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\S 1. Introduction.

In $[_{\backslash }^{\prime}\}]$ Chapter 4, Thurston constructed a hyperbolic structure of figure eight

knot complement by glueing together the faces of two ideal 3-simplexes which

are in 3-dimensional Poincar\’e model of hyperbolic geometry. In this paper we
shall show by illustration that this construction can also be applied to other knot

complements and even to more general 3-manifolds whose Heegaad diagrams are
given.

In \S 1, we shall define the notion of nice triangulations of 3-manifolds. This

definition is made entirely under the category of combinatorial topology, irrespec-

tive of geometric structure. The Nice Triangulation Theorem which asserts that

every compact 3-manifold with boundary has a nice triangulation, shows that this

notion is quite general.
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In \S 2, we shall illustrate, for $5_{2}$ -knot, how to construct a nice triangulation
of the complement of a given knot, and then how Thurston’s method to construct
hyperbolic structure in [3] Chapter 4 can be applied to the nice triangulation ob-
tained thus.

In \S 3, we shall give the results for some other knots $(6_{1},6_{2},6_{3})$ by the same
method as above.

In \S 4, we shall illustrate how to construct a nice triangulation from a given
Heegaad diagram which does not necessarily give a knot complement.

In \S 5, we shall give other examples of the construction of nice triangulations
with 2-or 3-simplexes and of hyperbolic structures.

In \S 6, we shall give a method to construct the (non-commutative) representa-
tions of the fundamental group $\pi_{1}(M)$ into $PSL(2, C)$ , from a given nice triangula-
tion of $M$ It would be interesting that non-commutative relators of the presenta-
tion of $\pi_{1}(M)$ turns to the corresponding algebraic equations of commutative field
$C$ , and any non-trivial solution of these equations corresponds to an equivalence
class of the representations.

In \S 7, we shall give other types of special concrete construction of a hyper-
bolic closed manifold and hyperbolic manifolds with totally geodesic boundary.

In \S 8, we shall give a rigorous proof of The Nice Triangulation Theorem
stated in \S 1, although the method illustrated in \S 4 already gives a sketch of the
proof of the theorem.

\S 1. The nice triangulations.

Let $K=\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n}\}$ be a set of disjoint 3-simplexes. Suppose that one of
the ways of glueing pairwise the $4n$ faces of these $n$ simplexes is specified. This
means, (i) $2n$ pairs of the faces to be glued together are specified, and (ii) for
each of these pairs, a correspondence between the vertices of the two faces is
specified. (This correspondence induces a linear glueing map between the two
faces.) We call the $K$ with this specification a nice complex.

Now let $M^{\prime}(K)$ be the topological space obtained from $K$ by glueing pairwise
the faces of the 3-simplexes by the specified way. Set theoretically, $M^{\prime}(K)$ is
obtained from the disjoint union $A=\Delta_{1}\cup\Delta_{2}\cup\cdots\cup\Delta_{n}$ by taking the quotient space
$\overline{A}=A/\equiv$ , where $\equiv$ is the equivalence relation induced by the glueing map. More-
over, the topological structure of $\overline{A}$ is given by:

$U\subseteq\overline{A}$ is $open\Leftrightarrow p^{-1}(U)\subseteq A$ is open,

where $p$ is the natural map from $A$ onto A. $M^{\prime}(K)$ is obviously compact.
Next let $\Gamma$ be the set of those points in $M^{\prime}(K)$ which are the images of the

vertices of $\Delta_{1},$ $\Delta_{2},$

$\cdots,$
$\Delta_{n}$ . $\Gamma$ is a finite set. Let
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$ M(K)=M^{\prime}(K)-\Gamma$ ,

and

$\tilde{M}(K)=M^{\prime}(K)-$ [a small regular neighborhood of $\Gamma$].

$M(K)$ is an open subset of $M^{\prime}(K)$ and $\tilde{M}(K)$ is a closed (and hence compact)
subset of $M^{\prime}(K)$ .

We first observe the condition for $M(K)$ to be a 3-manifold. By the natural
map $p:A\rightarrow\overline{A}$ , the interiors of $\Delta_{i}^{\prime}s$ are mapped homeomorphically. The faces of
$\Delta_{i}^{\prime}s$ are glued together pairwise. So $\overline{A}-$ [ $1$ -skelton] is a 3-manifold. So we have
only to consider the images of the edges of $\Delta_{i}^{\prime}s$ .

Fig. 1.

Let $l_{1}$ be an edge of one of the 3-simplexes. Suppose that $l_{1}$ is the inter-
section of two adjacent faces $\alpha_{1}^{\prime}$ and $\alpha_{2}$ . Now $\alpha_{2}$ is glued to a face $\alpha_{2}^{\prime}$ , and let $l_{2}$

be that edge of $\alpha_{2}^{\prime}$ which corresponds to $l_{1}$ by the glueing. Let $\alpha_{3}$ be another
face which contains $l_{2}$ . $\alpha_{3}$ is glued to a face $\alpha_{3}^{\prime}$ , and so on. Since the number of
the 3-simplexes of $K$ is finite, there is an $m$ such that the edge $l_{m}$ is the inter-
section of the faces $\alpha_{m}^{\prime}$ and $\alpha_{I}$ , and $\alpha_{1}$ is glued to $\alpha_{1}^{\prime}$ so that $l_{m}$ corresponds to $l_{1}$ .
(We assume that $m$ is chosen to be the smallest possible.) Now let $A_{1}$ and $B_{1}$

be the vertices of $l_{1}$ , and let $A_{2}$ and $B_{2}$ be the vertices of $l_{2}$ such that $A_{1}$ core-
sponds to $A_{2}$ and $B_{1}$ corresponds to $B_{2}$ by the glueing of $\alpha_{2}$ and $\alpha_{2}^{\prime}$ . Similarly, $A_{i}$

and $B_{i}(i=1,2, \cdots, m)$ are defined. (See Figure 1.)

Now there are two possibilities: By the glueing of $\alpha_{1}$ and $\alpha_{1}^{\prime}$ ,
(i) $A_{m}$ corresponds to $A_{1}$ and $B_{m}$ corresponds to $B_{1}$ ,

(ii) $A_{m}$ corresponds to $B_{1}$ and $B_{m}$ corresponds to $A_{1}$ .
If the case (ii) happens (for some edge $l_{1}$ ), then $M(K)$ fails to be a 3-manifold.
For, the glueing map induces a series of linear maps between $l_{i}^{\prime}s$ :

$l_{1}\rightarrow^{\pi_{1}}l_{2}\rightarrow^{\pi_{2}}l_{s}\rightarrow^{\pi 3}l_{4}\rightarrow^{\pi 4}$ . . $.\rightarrow l_{m}\pi m-1\rightarrow^{\pi m}l_{1}$ ,

and the composition $\sigma=\pi_{m}\circ\pi_{m-1}\circ\cdots\circ\pi_{2}\circ\pi_{1}$ is a linear map of $l_{1}$ onto itself which
is orientation-reversing (since $\sigma$ maps $A_{1}$ to $B_{1}$ and $B_{1}$ to $A_{1}$ ). So the middle point
$C$ of $l_{1}$ does not have a neighborhood homeomorphic to $R^{3}$ . Next suppose that
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the case (ii) does not happen arround any edge and hence the case (i) always

happens, then the topological structure arround any edge is as shown on Figure

2 and hence each interior point of the edge has a neighborhood homeomorphic to
$R^{3}$ . So $M(K)$ is a 3-manifold.

