{\xi}$

for any oriented tangent $4k$-plane $\xi$ on $M$ The equality holds if and only if $\xi$ is

a quaternionic plane with a suitable orientation. It follows from the result that

a compact quaternionic K\"ahler submanifold of a quaternionic Kahler manifold is
homologically volume minimizing. In particular, we obtain a stronger fact for the

quatemionic projective space, which is stated as Theorem 11.

2. The first conjugate loci of compact symmetric spaces.

For a complete Rimannian manifold $M$ and a point $p$ in $M$, we denote by

$F_{p}(M)$ the first conjugate locus of $M$ with respect to $p$ . This section is devoted

to constructing submanifolds $F_{p^{0}}(M)$ and $F_{p^{1}}(M)$ of a compact symmetric space $M$

which are open and dense in $F_{p}(M)$ and to verifying that $F_{p^{0}}(M)$ is a minimal

submanifold in $M$ and that $F_{p^{1}}(M)$ has no geodesic point if the rank of $M$ is greater

than 1.
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Let $G$ be a compact connected Lie group and $\theta$ an involutive automorphism
of $G$ . Put

$G_{\theta}=\{g\in G;\theta(g)=g\}$ .

For a closed subgroup $K$ of $G$ which lies between $G_{\theta}$ and the identity component
of $G_{\theta},$ $(G, K)$ is a symmetric pair. A bi-invariant Riemannian metric $\langle, \rangle$ on $G$

naturally induces a G-invariant Riemannian metric on the homogeneous space $M=$

$G/K$, which is also denoted by $\langle$ , $\rangle$ . Then $M$ is a compact symmetric space with
respect to $\langle$ , $\rangle$ . It is known that any compact symmetric space is constructed
in this way. From now on we assume that $M$ is irreducible.

Let $\mathfrak{g}$ and $f$ be the Lie algebras of $G$ and $K$ respectively. The involutive
automorphism $\theta$ of $G$ induces an involutive automorphism of $\mathfrak{g}$ , which is also
denoted by $\theta$ . Since $K$ lies between $G_{\theta}$ and the identity component of $G_{\theta}$ ,

$\mathfrak{k}_{\neg}^{-}\{X\in \mathfrak{g};\theta(X)=X\}$ .
Put

$\mathfrak{m}=\{X\in \mathfrak{g};\theta(X)=-X\}$ .

Since $\theta$ is involutive, we have a direct sum decomposition of $\mathfrak{g}$ :

(1) $g=f+\mathfrak{m}$ .

Take a maximal Abelian subspace $\mathfrak{a}$ in $\mathfrak{m}$ and a maximal Abelian subalgebra $\mathfrak{f}$ in
$\mathfrak{g}$ containing $\mathfrak{a}$ , then the complexification $\mathfrak{f}^{C}$ of $\mathfrak{f}$ is a Cartan subalgebra of the
complexification $\mathfrak{g}^{C}$ of $\mathfrak{g}$ . The bi-invariant Riemannian metric $\langle, \rangle$ on $G$ induces
an Ad $(G)$ -invariant inner product $\langle, \rangle$ on $\mathfrak{g}$ . For an element $\alpha\in \mathfrak{f}$ , put

$\mathfrak{g}_{a^{=}}$ { $X\in \mathfrak{g}^{C}$ ; $[H,$ $X]=\sqrt{-1}\langle\alpha,$ $H\rangle X$ for each $H\in \mathfrak{f}$}.

An element $\alpha\in \mathfrak{f}-\{0\}$ is called a root if $\mathfrak{g}_{a}\neq\{0\}$ . Let $\Delta$ denote the set of all roots,
then we obtain a direct sum decomposition of $\mathfrak{g}^{C}$ :

$\mathfrak{g}^{C}=\mathfrak{f}^{C}+\sum_{\alpha\in\Delta}\mathfrak{g}_{\alpha}$ .

For an element $\gamma\in \mathfrak{a}$ , we define a subspace $\tilde{\mathfrak{g}}_{\gamma}$ of $\mathfrak{g}^{c}$ by

$\tilde{\mathfrak{g}}_{\gamma}=$ { $X\in \mathfrak{g}C;[H,$ $X]=\sqrt{-1}\langle\gamma,$ $H\rangle X$ for each $H\in \mathfrak{a}$ }

and put

$\Sigma=t\gamma\in \mathfrak{a}-\{0\};\tilde{\mathfrak{g}}_{\gamma}\neq\{0\}\}$ .
Let $H-H$ denote the orthogonal projection from $\mathfrak{f}$ to $\mathfrak{a}$ , then

$\Sigma=$ { $\overline{\alpha}$ ; $\alpha\in\Delta$ and $\overline{\alpha}\neq 0$}.
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Choose lexicographic orderings $>$ on $\mathfrak{f}$ and $\mathfrak{a}$ such that

$\alpha\in\Delta,\overline{\alpha}>0\Rightarrow\alpha>0$ .
We denote by $\Delta_{+}$ and $\Sigma_{+}$ the sets of all positive roots in $\Delta$ and $\Sigma$ respectively.
Put

$f_{\gamma}=f\cap(\tilde{\mathfrak{g}}_{r}+\tilde{\mathfrak{g}}_{-\gamma})$ , $\mathfrak{m}_{\gamma}=\mathfrak{m}\cap(\tilde{\mathfrak{g}}_{r}+\tilde{\mathfrak{g}}_{-\gamma})$

for $\gamma\in\Sigma_{\tau}$ and

$f_{0}=$ {$X\in f;[H,$ $X]=0$ for each $H\epsilon \mathfrak{a}$}.

We have the following lemma. For proof of this lemma, see Section 3 of Chapter
VI in Helgason [3] or Lemma 1.1 in Takeuchi [5].

LEMMA 1. The direct sum decomposition

$f=f_{0}+\sum_{r\epsilon s_{+}}\mathfrak{k}_{\gamma}$ ,
$\mathfrak{n}\iota=a+\sum_{+\gamma\in\Sigma}\mathfrak{m}_{\gamma}$ .

are orthogonal. We can choose $S_{\alpha}\in f$ and $T_{\alpha}\in \mathfrak{m}$ for each $\alpha\in\Delta_{+}$ with $\overline{\alpha}\neq 0$ in such
a way that:

i) For each $r\in\Sigma_{+},$ $\{S_{\alpha} ; \alpha\in\Delta_{+},\overline{\alpha}=\gamma\}$ and {T. ; $\alpha\in\Delta_{+},\overline{\alpha}=\gamma$ } are orthonormal bases
of $f_{\gamma}$ and $\mathfrak{m}_{\gamma}$ respectively;

ii) For each $\alpha\in\Delta_{+}$ with $\overline{\alpha}=\gamma\in\Sigma_{+}$ and each $H\in \mathfrak{a}$ , we have

$[H, S_{\alpha}]=\langle\gamma, H\rangle T_{a}$ , $[H, T_{a}]=-\langle\gamma, H\rangle S_{a}$ ,
Ad $(\exp H)S_{\alpha}=\cos\langle\gamma, H\rangle S_{\alpha}+\sin\langle\gamma, H\rangle T_{\alpha}$ ,
Ad $(\exp H)T_{\alpha}=-\sin\langle\gamma, H\rangle S_{\alpha}+\cos\langle\gamma, H\rangle T_{\alpha}$ .

As $M$ is irreducible, the root system $\Sigma$ is irreducible and there exists a uni-
que highest root $\delta$ in $\Sigma$ . Let $r$ be the rank of $M$ and $\{\gamma_{1}, \cdots, \gamma_{r}\}$ be the funda-
mental root system of $\Sigma$ . Put

$S=$ {$H\in a;\langle\delta,$ $H\rangle=\pi,$ $\langle\gamma i,$ $H\rangle\geqq 0$ for $1\leqq i\leqq r$},
$S^{0}=$ { $H\in a;\langle\delta,$ $H\rangle=\pi,$ $\langle\gamma i,$ $H\rangle>0$ for $1\leqq i\leqq r$} ,

$S^{1}=\{H\in S^{0}$ ; $\langle\gamma, H\rangle\not\in\frac{\pi}{2}Z$ for some $\gamma\in\Sigma_{+}$ with $\langle\gamma, \delta\rangle\neq 0\}$ .

LEMMA 2. The first conjugate locus of $M$ with respect to the origin $0$ of $M$

is described as follows:

$F_{o}(M)=\bigcup_{gK}kExp(S)$ .

The sets $\bigcup_{k\epsilon K}kExp(S^{0})$ and $\bigcup_{k\epsilon K}kExp(S^{1})$ are submanifolds of $M$ and open and dense
in $F_{o}(M)$ .
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For the proof of this lemma, see Section 3 of Chapter VII in Helgason [3] or
Corollary 3 in Takeuchi [5]. Let $F_{o^{0}}(M)$ denote the submanifold $\cup kExp(S^{0})$ of

$k\in K$

$M$ For any point $p$ in $M$ there is an element $g$ in $G$ such that $go=p$ , so $F_{p}(M)$

coincides with $gF_{o}(M)$ . Therefore $gF_{o^{0}}(M)$ is open and dense in $F_{p}(M)$ . We de-
note by $F_{p^{0}}(M)$ the submanifold $gF_{o^{0}}(M)$ in $M$ By the definition of $F_{o^{0}}(M),$ $gF_{o}^{0}(M)$

is independent of the choice of $g$ . When $M$ is reducible, decomposing the orthog-

onal symmetric Lie algebra $(\mathfrak{g}, \theta)$ into a product of irreducible orthogonal symmetric
Lie algebras, we can define a submanifold $F_{p^{0}}(M)$ of $M$ which is open and dense
in $F_{p}(M)$ . Through the decomposition of $(\mathfrak{g}, \theta)$ we can reduce a proof of the fol-
lowing theorem to one in case $M$ is irreducible. For details about the construction
of $F_{p^{0}}(M)$ in general case, see Section 1 in Takeuchi [5]. The definition of $F_{p^{1}}(M)$

is similar to $F_{p^{0}}(M)$ .

THEOREM 3. Let $M$ be a compact symmetric space and $p$ be a point in $M$.
Then $F_{p^{0}}(M)$ is a minimal submanifold in M If the rank of $M$ is greater than 1,

then $F_{p^{1}}(M)$ has no geodesic point.

REMARK. It is well known that, if the rank of $M$ is 1, $F_{p}(M)$ is a totally
geodesic submanifold in $M$.