We call this combinatorial condition for $K$ that the case (i) always happens,

the local orientability condition. Thus $llf(K)$ is a 3-manifold if and only if $K$

satisfies the local orientability condition.
Next we consider the condition for $\lrcorner lI(K)$ to be orientable. We call the follow-

ing condition for $Kt\}_{1}e$ orientability condition: Each of $\Delta_{1},$ $\Delta_{2},$

$\cdots,$
$\Delta_{n}$ is oriented

and each glueing map between the faces is orientation-reversing. Since the glue-
ing map is determined by the correspondence between the vertices of the faces,

this condition is also combinatorial. It is not hard to see that the orientability

condition implies the local orientability condition. So, if $K$ satisfies the orien-
tability condition, then $M(K)$ is a manifold and it is easy to see that $M(K)$ is
orientable. The orientability condition is not a necessary condition for $M(K)$ to
be orientable. However, if $K$ satisfies the local orientability condition and $A1I(K)$

is orientable, then by changing the orientation of some of $\Delta_{1},$ $\Delta_{2}$ , $\cdot$ . ., $\Delta_{n}$ , we can
assume that $K$ satisfies the orientability condition.

Hereafter we only consider the nice complexes which satisfies the local orient-
ability condition. Then, $\tilde{M}(K)$ is obviously a compact 3-manifold with boundary
and $M(K)$ is homeomorphic to the interior of $\tilde{M}(K)$ .

Let $M$ be a 3-manifold and $K$ be a nice complex. We say that $K$ is a nice
triangulation of $M$ if $M$ is homeomorphic either to $M(K)$ or to $\tilde{M}(K)$ . For the

existence of a nice triangulation of a 3-manifold, we have the following theorem,

the proof of which will be carried out in \S 8.
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[Nice Triangulation Theorem]. Every compact 3-manifold with boundary has
a nice triangulation.

REMARK. The nice triangulations of a given 3-manifold are not unique. There
are infinitely many nice triangulations of a given compact 3-manifold with boundary.

EXAMPLE 1. (Thurston) The complement of figure eight knot has the follow-
ing nice triangulation:

Fig. 3.

EXAMPLE 2. A nice triangulation of the 3-disk:

Fig. 4.

EXAMPLE 3. A nice triangulation of the solid torus (or the complement of
the trivial knot):

Fig. 5.

EXAMPLE 4. A nice triangulation of the trefoil knot complement:



46 Moto-o TAKAHAsfil

Fig. 6.

\S 2. The nice triangulation and hyperbolic structure of $5_{2}$-knot complement.

The following method to construct hyperbolic structures is useful: Given a
compact 3-manifold with toral boundary, first construct its nice triangulation and

then construct its hyperbolic structure by the method described in Chapter 4 of

Thurston’s Lecture Note [3]. Probably this method would be applicable for every

hyperbolizable 3-manifold with (or even without) toral boundary.

In this and the next sections we shall illustrate how to construct a nice tri-
angulation of a given manifold practically and how to construct a hyperbolic

structure from it. We have deviced two practical methods to construct a nice
triangulation of a given 3-manifold: One is applicable for knot (or link) comple-

ments and the other is applicable for all compact 3-manifolds with boundary whose

Heegaard diagrams are given. In this section we shall illustrate the former me-
thod with $5_{2}$ -knot complement as an example, and in the next section we shall
illustrate the latter method with a rather simple example.

Now $5_{2}$ -knot is illustrated in the Figure 7.

Fig. 7.

In general, given a regular projection of a knot, we can span the following

(mutually dual) two surfaces $A,$ $B$ with this knot as boundary, illustrated in the

Figure $8A$ and $8B$ . (These surfaces may be orientable or not, incompressible or
or not. This does not matter.)
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Fig. $8A$ . Fig. $8B$ .

If we span these two surfaces at the same time, some intersection arises naturally.
Removing redundant intersection we find that the intersection consists of several
segments, one segment near each crossing point of the projection, as shown in
the Figure 9 and arround each crossing point, the two surfaces intersect as shown
in the Figure 10, where 1 and $k$ are parts of the knot and Figure 10 shows this
side of $l$. (The same also for the other side of $l.$ )

Fig. 9. Fig. 10.

Now we see that these two surfaces A and $B$ divide $S^{3}$ into two domains $D^{+}$

(which is over the surfaces) and $D^{-}$ (which is under the surfaces). $D^{+}$ and $D^{-}$

are obviously open 3-disks. The boundary of these 3-disks are considered as 2-
spheres with some identification of points.

$/^{\prime}’’’$

’

$’’----\sim\grave{A}*\prime A^{--}$ $\backslash \backslash \backslash \$ $

$E^{\iota_{\backslash }}\iota_{E_{\backslash }\prime}\backslash _{\backslash }\nearrow_{\backslash }^{F}\backslash \backslash \backslash ’’\searrow_{I,}^{\prime}C’\prime c’’\prime J1_{I^{\prime}}\nearrow_{\backslash }^{\backslash _{\mathfrak{l}}}I$

$\backslash -\sim^{t}\sim-\sim\backslash \backslash G’--\prime H^{\prime}G^{\prime},J^{\backslash _{t^{\prime}}}t$

$\partial D^{+}$ ($D^{+}$ is over this paper) $\partial D^{-}$ ($D^{-}$ is under this paper)

Fig. 11A. Fig. 11B.
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The fragments of the knot are denoted by the dotted arcs. (Since we are con-
sidering the knot complement, the knot is not there.) We contract these dotted
arcs to points on $\partial D^{+}$ and $\partial D^{-}$ . Then we obtain the charts on $\partial D^{+}$ and $\partial D^{-}$

illustrated in the Figure 12.

$\partial D^{+}$

$\partial D^{-}$

Fig. 12.

In Figure 12, the points $AD$ indicates that the dotted arc $AD$ in Figure 11 is
contracted to this point. In order to simplify the chart we relabel the points as
follows: $AD=DA=1,$ $BC=CB=2,$ $FA=AF=3,$ $ED=DA=4,$ $HE=EH=5,$ $FG=GF$
$=6,$ $GJ=JG=7,$ $HI=IH=8,$ $IB=Bl=9,$ $CJ=JC=10$ . Then we obtain the Figure
13.

Fig. 13.

Here we remark that the graph of the Figure 13 is just the projection of the
given knot to the plane. This fact is true for any alternating knot. For non-
alternating knots, the graph becomes different from the projection of the knot.
But it does not matter.

Returning to the case of $5_{2}$-knot, we easily see from our construction that the
$5_{2}$-knot complement is homeomorphic to the result of glueing the faces of the
graphs drawn on $\partial D^{+}$ and $\partial D^{-}$ as in the Figure 13 so that the points with the
same label coincide.

Next step is to delete ” 2-gons”, (see Figure 14.) which obstruct to get tri-
angulations of the 3-disks.
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$\rightarrow$ $\rightarrow$ $\rightarrow$ $|$

Fig. 14.

The process of the deletion of a 2-gon is to thin it gradually until it becomes a
segment. (See Figure 14.) For most cases but not always, this process is possible
(without changing the glueing results up to homeomorphism). In order to observe
when it is possible, we first check the identification of edges. They split into five
groups $+,$ $\neq,$ $ffl,$ $\not\subset,$ {. (See Figure 15.)