PROOF. As mentioned above, it may be assumed that $M$ is irreducible. At
first we shall compute the second fundamental form of the homogeneous submani-
fold KExp $(H)$ for each $H$ in $\mathfrak{a}$ . For each $X$ in $\mathfrak{g}$ , we define a vector field $X^{*}$ on
$M$ by

(2) $X_{x^{*}}=\frac{d}{dt}|_{t=0}\exp tX\cdot x$

for each $x$ in $M$. Simple calculations imply the following equations:

(3) $g_{*}X^{*}=(Ad(g)X)^{*}$ ,

(4) $\sigma*(\nabla_{K^{*}}Y^{*})=\nabla_{(Ad(g)X)*}(Ad(g)Y)^{*}$

for $g\in G$ and $X,$ $Y\in \mathfrak{g}$ , where $\nabla$ is the covariant derivative of $M$ The equation (4)

follows from (3). For each $X\in \mathfrak{g}$ , let $X_{m}$ denote the component of $X$ in $\mathfrak{m}$ with
respect to the orthogonal direct sum decomposition (1). Identifying $\mathfrak{m}$ with the
tangent space $T_{o}(M)$ of $M$ at the origin $0$ , we obtain

(5) $(\nabla_{X}.Y^{*})_{0}=-[X, Y]_{m}$

for $X\in \mathfrak{m}$ and $Y\in \mathfrak{g}$ . Because
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$(\nabla_{x}.Y^{*})_{0}=\lim_{t\rightarrow 0}\frac{(\exp(-tX))_{*}Y_{\exp tX\cdot 0}^{*}-Y_{o}^{*}}{t}$

$=[X^{*}, Y^{*}]_{0}$

$=-[X, Y]_{m}$ .
Note that $(\exp tX)_{*}$ is the parallel translation along the geodesic $\exp tX\cdot 0$ . The
tangent space of KExp $(H)$ at $Exp(H)$ is given as follows:

$T_{Exp(H)}(RExp(H))=\{\frac{d}{dt}|_{l=0}\exp tX\cdot Exp(H);X\in f\}$ .

If $X\in f_{0}$ , then

$\frac{d}{dt}|_{t=0}\exp tX\cdot Exp(H)=0$ .
By Lemma 1,

(6) $\frac{d}{dt}|_{t=0}\exp tS_{a}\cdot Exp(H)=-(\exp H)_{*}(\sin\langle\alpha, H\rangle T_{a})$ ,

SO

$T_{Exp(H)}(KExp(H))=\{(\exp H)_{*}T_{\alpha} ; \alpha\in\Delta_{+}, \langle\alpha, H\rangle\not\in\pi Z\}_{R}$

$=(\exp H)_{*}\sum_{Z\kappa\Sigma_{+\langle\gamma.H)\not\in\pi}}\mathfrak{m}_{r}$ .

For $\alpha,$ $\beta\in\Delta_{+}$ with $\langle\alpha, H\rangle,$ $\langle\beta, H\rangle\not\in\pi Z$,

(7) $[(\exp H)_{*}^{-1}(\nabla_{s_{\alpha}}\cdot S_{\rho}^{*})]_{0}$

$=[\nabla_{(Ad(\exp H)}-1s_{a})(Ad(\exp H)^{-1}S_{\rho})^{*}]_{0}$

$=[\nabla_{(\cos\langle\alpha,H\rangle S_{a}}$-sln $\langle\alpha.H\rangle T_{\alpha})(\cos\langle\beta,$ $H\rangle S_{\rho}-\sin\langle\beta,$ $H\rangle T_{\beta})^{*}]_{0}$

$=\sin\langle\alpha, H\rangle\cos\langle\beta, H\rangle[T_{\alpha}, S_{\beta}]$

by Lemma 1, the above equations (4), (5), and $\nabla_{X}.Y^{*}=0$ at $0$ for any $X\in \mathfrak{k}$ and any
$Y\in \mathfrak{g}$ . Identify the tangent space $T_{Exp(H)}(M)$ with $\mathfrak{m}$ under the differential map
$(\exp H)_{*}$ and let $h_{H}$ be the second fundamental form of KExp $(H)$ at $Exp(H)$ .
The equations (2), (6), and (7) yield

$h_{H}(T_{\alpha}, T_{\beta})=\cot\langle\beta, H\rangle[T_{\alpha}, S_{\beta}]^{\perp}$

for $\alpha,$ $\beta\in\Delta_{+}$ with $\langle\alpha, H\rangle,$ $\langle\beta, H\rangle\not\in\pi Z,$ where $\cdot\perp is$ the component of . in $(_{r\in\Sigma_{+}}\sum_{Z}\mathfrak{m}_{\gamma})^{\perp}$

with respect to the orthogonal direct sum decomposition of $\mathfrak{m}$ in Lemma 1.
Furthermore

$h_{H}(T_{\alpha}, T_{\alpha})=-\cot\langle\alpha, H\rangle\overline{\alpha}$ .
Hence the mean curvature vector $\mathfrak{m}_{H}$ of KExp $(H)$ at $Exp(H)$ is given as follows:
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$\mathfrak{m}_{H}=-\sum_{Z\alpha\in\Delta+\langle\alpha,H\rangle\not\in\pi}\cot\langle\alpha, H\rangle\overline{\alpha}$ .