$\partial D^{+}$ $\partial D^{-}$

Fig. 15.

Now consider for instance the following 2-gon in $\partial D^{+}$ in the Figure 16.

Fig. 16.

The two edges of the 2-gon are not identified. It is not hard to see that the
process of the deletion of the 2-gon is possible in this case. After the process
the edges $+and\neq$ are identified and we have the following reduction of the
graph (Figure 17).
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Fig. 17.

Moreover, for the left-hand-side 2-gon in the lower part of the Figure 17, two
edges are not identified, so that the reduction is again possible. After the reduc-
tion $+$} and or are identified but $\not\subset$ and $<$ are not identified. So the reduction
of the right-hand-side 2-gon in the lower part of the Figure 17 is also possible.
Thus we were able to delete all the 2-gons and we obtain the graphs of Figure 18.

Fig. 18.

In order to get the triangulation with as few 3-simplexes as possible, we first glue
the faces with labeled verticles 3-5-7-9. Then we obtain a single 3-disk with the
graph of Figure 19 on the boundary.

Fig. 19.

Now we draw arcs connecting the labeled vertices 6 and 10 to obtain a tri-
angulation of the boundary of the 3-disk. This is shown in the Figure 20 with
relabeled vertices.
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Fig. 20.

From this triangulation of the boundary of the 3-disk, we can easily obtain a tri-
angulation of the whole 3-disk without adding new vertices. One way to obtain
such a triangulation is to view Figure 20 as a cone with the top vertex V and
three triangles (7-8-9), (10-11-12), (4-5-6) as the base. Finally we obtain a nice
triangulation of $5_{2}knot$ complement. (Figure 21.)

Fig. 21.

Next we shall construct a hyperbolic structure of $5_{2}$ -knot complement from
this nice triangulation, using the method of Thurston [3] \S 4.

First of all we regard each of the 3-simplexes as an ideal 3-simplex (with

vertices at infinity) of the hyperbolic 3-space. According to [3], an ideal 3-simplex
is determined up to isometry by the dihedral angles $\alpha,$

$\beta,$ $\gamma(\alpha+\beta+\gamma=\pi)$ as in the
Figure 22.

Fig. 22.

In other words it is determined by the similarity type of a triangle in Euclid $\cdot$

ean plane. (Figure 23.)



52 Moto-o TAKAHASHI

$\frac{8\dot{m}a}{a}=\frac{\sin\beta}{b}=\frac{\sin r}{c}$

Fig. 23.

If we define the complex numbers $\tilde{\alpha},\tilde{\beta},\tilde{\gamma}$ by

$\tilde{\alpha}=\frac{b}{c}e^{\ell_{a}}=\frac{\sin\beta}{\sin\gamma}(\cos\alpha+i\sin\alpha)$ ,

$\beta=\frac{c}{a}e^{i\beta}=\frac{\sin\gamma}{\sin\alpha}(\cos\beta+i\sin\beta)$ ,

$\gamma=\frac{a}{b}e^{i\gamma}=\frac{\sin\alpha}{\sin\beta}(\cos\gamma+i\sin\gamma)$ ,

then we have the identities

$\tilde{\beta}=\frac{1}{1-\tilde{\alpha}}$ , $\tilde{\gamma}=\frac{1}{1-\tilde{\beta}}$ , $\tilde{\alpha}=\frac{1}{1-\tilde{\gamma}}$ ,

(0) $\tilde{\alpha}=1-\frac{1}{\tilde{\beta}}$ , $\tilde{\beta}=1-\frac{1}{\overline{\gamma}}$ , $\overline{\gamma}=1-\frac{1}{\tilde{\alpha}}$ ,

$\tilde{\alpha}\tilde{\beta}\tilde{\gamma}=-1$ .
(Only two among these equations are independent)

Moreover we have

$\alpha=\arg\tilde{\alpha}$ , $\beta=\arg\overline{\beta}$ , $\gamma=\arg\tilde{\gamma}$ .

Thus the similarity type of a triangle is determined by any one of $\tilde{\alpha},\tilde{\beta},\tilde{\gamma}$ .
Now returning to the case of the nice triangulation of $5_{2}$-knot complement we

let the dihedral angles of the three ideal 3-simplexes as in Figure 24, where $\alpha_{i}+$

$\beta_{i}+\gamma:=\pi(i=1,2,3)$ .

Fig. 24.

By the glueing identification the edges are divided into three groups $+,$ $\neq,$ $\not\equiv$ .
According to [31 Chapter 4, in order that these ideal simplexes make a hyperbolic
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structure by glueing, the following equations must be satisfied.

(0) (the equations (0) with suffix $i,$ $(i=1,2,3).$)

$(+)$ $\tilde{\alpha}_{1}\tilde{\beta}_{1}\tilde{\alpha}_{2}\tilde{\beta}_{2}\tilde{\gamma}_{3}^{2}=1$ ,
$(\neq)$ $\tilde{\alpha}_{1}\tilde{\gamma}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}=1$ ,
$(\not\equiv)$ $\tilde{\beta}_{1}\tilde{\gamma}_{1}\tilde{\beta}_{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}^{2}=1$ .

Under (0) , $(i=1,2,3),$ $(+),$ $(\neq),$ $(\not\equiv)$ are not independent, beause the product of
these three equations is

$\tilde{\alpha}_{1}^{2}\tilde{\beta}_{1}^{2}\tilde{\gamma}_{1}^{2}\tilde{\alpha}_{2}^{2}\tilde{\beta}_{2}^{2}\tilde{\gamma}_{2}^{2}\tilde{\alpha}_{3}^{2}\tilde{\beta}_{3}^{2}\tilde{\gamma}_{3}^{2}=1$ ,

which is a consequence of (0) , $(i=1,2,3)$ . Thus we have only to consider $(+)$

and $(\neq)$ besides (0) $(i=1,2,3)$ . By (0) , $(i=1,2,3),$ $(+),$ $(\neq)$ are equivalent to

$\tilde{\gamma}_{3}^{2}=\tilde{\gamma}_{1}\tilde{\gamma}_{2}$ , (1)
$\tilde{\alpha}_{3}=\tilde{\beta}_{1}\tilde{\beta}_{2}$ , (2)

If we glue 3 ideal simplexes which satisfy these equations together with

$(*)$ $\left\{\begin{array}{l}\alpha_{i}+\beta_{i}+\gamma_{i}=\pi,\\0<\alpha_{i},\beta_{i},\gamma_{i}<\pi,\end{array}\right.$

we obtain a hyperbolic structure of $5_{2}$ -knot complement. But it is not necessarily
complete. As in [3], the completeness condition is obtained by the following de-
veloping map of the link of the vertex.

Fig. 25.

The completeness condition is $\vec{AB}=\vec{CD}$ , that is, $\tilde{\gamma}_{2}^{-1}\tilde{\gamma}_{3}=1$ or
$\tilde{\gamma}_{2}=\tilde{\gamma}_{3}$ . (3)

We solve the simultaneous equations $(0_{i})(i=1,2,3),$ (1)
$,$

(2)
$,$

(3) to obtain the
complete hyperbolic structure of $5_{2}$-knot complement. First, from (1) and (3) we
have $\tilde{\gamma}_{3}=\tilde{\gamma}_{1}$ . Thus,

$\tilde{\gamma}_{1}=\tilde{\gamma}_{2}=\tilde{\gamma}_{3}$ ( $=\tilde{\gamma}$ , say).
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Therefore, by (0) $(i=1,2,3)$ we have

$\tilde{\alpha}_{1}=\tilde{\alpha}_{2}=\tilde{\alpha}_{3}$ ( $=\tilde{\alpha}$ , say),
$\tilde{\beta}_{1}=\overline{\beta}_{2}=\tilde{\beta}_{3}$ ( $=\tilde{\beta}$ , say).