In particular the mean curvature vector $\mathfrak{m}_{H}$ is tangent to the submanifold $Exp(\mathfrak{a})$ .
Now we shall prove that the mean curvature vector of KExp $(S^{0})$ vanishes.

Let $H$ be any element of $S^{0}$ . The isometry of $M$ induced by the reflection of $\mathfrak{a}$

in the hyperplane $\{X\in \mathfrak{a};\langle\delta, X\rangle=\pi\}$ of $\mathfrak{a}$ fixes the points $0$ and $Exp(H)$ , and leaves
KExp $(S^{0})$ invariant. Since $S^{0}$ is an open subset of $\{X\in \mathfrak{a};\langle\delta, X\rangle=\pi\},$ $\mathfrak{m}_{H}$ is tangent
to $S^{0}$ . $Exp(a)$ is a totally geodesic submanifold in $M$, so it follows from the de-
finition of the mean curvature vector that the mean curvature vector of KExp $(S^{0})$

at $Exp(H)$ vanishes for any $H$ in $S^{0}$ . Therefore the mean curvature vector of
KExp $(S^{0})$ at any point in it vanishes, that is, KExp $(S^{0})$ is a minimal submanifold
in $M$

Next we shall show that KExp $(S^{1})$ has no geodesic point, if the rank of $M$

is greater than 1. Let $H$ be any element of $S^{1}$ . Take $\alpha$ in $\Delta_{+}$ so that $\langle\alpha, H\rangle\not\in$

$\frac{\pi}{2}Z$ and $\langle\overline{\alpha}, \delta\rangle\neq 0$ .

$[(\exp H)_{*}^{-1}(\nabla_{s_{\alpha}^{*}}S_{a}^{*})]_{0}=\sin\langle\alpha, H\rangle\cos\langle\alpha, H\rangle[T_{\alpha}, S_{\alpha}]$

by (7). The choice of $\alpha$ impies that $\sin\langle\alpha, H\rangle\cos\langle\alpha, H\rangle\neq 0$ . $[T_{\alpha}, S_{a}]\in R\overline{\alpha}+\mathfrak{m}_{2\overline{\alpha}}$

and the component of it in $R\overline{\alpha}$ does not vanish. Since the tangent space $T_{Exp(H)}$

(KExp $(S^{1})$ ) is $(\exp H)_{*}(\{X\in \mathfrak{a}:\langle\delta, X\rangle=0\}+_{\gamma\in\Sigma_{+}}\sum_{\langle\gamma,B\rangle\not\in\pi Z}\mathfrak{m}_{\gamma})$ , the second fundamental
form of KExp $(S^{1})$ at $Exp(H)$ evaluated by $((S_{a}^{*})_{Exp(H)}, (S_{\alpha}^{*})_{Exp(H)})$ does not vanish.
Therefore $Exp(H)$ is not a geodesic point of KExp $(S^{1})$ for any $H\in S^{1}$ and KExp $(S^{1})$

has no geodesic point.

3. Compact simple Lie groups.

Let $G$ be a connected compact simple Lie group with a bi-invariant Riemannian
metric $\langle$ , $\rangle$ . In this section we shall use calibrations to show that a certain 3-
dimensional compact simple Lie subgroup $G_{1}$ of $G$ is homologically volume mini-
mizing in $G$ and that the submanifold $F_{p^{0}}(G)$ is stable under variations of compact
supports.

On $G$ a calibration $\phi$ of degree 3 will be constructed. Let $\mathfrak{g}$ be the Lie al-
gebra of $G$ and take a maximal Abelian subalgebra $\mathfrak{f}$ of $\mathfrak{g}$ . Define the root system
$\Delta$ of $\mathfrak{g}$ with respect to $\mathfrak{f}$ like as in Section 2. Let $\delta$ be the highest root in $\Delta$ with
respect to some ordering on $\mathfrak{f}$ and put

$\phi(X, Y, Z)=\frac{1}{|\delta|}\langle[X, Y], Z\rangle$

for $X,$ $Y,$ $Z$ in $\mathfrak{g}$ . By regarding an element of $\mathfrak{g}$ as a left-invariant vector field on
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$G,$ $\phi$ is a bi-invariant 3-form on $G$ . In particular, $\phi$ is a closed form. Later on
one will find that $\phi$ is a calibration on $G$ . In a way similar to a proof of Lemma
1 in Section 2, we can prove the following lemma.

LEMMA 4. There exist unit vectors E., $F_{\alpha}$ in $\mathfrak{g}$ for each $\alpha\in\Delta_{+}$ in such a way

that:

i) $\mathfrak{g}=\mathfrak{f}+\sum_{a\in A+}RE_{\alpha}+\sum_{a\in\Delta+}RF_{\alpha}$

is an orthogonal direct sum decomposition of $\mathfrak{g}_{j}$

ii) $[H, E_{\alpha}]=\langle\alpha, H\rangle F_{\alpha}$ , $[H, F_{\alpha}]=-\langle\alpha, H\rangle E_{\alpha}$ , $[E_{\alpha}, F_{\alpha}]=\alpha$

for $\alpha\in\Delta_{\mathcal{T}}$ and $H\in \mathfrak{f}$ .