Then, (2) becomes $\tilde{\alpha}=\overline{\beta}^{2}$ . Since $\tilde{\alpha}=1-1/\tilde{\beta}$ , we have $1-1/\tilde{\beta}=\tilde{\beta}^{2}$ , or

$\tilde{\beta}^{8}-\tilde{\beta}+1=0$ .

This cubic equation has one real root and two conjugate imaginary roots. We
cannot obtain a hyperbolic structure from the real root. The conjugate imaginary

roots corresponds essentially the same hyperbolic structure. So we only consider

the case of the root with positive imaginary part:

$\tilde{\beta}\doteqdot 0.66235898+0.56227951i$ .

Then,

$\tilde{\alpha}\doteqdot 0$ . 12256117+0. $74486177i$ ,

$\gamma\doteqdot$ 0.78492015+1. $30714128i$ ,
$\arg(\tilde{\alpha})=\alpha_{1}=\alpha_{2}=\alpha^{\epsilon}\doteqdot 80.656154^{o}$

$\arg(\overline{\beta})=\beta_{1}=\beta_{2}=\beta_{3}\doteqdot 40.328077^{o}$

$\arg(\tilde{\gamma})=\gamma_{1}=\gamma_{2}=\gamma_{3}\doteqdot 59.015770^{o}$

If we glue the three 3-simplexes with these dihedral angles in the specifien way,

we finally obtain the complete hyperbolic structure of $5_{2}$-knot complement. The

developing map arround the cusp is illustrated in Figure 26.

Fig. 26.

REMARK. There are some other known methds to obtain the complete hyper-

bolic structure of $5_{2}$-knot complement.

1. By Thurston’s general theorem (not yet published). See also Sullivan [4].)
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2. (Hyperbolic) Dehn surgery along one component of Whitehead link.

3. Riley’s parabolic representation ([1]).

\S 3. The construction of hyperbolic structures of the complements of some
other knots.

In this section we present briefly the same results as in the preceding section
for the three knots $6_{1},6_{2},6_{2}$ .

$6_{1}-$ knot
(Stevedores knot)

A nice triangulation of $6_{1}$ -knot complement

Fig. 27.

Equations : $\tilde{\beta}_{1}\tilde{\gamma}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{4}=1$ , $\overline{\gamma}_{1}^{2}\tilde{\alpha}_{2}\overline{\beta}_{2}\tilde{\gamma}_{3}\tilde{\alpha}_{4}\tilde{\beta}_{4}=1$ ,
$\tilde{\alpha}_{1}^{2}\overline{\beta}_{1}\tilde{\alpha}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}\tilde{\alpha}_{4}\tilde{\gamma}_{4}=1$ , $\tilde{\beta}_{2}\tilde{\gamma}_{2}\tilde{\beta}_{3}\tilde{\gamma}_{3}\tilde{\gamma}_{4}=1$ .

The completeness condition: $\tilde{\gamma}_{1}=\tilde{\gamma}_{4}$ .
$\tilde{\beta}_{1}$ is a solution of the algebraic equation

$\tilde{\beta}_{1}^{4}-\tilde{\beta}_{1}^{3}+3\tilde{\beta}_{1}^{2}-2\tilde{\beta}_{1}+1=0$ .

This equation has the following 4 roots:

0. $10486618\pm 1.5524918i$ ,
$0.395124\pm 0.5068431i$ ,

among which the desired (or excellent) solution is

$\tilde{\beta}_{1}\doteqdot 0$ . 10486618+1. $5524918i$ .
$\alpha_{1}=\alpha_{4}\doteqdot 33.8312^{o}$

$\beta_{1}=\beta_{4}\doteqdot 86.1353^{o}$

$\gamma_{1}=\gamma_{4}\doteqdot 60.0335^{o}$ ,
$\alpha_{2}\doteqdot 13.1014^{o}$
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$\beta_{2}\doteqdot 26.1020^{o}$

$\gamma_{2}\doteqdot 140.7966^{o}$

$\alpha_{\$}\doteqdot 46.9328^{o}$ ,
$\beta_{3}\doteqdot 52.3041^{0}$ ,
$\gamma_{3}\doteqdot 80.7631^{o}$

Developing map arround the cusp

Fig. 28.

2. $6_{2}$ -knot complement.

62- knot

A nice triangulation of 62-knot complement

Fig. 29.
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Equations : $\tilde{\alpha}_{1}\tilde{\gamma}_{1}\tilde{\beta}_{2}\tilde{\beta}_{3}\tilde{\alpha}_{4}\tilde{\alpha}_{5}\tilde{\beta}_{5}=1$ ,
$\tilde{\beta}_{1}\tilde{\gamma}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}\tilde{\beta}_{4}\tilde{\gamma}_{4}=1$ ,
$\tilde{\alpha}_{1}\tilde{\beta}_{1}\tilde{\alpha}_{2}\tilde{\beta}_{2}\tilde{\gamma}_{3}\overline{\gamma}_{4}\tilde{\gamma}_{5}=1$ ,
$\tilde{\gamma}_{1}\overline{\gamma}_{2}\tilde{\beta}_{4}\tilde{\gamma}_{5}=1$ ,
$\tilde{\alpha}_{2}\tilde{\alpha}_{3}\tilde{\gamma}_{3}\tilde{\alpha}_{4}\tilde{\beta}_{5}\tilde{\gamma}_{5}=1$ .

The completeness condition: $\tilde{\beta}_{1}=\tilde{\alpha}_{4}$ .
$\tilde{\gamma}_{1}^{5}-2\tilde{\gamma}_{1}^{4}+3\tilde{\gamma}_{1}^{3}-2\tilde{\gamma}_{1}^{2}+2\tilde{\gamma}_{1}-1=0$ .

The excellent solution: $\tilde{\gamma}_{1}\doteqdot-0.18607840+0.87464646i$ .
$\alpha_{1}=\gamma_{4}\doteqdot 36.406072^{o}$

$\beta_{1}=\alpha_{4}\doteqdot 41.583489^{o}$

$\gamma_{1}=\beta_{4}\doteqdot 102.01044^{o}$

$\alpha_{2}=\alpha_{3}\doteqdot 60.426950^{o}$

$\beta_{2}=\beta_{3}\doteqdot 32.802138^{o}$

$\gamma_{2}=\gamma_{3}\doteqdot 86.770867^{o}$

$\alpha_{5}\doteqdot 69$ . 208256’
$\beta_{5}\doteqdot 45.187378^{O}$

$\gamma_{5}\doteqdot 65.604367^{o}$

Fig. 30.
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3. $6_{3}$-knot complement.

$6_{3}-$ knot

A nice triangulation of $6_{3}$ -knot complement
Fig. 31.