Set

$\mathfrak{g}_{1}=R\delta+RE_{\delta}+RF_{\delta}$ ,

then $\mathfrak{g}_{1}$ is a compact 3-dimensional simple Lie subalgebra of $\mathfrak{g}$ . Let $G_{1}$ be the
analytic subgroup of $G$ corresponding to $\mathfrak{g}_{1}$ . It is known that $G_{1}$ is simply con-
nected and isomorphic to SU(2). See the proof of Theorem 5.4 in Wolf [6]. We
introduce an orientation on $\mathfrak{g}_{1}$ such that $\{\delta, E_{\delta}, F_{\delta}\}$ is a positive basis of $\mathfrak{g}_{1}$ .

THEOREM 5. For each 3-dimensional oriented subspace $\xi$ in $\mathfrak{g}$ , the inequality

$\phi|_{\xi}\leqq vo1_{\xi}$

holds. The equality holds if and only if there is an element $g$ in $G$ such that

$\xi=Ad(g)\mathfrak{g}_{1}$

and that Ad $(g):\mathfrak{g}_{1}\rightarrow\xi$ is orientation preserving. $ln$ particular, $\phi$ is a calibration
on $G$ .

PROOF. Since $\phi$ is Ad $(G)$-invariant, we may assume that $\xi\cap \mathfrak{f}\neq\{0\}$ . Take a
positive basis $\{T, X, Y\}$ of $\xi$ with $T\in\xi\cap \mathfrak{f}$ . Put

$X=T_{0}+\sum_{\alpha\in\Lambda+}s_{\alpha}E_{a}+\sum_{\alpha\in\Lambda+}t_{\alpha}F_{\alpha}$ ,

where $\tau_{0}\in \mathfrak{f}$ and $s_{\alpha},$
$t_{\alpha}\in R$ . By i) of Lemma 4,

$|X|^{2}=|T_{0}|^{2}+\sum_{\alpha\in\Delta+}|s_{a}|^{2}+\sum_{a\in A+}|t_{\alpha}|^{2}$ .

Owing to the formulas in ii) of Lemma 4,

$|[T, X]|^{2}=|\sum_{\alpha\in\Lambda+}s_{\alpha}\langle\alpha, T\rangle F_{\alpha}-\sum_{\alpha\in A+}t_{\alpha}\langle\alpha, T\rangle E_{\alpha}|^{2}$
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$=\sum_{\alpha\in A+}Is_{\alpha}|^{2}|\langle\alpha, T\rangle|^{2}+\sum_{\alpha\in\Delta+}|t_{\alpha}|^{2}|\langle\alpha, T\rangle|^{2}$

$\leqq\sum_{\alpha\in\Delta+}(|s_{\alpha}|^{2}+|t_{\alpha}|^{2})|\alpha|^{2}|T|^{2}$

$\leqq|\delta|^{2}\sum_{\alpha\in\Delta+}(|s_{\alpha}|^{2}+|t_{\alpha}|^{2})|T|^{2}$

$\leqq|\delta|^{2}|T|^{2}|X|^{2}$ .
Hence

(8) $|[T, X]|\leqq|\delta||T||X|$ .
The equality holds if and only if there is an $\alpha\in\Delta_{+}$ with the properties that:

$|\alpha|=|\delta|$ , $ T\in R\alpha$ , $X\in RE_{a}+RF_{\alpha}$ .
By the inequality (8),

$|\phi(T, X, Y)|=\frac{1}{|\delta|}|\langle[T, X], Y\rangle|$

$\leqq|T||X||Y|$ .
Therefore

$\phi|_{\xi}\leqq vo1_{\xi}$ .
If the equality holds, then there is a root $\alpha\in\Delta_{+}$ so that

$|\alpha|=|\delta|$ , $ T\in R\alpha$ , $X\in RE_{\alpha}+RF_{\alpha}$

and $[T, X]//Y,$ $\phi(T, X, Y)>0$ . Since $X=s_{\alpha}E_{\alpha}+t_{\alpha}F_{\alpha}$ ,

$[T, X]=\langle\alpha, T\rangle(s_{a}F_{\alpha}-t_{\alpha}E_{\alpha})$ .
Accordingly $Y\in RE.+RF$. and

$\xi=R\alpha+RE_{\alpha}+RF_{\alpha}$ ,
$\phi(\alpha, E_{\alpha}, F_{\alpha})=|\alpha|>0$ ,

so $\{\alpha, E_{\alpha}, F_{\alpha}\}$ is a positive basis of $\xi$ .
Noting that $\delta$ is the highest root and that $|\alpha|=|\delta|$ , we have

$|\frac{2\langle\beta,\alpha\rangle}{\langle\alpha,\alpha\rangle}|<2$

for any root $\beta\in\Delta-\{\alpha, -\alpha\}$ and consequently

$\frac{2\langle\beta,\alpha\rangle}{\langle\alpha,\alpha\rangle}=-1,0$ , or 1

for $\beta\in\Delta-\{\alpha, -\alpha\}$ . According to Theorem 4.2 in Wolf [7], $\alpha$ is the highest root
for some lexicographic ordering. Take an element $w$ of the Weyl group of $G$

with respect to $\mathfrak{f}$ which transports the fundamental Weyl chamber with respect
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to the old ordering to the one with respect to the new ordering and an element
$n$ of the normalizer of $\mathfrak{f}$ in $G$ such that Ad $(n)|_{f}=w$ . As Ad $(n)\delta=\alpha$ ,

Ad $(n)\mathfrak{g}_{1}=\xi$ .

Ad $(n):\mathfrak{g}_{1}\rightarrow\xi$ is orientation preserving, because this map is a Lie algebra iso-
morphism.

THEOREM 6. $G_{1}$ is a homologically volume minimizing submanifold in $G$ .

PROOF. Take $\phi$ as a calibration on $G$ . By Theorem 5,

$\phi|_{G_{1}}=vo1_{G_{1}}$ ,

so $G_{1}$ is homologically volume minimizing in $G$ .

REMARK. The author does not know whether some isometry of $G$ transports
$M$ to $G_{1}$ for any compact oriented 3-dimensional submanifold $M$ with $[M]=[G_{1}]$

in $H_{3}(M;R)$ and $vol(M)=vol(G_{1})$ . In the quaternionic projective space $P^{n}(H)$ ,

the problem is affermatively solved for $P^{k}(H)(1\leqq k\leqq n)$ in Section 4. See Theorem
11.

THEOREM 7. For any point $p$ in $G,$ $F_{p^{0}}(G)$ is minimal and stable under vari-
ations of compact supports.

PROOF. We may assume that $p=e$ . Choose an orientation of $G$ and fix it.
As $G$ is an oriented Riemannian manifold, we can consider the Hodge star operator
$*$ Let $\dim G=n$ . By the definition of the Hodge star operator, $*\phi$ is also a cali-
bration on $G$ and for any 3-dimensional oriented plane $\xi$ of $\mathfrak{g}$

$\phi|_{\xi}=vo1_{\xi}\Leftrightarrow*\phi|_{\xi}\perp=vo1_{\xi^{1}}$ ,

where an orientation of $\xi^{\perp}$ is defined in such a way that: if $\{v_{1}, v_{2}, v_{3}\}$ and $\{v_{4},$ $\cdots$ ,

$v_{n}\}$ are positive bases of $\xi$ and $\xi^{\perp}$ respectively, then $\{v_{1}, \cdots, v_{n}\}$ is a positive basis
of $\mathfrak{g}$ .

Let $r$ be the rank of $G$ and $\{\alpha_{1}, \cdots, \alpha_{r}\}$ be the fundamental root system of $\Delta$ .
Then

$S^{0}=$ { $H\in \mathfrak{f};\langle\delta,$ $H\rangle=2\pi,$ $\langle\alpha_{i},$ $H\rangle>0$ for $1\leqq i\leqq r$}

and

$ F_{e^{0}}(G)=\exp$ Ad $(G)S^{0}$ .
As $ 0<\langle\alpha, H\rangle<2\pi$ for $\alpha\in\Delta_{T}-\{\delta\}$ and $H\in S^{0}$ , the tangent space $T_{\exp H}(F_{e^{0}}(G))$ of $F_{e^{0}}(G)$
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at $\exp H$ is given as follows:

$T_{\exp H}(F_{e}^{0}(G))=(\exp H)_{*}(\{X\in \mathfrak{f};\langle\delta, X\rangle=0\}+\sum_{\alpha\in\Delta+-\{\delta|}(RE_{\alpha}+RF_{\alpha}))$ .

Therefore

$*\phi|_{F_{e}^{0}(G)}=vo1_{F_{e}^{0}(G)}$

for a suitable orientation on $F_{e^{0}}(G)$ and so $F_{e^{0}}(G)$ is minimal and stable under vari-
ations of compact supports, because $*\phi$ is a calibration on $G$ .

4. Quaternionic Kahler submanifold.

Kraines has introduced a closed 4-form $\Omega$ on a quaternionic Kahler manifold
in [41, which is analogous to the fundamental 2-form on a K\"ahler manifold. This
section is devoted to showing that $\frac{1}{k!}\Omega^{k}$ is a calibration on a quaternionic K\"ahler

manifold for each $k$ , which is applied to quaternionic K\"ahler submanifolds.
First of all we give definitions of quaternionic K\"ahler manifolds and submani-

folds. Let $H$ be the quaternionic division algebra. The action of Sp $(n)\times Sp(1)$ to
$H^{n}$ is defined by

$(A, z)x=Axz^{-1}$

for $(A, z)\in Sp(n)\times$ Sp (1) and $x\in H^{n}$ . The action is isometric with respect to the
standard inner product $\langle, \rangle$ on $H^{n}$ . The image of the homomorphism from
Sp $(n)\times Sp(1)$ to SO $(H^{n})$ is denoted by Sp $(n)Sp(1)$ . A $4n$-dimensional connected
Riemannian manifold $M$ is called a quaternionic Kahler manifold, if $M$ has the
following property: There is a point $x$ in $M$ such that, through an identification
of $T_{x}(M)$ with $H^{n}$ , the linear holonomy group of $M$ at $x$ is contained in Sp $(n)$ Sp (1).