Equations: $\tilde{\alpha}_{1}\tilde{\beta}_{1}\tilde{\gamma}_{3}\tilde{\alpha}_{4}\tilde{\beta}_{4}\tilde{\beta}_{5}=1$ ,
$\tilde{\alpha}_{1}\tilde{\beta}_{2}\tilde{\alpha}_{3}\tilde{\alpha}_{4}\tilde{\gamma}_{5}=1$ ,
$\tilde{\gamma}_{1}\tilde{\gamma}_{2}\tilde{\gamma}_{3}\tilde{\alpha}_{6}\tilde{\gamma}_{5}\tilde{\alpha}_{6}\tilde{\gamma}_{6}=1$ ,
$\tilde{\beta}_{1}\tilde{\gamma}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{2}\tilde{\gamma}_{4}\tilde{\alpha}_{5}\tilde{\gamma}_{6}=1$ ,
$\tilde{\alpha}_{2}\tilde{\beta}_{3}\tilde{\beta}_{4}\tilde{\beta}_{5}\tilde{\beta}_{6}=1$ ,
$\tilde{\beta}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}\tilde{\gamma}_{4}\tilde{\alpha}_{6}\tilde{\beta}_{6}=1$ .

The completeness condition: $\tilde{\beta}_{2}=\tilde{\gamma}_{6}$ .
The excellent solution: $\tilde{\alpha}_{1}\doteqdot 0.15993610+1.2\alpha$)$1426i$ .

$\alpha_{1}=\alpha_{2}=\gamma_{6}=\beta_{6}\doteqdot 82.460850^{o}$ ,
$\beta_{1}=\gamma_{2}=\alpha_{5}=\alpha_{6}\doteqdot 42.565249^{o}$ ,
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$\gamma_{1}=\beta_{2}=\beta_{5}=\gamma_{6}\doteqdot 54.973901^{o}$

$\alpha_{3}=\beta_{3}=\alpha_{4}=\beta_{4}\doteqdot 70.052199^{o}$ ,
$\gamma_{3}=\gamma_{4}\doteqdot 39.895602^{o}$

Fig. 32.

\S 4. The construction of hyperbolic structures from Heegaad diagrams.

In this section we shall investigate a method of construction of hyperbolic
structure from a given Heegaad diagram of a 3-manifold.

Let $V$ be a solid torus of genus 2. Let us consider the following loop $l$ on
the boundary of $V$, illustrated in the Figure 33.

Fig. 33.

We can exhibit this loop as a graph, as follows. That is, we first cut $V$ as in
the Figure 34.

Fig. 34.
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Then we obtain a 3-disk $D^{3}$ and a graph on $\partial D^{3}$ , illustrated in the Figure 35.

Fig. 35.

Let $N$ be the 3-manifold obtained from $V$ by attaching a 2-handle along $l^{*)}$ $\partial N$

is a torus. From the Figure 35 we see that

$\pi_{1}(N)\cong\langle a, b|a^{\$}bab^{-3}ab=1\rangle$ .

We shall construct a complete hyperbolic structure of $\mathring{N}=N-\partial N$ with finite volume.
First we shall find a nice triangulation of $N$ as follows. Consider the dual

graph of the Figure 35. (See Figure 36.)

Fig. 36.

We think of this graph as drawn on $\partial D^{3}$ . If we glue the faces $a^{+}$ and $a^{-}$ so that
the edges with the same label coincide, and glue the faces $b^{+}$ and $b^{-}$ similarly,
and then delete all the vertices (denoted by in the Figure 36), then we obtain
an open 3-manifold $N^{\prime}$ . Now we shall show that $N^{\prime}$ is homeomorphic to $\mathring{N}$.

The loop $l$ is divided into 10 arcs in the graph of Figure 35. Corresponding
to these arcs, we devide the 2-handle to be attached to $V$ into 10 “ thickened
fans”. (See Figure 37.)

Fig. 37.

$*)$ This manifold was considered in [2].
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If we glue these fans along the corresponding arcs of the graph of the Figure 35,
then we obtain the Figure 38.

Fig. 38.

In the Figure 39 the shaded area is those parts which are not glued and re-
main as the boundary.

Fig. 39.

Each component of the shaded area can be contracted to one point. After the
contraction we obtain the graph of the Figure 36. This proves that $N^{\prime}$ and $\mathring{N}$

are homeomorphic. We construct a nice triangulation of $N^{\prime}$ and hence of $N$ from
the graph of Figure 36. We wish to find the simplest possible one. For this, we
first construct a triangulation of $\partial D^{3}$ by adding some edges to the graph of Figure
36 but without adding any vertices. The Figure 40 shows an example. Note
that the added edges are glued together pairwise by the glueing of the faces.
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Fig. 40.

Consider the part shown in the Figure 41.
$\backslash t$

910
1

$\iota$

$_{34}$

Fig. 41.

If we span a 2-disk in $D^{3}$ with the dotted curve as boundary and cut $D^{\$}$ along

it, then we obtain the thing shown in the leftmost of the Figure 42, and this can
be pushed down as shown in Figure 42.

Fig. 42.

A similar process can be performed for the part shown in the Figure 43.

$\frac{\sim\prime-\wedge^{\vee^{-\backslash }\backslash }1_{-}^{-\sim}5^{\backslash }\backslash ,\backslash ---\vee-----\sim\backslash \sim}{-\backslash \backslash \backslash \backslash \backslash 1_{\backslash }0_{---------\wedge}4_{\wedge^{\vee^{\wedge}}}\prime-}$

Fig. 43.

After these reductions the triangulation of $\partial D^{3}$ and their glueing map become
as in the Figure 44.

Fig. 44.
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From this we can finally obtain a nice triangulation with three 3-simplexes.
(Figure 45.)

A nice triangulation of N.

Fig. 45.

Now that we obtain a nice triangulation of $N$, we can construct a hyperbolic
structure of $N^{o}$ by the same method as in \S 2, due to Thurston.

That is, we construe the three simplexes as ideal simplexes with dihedral
angles as shown in the Figure 46.

Fig. 46.

Then we obtain the following equations:

$(+)$ $\tilde{\alpha}_{1}\tilde{\gamma}_{1}\tilde{\alpha}_{1}\overline{\gamma}_{2}\tilde{\beta}_{3}\tilde{\beta}_{2}\tilde{\gamma}_{3}=1$ ,
$(\neq)$ $\tilde{\gamma}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{3}\tilde{\alpha}_{2}\tilde{\alpha}_{3}\tilde{\gamma}_{2}\tilde{\alpha}_{3}=1$ ,
$(\not\equiv)$ $\tilde{\beta}_{1}\tilde{\beta}_{1}\tilde{\beta}_{2}\tilde{\beta}_{3}=1$ ,

or equivalently,

$\tilde{\alpha}_{1}^{2}\tilde{\gamma}_{1}=\tilde{\alpha}_{2}\tilde{\alpha}_{3}$ , (1)
$\overline{\gamma}_{1}\tilde{\alpha}_{2}^{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}^{2}\tilde{\gamma}_{3}=1$ , (2)
$\tilde{\beta}_{1}^{2}\tilde{\beta}_{2}\tilde{\beta}_{3}=1$ . (3)

Since one of them is redundant we use (1) and (3). The completeness condition
is $\tilde{\alpha}_{2}=\tilde{\alpha}_{3}$ . Hence we have

$\tilde{\beta}_{2}=\tilde{\beta}_{3}$ , $\tilde{\gamma}_{2}=\tilde{\gamma}_{\theta}$ .