Under the situation, take a piecewise smooth curve $\tau$ from $x$ to $y$ for any point
$y$ in $M$ and put

$S_{y}=P_{\tau}$ Sp (1) $P_{r^{-1}}$ ,

where $P_{\tau}$ is the parallel translation along the curve $\tau$ . Since Sp (1) is a normal
subgroup of Sp $(n)Sp(1)$ , the definition of $S_{y}$ is independent of the choice of $\tau$ .
We call $S=\{S_{y}\}_{y\in M}$ a quaternionic structure on $M$ A connected submanifold $N$ of
$M$ is called a quaternionic Kahler submanifold of $M$, if $T_{y}(N)$ is invariant under
the action of $S_{y}$ for each $y$ in $N$. Since a quaternionic K\"ahler submanifold $N$ of
$M$ is totally geodesic (Alekseevskii [1]), $N$ is also a quatemionic K\"ahler manifold
with respect to the induced Riemannian metric.

Next we construct a closed 4-form on a quaternionic K\"ahler manifold due to
Kraines [4]. The 2-forms $\Omega_{I},$ $\Omega_{J}$ , and $\Omega_{K}$ on $H^{n}$ are defined by
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$\Omega_{I}(X, Y)=\langle Xi, Y\rangle$ , $\Omega_{J}(X, Y)=\langle\angle Yj$ , }

and

$\Omega_{K}(X, Y)=\langle Xk, Y\rangle$ .

Kraines has proved that the 4-form

$\Omega=\frac{1}{6}(\Omega_{I}\wedge\Omega_{I}+\Omega_{J}\wedge\Omega_{J}+\Omega_{K}\wedge\Omega_{K})$

on $H^{n}$ is invariant under the action of Sp $(n)Sp(1)$ . So we can extend $\Omega$ to a
parallel 4-form on a quaternionic K\"ahler manifold, which is also denoted by $\Omega$ .
The 4-form $\Omega$ is a closed form. We call $\Omega$ the fundamental 4-form on a quater-
nionic K\"ahler manifold. The reason of the multiplication by 1/6 in the definition
of $\Omega$ is as follows. According to Wirtinger’s inequality,

$\frac{1}{2}\Omega_{I}^{2}|_{\xi}\leqq vo1_{\xi}$ , $\frac{1}{2}\Omega_{J}^{2}|_{\xi}\leqq vo1_{\xi}$ , $\frac{1}{2}\Omega_{K}^{2}|_{\xi}\leqq vo1_{\xi}$

for any oriented 4-plane $\xi$ in $H^{n}$ . Hence

$\Omega|_{\xi}\leqq vo1_{\xi}$ .
The equality holds if and only if $\xi$ is a Sp (l)-invariant plane and has an orienta-
tion such that $\{v, vi, vk, vj\}$ is a positive basis of $\xi$ for nonzero $ v\in\xi$ .

Now we shall show an inequality of $\Omega^{m}$ similar to the above inequality, which
is analogous to Wirtinger’s inequality on a K\"ahler manifold.

THEOREM 8. Let $M$ be a $4n$-dimensional quaternionic Kahler manifold with
quaternionic structure $S$ and fundamental 4-form $\Omega$ , then,

$\frac{1}{m!}\Omega^{m}|_{\xi}\leqq vo1_{\xi}$

for each oriented tangent $4m$-plane $\xi$ on $M$ and $1\leqq m\leqq n$ . The equality holds
if and only if $\xi$ is an S-invariant plane with such an orientation that $\{v_{1},$ $v_{1}i,$ $v_{1}k$ ,

$v_{1}j,$
$\cdots,$ $v_{m},$ $v_{m}i,$ $v_{m}k,$ $v_{m}j$ } is a positive basis of $\xi$ for some $v_{1},$ $\cdots,$ $v_{m}$ in $\xi$ . $ln$ parti-

cular, $\frac{1}{m!}\Omega^{m}$ is a calibration on $M$

PROOF. It is sufficient to prove the inequality of $\Omega^{m}$ on $H^{n}$ . Define the action
of Sp (1) on the space $\Lambda^{4m}(H^{n})$ of real $4m$-forms on $H^{n}$ by

$(z^{*}\Phi)(X_{1}, \cdots, X_{4m})=\Phi(X_{1}z, \cdots, X_{4m}z)$

for $z\in Sp(1),$ $\Phi\in\Lambda^{4m}(H^{n})$ , and $X_{1},$
$\cdots,$

$X_{4m}\in H^{n}$ . Let $\int_{Sp(1)}$ be the invariant measure
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on Sp (1) with $\int_{Sp(1)}1=1$ and consider the form

$\Psi=\int_{z\in Sp(1)}z^{*}\Omega_{\Gamma^{m}}^{2}.\cdot$

The form $\Omega_{I}$ is invariant under the action of Sp $(n)$ and the action of Sp (1) com-
mutes with the one of Sp $(n)$ , so $\Psi$ is Sp $(n)$-invariant. By the definition of $\Psi,$ $\Psi$

is Sp (l)-invariant. Therefore $\Psi$ is Sp $(n)$ Sp (l)-invariant. Since the space of
Sp $(n)Sp$ (l)-invariant $4m$-forms on $H^{n}$ is generated by $\Omega^{m}$ , there is a real number
$c$ such that