Then (1) and (3) become
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$\tilde{\alpha}_{1}^{2}\tilde{\gamma}_{1}=\tilde{\alpha}_{2}^{2}$ , (1)
$\tilde{\beta}_{1}^{2}\tilde{\beta}_{2}^{2}=1$ . (3)

From (3) we have $\tilde{\beta}_{1}\tilde{\beta}_{2}=\pm 1$ . However, in order to obtain a hyperbolic structure
we reguire a solution with

2 $\arg\tilde{\beta}_{1}+2\arg\tilde{\beta}_{2}=2\pi$ ,

or
$\arg\tilde{\beta}_{1}+\arg\tilde{\beta}_{2}=\pi$ .

Thus we must have

$\tilde{\beta}_{1}\tilde{\beta}_{2}=-1$ . (4)

REMARK. From a solution with $\tilde{\beta}_{1}\tilde{\beta}_{2}=1$ we can not obtain a hyperbolic struc-
ture but can obtain a representation of $\pi_{1}(N)$ . (See \S 6.)

Now, from (4) we have

$\overline{\beta}_{2}=-\frac{\underline{1}}{\beta}1$

and

$\tilde{\alpha}_{2}=1-\frac{1}{\tilde{\beta}_{2}}=1+\tilde{\beta}_{1}$ .

Moreover

$\tilde{\alpha}_{1}=-\frac{1}{\tilde{\beta}_{1}}$ . $\tilde{\gamma}_{1}=\frac{1}{1-\tilde{\beta}_{1}}$ .

Hence from (1), we have

$(1-\frac{1}{\tilde{\beta}_{1}})^{2}\frac{1}{1-\tilde{\beta}_{1}}=(1+\tilde{\beta}_{1})^{2}$

or
$\overline{\beta}_{1}^{4}+2\tilde{\beta}_{1}^{3}+\tilde{\beta}_{1}^{2}+\tilde{\beta}_{1}-1=0$ . (5)

The excellent solution is

$\tilde{\beta}_{1}\doteqdot-0.29342445\pm 1.001\dot{4}412i$ .

Thus

$\beta_{1}\doteqdot 106.33070^{o}$

$\gamma_{1}\doteqdot 37.749030^{o}$

$\alpha_{1}\doteqdot 35.920271^{o}$
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$\beta_{2}=\beta_{3}\doteqdot 73.669301^{O}$

$\alpha_{2}=\alpha_{3}\doteqdot 54.794786^{o}$

$\gamma_{2}=\gamma_{3}\doteqdot 51.535914^{o}$

We obtain a complete hyperbolic structure of $\mathring{N}$ with the following developing
map arround the cusp.

Fig. 47.

\S 5. Some more examples of the construction by the method of \S 4.

In this section we present ten more examples of the construction by the
method of \S 4. As in \S 3, we omit the process of construction. One example has
a nice triangulation with two 3-simplexes, just like the figure eight knot comple-
ment, but the glueing is different. These two manifolds are distinguished by the
first homology group.

Each of the other nine examples has a nice triangulation with three 3-simplexes.
Some of these examples have the same types of the ideal 3-simplexes and, in
particular, have the same volume.

In showing examples we only exhibit presentations of the fundamental groups
(with two generators and one relator) rather than Heegaad diagrams, because they

can easily be constructed from the presentations.

EXAMPLE 1. $\pi_{1}(M_{1})\cong\langle a, b|a^{\theta}bab^{-2}ab=1\rangle$

$\cong\langle c, d|cd^{2}c^{2}dc^{2}d^{2}=1\rangle$ .
$(H_{1}(M_{1})\cong Z\times Z_{6}.)$
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Fig. 48.

$\alpha_{1}=\beta_{1}=\gamma_{1}=\alpha_{2}=\beta_{2}=\gamma_{2}=60^{o}$ ,
$volume\doteqdot 2.02988$ .

Fig. 49.

REMARK. In contrast to this example, a presentation of the fundamental group
of the figure eight knot complement is

$\langle a, b|a^{-3}bab^{-2}ab=1\rangle$ .

EXAMPLE 2. $\pi_{1}(M_{2})\cong\langle a, b|a^{-2}b^{2}ab^{-1}ab^{2}=1\rangle$ .
$(H_{1}(M_{2})\cong Z\times Z_{3}.)$

Fig. 50.

$\tilde{\alpha}_{1}^{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}=1$ ,
$\tilde{\beta}_{1}\tilde{\beta}_{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}\tilde{\gamma}_{3}=1$ ,
$\tilde{\beta}_{2}\tilde{\gamma}_{1}^{2}\tilde{\alpha}_{2}^{2}\tilde{\beta}_{2}\tilde{\beta}_{3}^{2}\tilde{\gamma}_{3}=1$ .
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The completeness condition: $\tilde{\alpha}_{2}=\tilde{\beta}_{3}$ .
$2\tilde{\alpha}_{2}^{3}-\tilde{\alpha}_{2}^{2}-\tilde{\alpha}_{2}+1=0$ .
$\tilde{\alpha}_{2}\doteqdot 0.6647418+0.4011273i$ .
$\alpha_{1}\doteqdot 81.219632^{o}$

$\beta_{1}\doteqdot 62.216354^{o}$

$\gamma_{1}\doteqdot 36.564014^{o}$ ,
$\alpha_{2}=\beta_{3}\doteqdot 31.108177^{o}$

$\beta_{2}=\gamma_{3}\doteqdot 50.111455^{o}$ ,
$\gamma_{2}=\alpha_{3}\doteqdot 98.780368^{o}$

$volume\doteqdot 2.56897$ .

Fig. 51.

EXAMPLE 3. $\pi_{1}(M_{3})\cong\langle a, b|a^{-2}b^{2}abab^{2}=1\rangle$

$\cong\langle c, d|c^{3}dcd^{3}cd=1\rangle$ .
$(H_{1}(M_{3})\cong Z\times Z_{5}.)$

Fig. 52.

$\tilde{\alpha}_{1}\tilde{\gamma}_{1}^{2}\tilde{\alpha}_{2}\tilde{\beta}_{2}^{2}\tilde{\alpha}_{3}^{2}\tilde{\gamma}_{3}=1$ ,

$\tilde{\alpha}_{1}^{1}\tilde{\alpha}_{2}^{2}\tilde{\gamma}^{3_{2}}\tilde{\beta}\tilde{\gamma}=1\tilde{\beta}^{2}\tilde{\gamma}\tilde{\beta}=_{3}1_{3},$

.
The completeness condition: $\tilde{\beta}_{2}=\tilde{\alpha}_{3}$

$\tilde{\beta}_{2}^{3}-\tilde{\beta}_{2}^{2}-\tilde{\beta}_{2}+2=0$ .
$\tilde{\beta}_{2}\doteqdot 1.1027847+0.6654570i$ .
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$\alpha_{1}\doteqdot 62.216354^{O}$

$\beta_{1}\doteqdot 81.219632^{O}$

$\gamma_{1}\doteqdot 36.564014^{o}$ ,
$\alpha_{2}=\gamma_{3}\doteqdot 50.111455^{o}$

$\beta_{2}=\alpha_{3}\doteqdot 31.108177^{o}$

$\gamma_{2}=\beta_{3}\doteqdot 98.780368^{o}$

$volume\doteqdot 2$ . 56897.

Fig. 53.