$\Psi=c\Omega^{m}$ .
We estimate the form $\Psi$ . For $X_{1},$

$\cdots,$
$X_{4m}\in H^{n}$ ,

$\Psi(X_{1}, \cdots, X_{4m})=\int_{z\in Sp(1)}\Omega^{z_{I}m}(X_{1}z, \cdots, X_{4m}z)$ ,

so by Wirtinger’s inequality

$|\Psi(X_{1}, \cdots, X_{4m})|\leqq\int_{z\in Sp(1)}|\Omega^{z_{I}m}(X_{1}z, \cdots, X_{4m}z)|$

$\leqq(2m)!\int_{\epsilon\epsilon 8p(1)}|X_{1}z|\cdots|X_{4m}z|$

$\leqq(2m)!|X_{1}|\cdots|X_{4m}|$ .
Hence for any oriented $4m$-plane $\xi$ in $H^{n}$

$\Psi|_{\xi}\leqq(2m)!vo1_{\xi}$

and the equality holds if and only if $\xi z$ is invariant under the right multiplication

by $i$ and has a suitable orientation for any $z\in Sp(1)$ . In order to simplify the
condition we prepare the following lemma.

LEMMA 9. Let $V$ be a $4m$-dimensional real vector subspace of $H^{n}$ . Then the
following conditions are equivalent.

i) $V$ is Sp (1)-invariant.

ii) $Vz$ is $U(1)$-invariant for each $z\in Sp(1)$ , where $U(1)=\{x\in R+Ri;|x|=1\}$ .

PROOF. It is obvious that i) implies ii). So assume $Vz_{0}\neq V$ for some $ z_{0}\in$

Sp (1). Since $U(1)$ is a maximal torus of Sp (1), there exists $z_{1}\in Sp(1)$ such that
$z_{2}=z_{1}^{-1}z_{0}z_{1}\in U(1)$ . Then $Vz_{1}z_{2}\neq Vz_{1}$ . Thus the lemma is proved.

According to the lemma,

$\Psi|_{\xi}=(2m)!vo1_{\xi}$
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if and only if $\xi$ is Sp (l)-invariant and has a positive basis $\{v_{1},$ $v_{1}i,$ $v_{1}k,$ $v_{1}j,$
$\cdots,$ $v_{m}$ ,

$v_{m}i,$ $v_{m}k,$ $v_{m}j$ } for some $v_{1},$ $\cdots,$ $v_{m}$ in $\xi$ . When the above equality holds for $\xi$ ,

$(2m)!vo1_{\xi}=c\Omega^{m}|_{\xi}$

$=cm!vo1_{\xi}$ .

Therefore

$c=\frac{(2m)!}{m!}$ . $\Omega^{m}=\frac{m!}{(2m)!}\int_{z\in Sp(1)}z^{*}\Omega_{I}^{zm}$ ,

and the theorem has been proved.

THEOREM 10. Let $M$ be a quaternionic Kahler manifold and $N$ be a 4m-
dimensional quaternionic Kahler submanifold of M If $N$ is compact, then

$vol(N)\leqq vol(N^{\prime})$

for any compact oriented $4m$-dimensional submanifold $N^{\prime}$ such that $[N]=[N^{\prime}]$ in
the homology group $H_{4m}(M;R)$ . The equality holds if and only if $N^{\prime}$ is also a
quaternionic Kahler submanifold of M If $N$ is noncompact, $N$ is stable under
variations of compact supports.

PROOF. Take $\frac{1}{m!}\Omega^{m}$ as a calibration on $M$ The theorem follows from the
explanation of calibrations in Introduction and Theorem 8.

Now we show a theorem on $P^{n}(H)$ stronger than Theorem 10.

THEOREM 11. Let $N$ be a $4m$-dimensional oriented compact submanifold of
$P^{n}(H)$ such that $[N]=[P^{m}(H)]$ in $H_{4m}(M;R)$ . Then

$vol(P^{m}(H))\leqq vol(N)$

and the equality holds if and only if $N$ is congruent with $P^{m}(H)$ in $P^{n}(H)$ .

PROOF. If

$vol(P^{m}(H))=vol(N)$ ,

then $N$ is a quaternionic K\"ahler submanifold. As mentioned above $N$ is a totally
geodesic submanifold. Without loss of generality we may assume that $N\cap P^{m}(H)$

$\neq\phi$ . Take $x\in N\cap P^{m}(H)$ . Since $T_{x}(N)$ and $T_{x}(P^{m}(H))$ are $S_{x}$-invariant, there is
and isometry $g$ of $P^{n}(H)$ such that $g_{*}T_{x}(N)=T_{x}(P^{m}(H))$ . Both of $N$ and $P^{m}(H)$

are totally geodesic, so $qN=P^{m}(H)$ .

REMARK. $P^{n-1}(H)$ is the first conjugate locus of $P^{n}(H)$ . So the first conjugate
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locus of $P^{n}(H)$ is homologically volume minimizing. But similar facts for other
quaternionic symmetric spaces, which are classified by Wolf [6], does not hold.
In fact, the codimension of the first conjugate locus of another quaternionic sym-
metric space is not equal to 4.
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Added in proof. The problem for a compact simple Lie group remarked below
Theorem 6 has been affermatively solved by Ohnita and the author in the forth-
coming paper entitled “ Uniqueness of certain 3-dimensional homologically volume
minimizing submanifolds in compact simple Lie groups.”
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