EXAMPLE 4. $\pi_{1}(M_{4})\cong\langle a, b|a^{4}bab^{-2}ab=1\rangle$ .
$(H_{1}(M_{4})\cong Z\times Z_{6}.)$

Fig. 54.

$\tilde{\gamma}_{1}^{2}\tilde{\alpha}_{2}^{2}\tilde{\gamma}_{3}^{2}=1$ ,
$\tilde{\alpha}_{1}\tilde{\gamma}_{2}^{2}\tilde{\alpha}_{3}=1$ ,
$\tilde{\alpha}_{1}\tilde{\beta}_{1}^{2}\tilde{\beta}_{2}^{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}^{2}=1$ .

The completeness condition: $\tilde{\gamma}_{1}=\tilde{\beta}_{2}\tilde{\beta}_{s}$ .
$\tilde{\gamma}_{1}^{2}-\tilde{\gamma}_{1}+2=0$ .
$\tilde{\gamma}_{1}=\frac{1+\sqrt{-7}}{2}$
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$\alpha_{1}=\gamma_{1}=\alpha_{3}=\gamma_{3}\doteqdot 69.295189^{o}$

$\beta_{1}=\alpha_{2}=\beta_{3}\doteqdot 41.409622^{o}$

$\beta_{2}\doteqdot 27.885567^{o}$ ,
$\gamma_{2}\doteqdot 110.704811^{o}$

$volume\doteqdot 2.66675$ .

Fig. 55.

EXAMPLE 5. $\pi_{1}(M_{5})\cong\langle a, b|ab^{3}a^{2}ba^{2}b^{3}=1\rangle$

$\cong\langle c, d|c^{3}d^{s}cd^{2}cd^{3}=1\rangle$ .
$(H_{1}(M_{5})\cong Z.)$

Fig. 56.

$\tilde{\beta}_{1}\tilde{\gamma}_{1}^{2}\tilde{\gamma}_{2}\tilde{\beta}_{3}\tilde{\gamma}_{3}^{2}=1$ ,
$\tilde{\alpha}_{1}\tilde{\beta}_{1}\tilde{\alpha}_{2}^{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}=1$ ,
$\tilde{\alpha}_{1}\tilde{\beta}_{2}^{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}=1$ .

The completeness condition: $\tilde{\alpha}_{1}=\tilde{\alpha}_{3}$ .
$\tilde{\alpha}_{1}^{4}-\tilde{\alpha}_{1}^{3}-1=0$ .
$\tilde{\alpha}_{1}\doteqdot 0$ . 219447+0. $914474i$ .
$\alpha_{1}=\beta_{2}=\alpha_{3}\doteqdot 76.505819^{o}$ ,
$\beta_{1}=\gamma_{2}=\beta_{3}\doteqdot 53.976723^{o}$ ,
$\gamma_{1}=\alpha_{2}=\gamma_{3}=49.517458^{o}$ ,
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$volume\doteqdot 2.9441$ .

Fig. 57.

EXAMPLE 6. $\pi_{1}(M_{6})\cong\langle a, b|ab^{s}a^{2}b^{2}a^{2}b^{\mathfrak{g}}=1\rangle$

$\cong\langle c, d|c^{3}d^{3}cdcd^{3}=1\rangle$ .
$(H_{1}(M_{6})\cong Z.)$

Fig. 58.

$\tilde{\gamma}_{1}\tilde{\gamma}_{2}^{2}\tilde{\gamma}_{3}=1$ ,
$\tilde{\beta}_{1}\tilde{\gamma}_{1}\tilde{\alpha}_{2}^{2}\tilde{\beta}_{2}\tilde{\beta}_{3}\tilde{\gamma}_{3}=1$ ,
$\tilde{\alpha}_{1}^{2}\tilde{\beta}_{1}\tilde{\beta}_{2}\tilde{\alpha}_{3}^{2}\tilde{\beta}_{3}=1$ .

The completeness condition: $\tilde{\alpha}_{1}=\tilde{\alpha}_{3}$ .
$\tilde{\gamma}_{1}^{4}-2\tilde{\gamma}_{1}^{3}+\tilde{\gamma}_{1}^{2}-\tilde{\gamma}_{1}-1=0$ .
$\tilde{\gamma}_{1}\doteqdot 0$ . 293424+1. $001441i$ .
$\gamma_{1}=\gamma_{3}\doteqdot 73$ . 669300’ ,
$\alpha_{1}=\alpha_{3}\doteqdot 54.794785^{o}$



On the Concrete Construction 71

$\beta_{1}=\beta_{3}\doteqdot 51.535914^{o}$

$\alpha_{2}\doteqdot 35.920271^{o}$

$\beta_{2}\doteqdot 37.749030^{o}$

$\gamma_{2}\doteqdot 106.330699^{o}$

$volume\doteqdot 2.78183$ .

Fig. 59.

EXAMPLE 7. $\pi_{1}(M_{7})\cong\langle a, b|a^{-4}bab^{-2}ab=1\rangle$ .
$(H_{1}(M_{7})\cong Z\times Z_{2}.)$

Fig. 60.

$\overline{\beta}_{1}^{2}\tilde{\gamma}_{1}\tilde{\beta}_{2}^{2}\tilde{\beta}_{3}^{2}\tilde{\gamma}_{3}=1$ ,
$\tilde{\alpha}_{1}^{2}\tilde{\gamma}_{2}^{2}\tilde{\alpha}_{3}^{2}=1$ ,
$\tilde{\gamma}_{1}\tilde{\alpha}_{2}^{2}\tilde{\gamma}_{3}=1$ .

The completeness condition: $\tilde{\alpha}_{1}=\tilde{\alpha}_{3}$ .
$2\tilde{\alpha}_{1}^{2}-\tilde{\alpha}_{1}+1=0$ .
$\tilde{\alpha}_{1}=\frac{1+\sqrt{-7}}{4}$ .
$\alpha_{1}=\gamma_{1}=\alpha_{3}=\gamma_{3}\doteqdot 69.295189^{o}$

$\beta_{1}=\gamma_{2}=\beta_{3}\doteqdot 41.409622^{o}$
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$\alpha_{2}\doteqdot 110.704911^{o}$

$\beta_{2}\doteqdot 27.885567^{o}$

$volume\doteqdot 2.66675$ .

Fig. 61.

EXAMPLE 8. $\pi_{1}(M_{8})\cong\langle a, b|a^{3}ba^{2}b^{-2}a^{2}b=1\rangle$ .
$(H_{1}(M_{8})\cong Z\times Z_{7}.)$

Fig. 62.

$\tilde{\beta}_{1}\tilde{\gamma}_{1}^{2}\tilde{\beta}_{2}\tilde{\gamma}_{2}\tilde{\beta}_{3}\tilde{\gamma}_{3}=1$ ,
$\tilde{\alpha}_{1}^{2}\tilde{\alpha}_{2}\tilde{\beta}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{S}=1$ ,
$\tilde{\beta}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}\tilde{\gamma}_{3}=1$ .

The completeness condition: $\tilde{\alpha}_{2}=\tilde{\alpha}_{3}$ .
$\tilde{\beta}_{2}^{3}-\tilde{\beta}_{2}+1=0$ .
$\tilde{\beta}_{2}\doteqdot 0$ . 662359+0. $562280i$ .
$\alpha_{1}=\gamma_{2}=\gamma_{3}\doteqdot 59.015770^{o}$ ,
$\beta_{1}=\alpha_{2}=\alpha_{3}\doteqdot 80.656154^{o}$ ,
$\gamma_{1}=\beta_{2}=\beta_{3}\doteqdot 40.828076^{o}$ ,
$volume\doteqdot 2.82812$ .
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Fig. 63.

EXAMPLE 9. $\pi_{1}(M_{9})\cong\langle a, b|ab^{-2}a^{2}ba^{2}b^{-2}=1\rangle$ .
$(H_{1}(M_{9})\cong Z.)$

Fig. 64.

$\tilde{\beta}_{1}\tilde{\gamma}_{1}^{2}\tilde{\alpha}_{2}\tilde{\beta}_{2}^{2}\tilde{\alpha}_{3}^{2}=1$ ,
$\tilde{\alpha}_{1}\tilde{\gamma}_{2}\tilde{\beta}_{3}\tilde{\gamma}_{3}^{2}=1$ ,
$\tilde{\alpha}_{1}\tilde{\beta}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{2}\tilde{\beta}_{3}=1$ .

The completeness condition: $\tilde{\beta}_{1}\tilde{\beta}_{2}\tilde{\alpha}_{3}=\tilde{\gamma}_{2}\tilde{\gamma}_{3}$ .
$\tilde{\beta}_{l}^{3}-\tilde{\beta}_{2}^{2}+1=0$ .
$\tilde{\beta}_{2}\doteqdot 0$ . 877439+0. $744862i$ .
$\alpha_{1}=\tilde{\gamma}_{2}=\beta_{3}\doteqdot 80.656154^{o}$ ,
$\beta_{1}=\alpha_{2}=\gamma_{3}\doteqdot 59.015770^{o}$ ,
$\gamma_{1}=\beta_{2}=\alpha_{S}\doteqdot 40.328076^{0}$ ,
$volume\doteqdot 2.82812$ .
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Fig. 65.

REMARK. This manifold $M_{9}$ is not homeomorphic to the $5_{2}$ -knot complement.
But they have the same homology group and the same volume.

EXAMPLE 10. $\pi_{1}(M_{10})\cong\langle a, b|a^{3}bab^{-3}ab=1\rangle$ .
$(H_{1}(M_{10})\cong Z.)$

Fig. 66.

$\tilde{\beta}\tilde{\beta}_{2}\tilde{\alpha}_{3}=1$ ,
$\tilde{\alpha}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{2}^{2}f\tilde{fi}\tilde{\gamma}_{3}=1$ ,
$\tilde{\alpha}_{1}\tilde{\gamma}_{1}^{2}\tilde{\alpha}_{2}\tilde{\beta}_{2}\tilde{\alpha}_{3}\tilde{\gamma}_{3}=1$ .

The completeness condition: $\tilde{\beta}_{2}=\tilde{\alpha}_{3}$ .
$\tilde{\beta}i-\tilde{\beta}_{1}^{3}-\tilde{\beta}_{1}^{2}-2\tilde{\beta}_{1}-1=0$ .
$\tilde{\beta}_{1}=-0.269448+0.919612i$ .
$\alpha_{1}\doteqdot 37.749030^{o}$ ,
$\beta_{1}=106.330700^{o}$ ,
$\gamma_{1}=35.920270^{o}$ ,
$\alpha_{2}=\gamma_{3}\doteqdot 51.535914^{o}$ ,
$\beta_{2}=\alpha_{3}\doteqdot 73.669300^{o}$
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$\gamma_{2}=\beta_{3}\doteqdot 54.794786^{o}$

$volume\doteqdot 2.78183$ .

Fig. 67.

\S 6. Representations of $\pi_{1}(M)$.
In this section we shall explain how the representations to PSL $(2, C)$ of the

fundamental group of a 3-manifold are constructed from its nice triangulation.
We shall illustrate it for the nice triangulation of $5_{2}$ -knot complement treated in

\S 2. There we derived a system of equations which gives a necessary condition
for the construction of hyperbolic structure:

$(+)$ $\tilde{\alpha}_{1}\tilde{\beta}_{1}\tilde{\alpha}_{2}\tilde{\beta}_{2}\overline{\gamma}_{3}^{2}=1$ ,

$(\neq)$ $\tilde{\alpha}_{1}\tilde{\gamma}_{1}\tilde{\alpha}_{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}=1$ ,
$(\not\equiv)$ $\tilde{\beta}_{1}\tilde{\gamma}_{1}\tilde{\beta}_{2}\tilde{\gamma}_{2}\tilde{\alpha}_{3}\tilde{\beta}_{3}^{2}=1$ ,

(0) $(i=1,2,3)$

$\tilde{\beta}_{i}=1/(1-\tilde{\alpha}_{i})$ , $\tilde{\gamma}i=1/(1-\tilde{\beta}_{i})$ , $\tilde{\alpha}_{i}=1/(1-\tilde{\gamma}i)$ ,
$\tilde{\alpha}_{i}=1-1/\tilde{\beta}_{i}$ , $\tilde{\beta}_{i}=1-1/\tilde{\gamma}_{i}$ , $\tilde{\gamma}_{i}=1-1/\tilde{\alpha}_{i}$ ,

$\tilde{\alpha}_{i}\tilde{\beta}_{i\tilde{r}i}=-1$ .

We claim that, to each solution

$r=((\tilde{\alpha}_{1},\tilde{\beta}_{1},\tilde{\gamma}_{1}), (\tilde{\alpha}_{2},\tilde{\beta}_{2},\tilde{\gamma}_{2}), (\tilde{\alpha}_{3},\tilde{\beta}_{3},\tilde{\gamma}_{3}))$ $(\Delta)$

of the system of equations, there corresponds an equivalence class of representa-

tions of $\pi_{1}(M)$ to PSL $(2, C)$ , where $M$ is the complement of $5_{2}$ -knot.
Let $u\neq 0,1,$ $\infty$ be a complex number.
(i) If ${\rm Im}(u)>0$ , then we say that $u$ determines a “ positively oriented ideal

simplex ”. Indeed, $u$ determines the ideal simplex in the upper half space over
$C$ (or in the projective model) illustrated in the Figure 68.
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Im(u) $>0$

Fig. 68.

The volume of this simplex is of course positive finite. We denote it by $v(u)$ .
(ii) If ${\rm Im}(u)=0(i. e., u\in R)$ , then we say that $u$ determines a ” flattened

ideal simplex”, as illustrated in Figure 69.

${\rm Im}(u)=0$

Fig. 69.

It is natural to think that the volume of this flattened simplex is $0$ . So we put
$v(u)=0$ , in this case.

(iii) If ${\rm Im}(u)<0$ , then we say that $u$ determines a ” negatively oriented ideal
simplex”, as illustrated in Figure 70.

Fig. 70.

The volume of this simplex is finite. However we think the volume to be nega-
tive, taking the minus sign to the real volume. Thus $v(u)<0$ .

Putting (i), (ii), (iii) together, we say that $u\neq 0,1,$ $\infty$ determines a “ non-
degenerate ideal simplex”.

REMARK. Obviously, $v(u)$ is a continuous function from $C-\{0,1\}$ to $R$ . This
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can be extended to a continuous function from $C$ or even from $C\cup t\infty I$ , by putting
simply $u(O)=u(1)=u(\infty)=0$ . Moreover, if $u=x+yi(x, y\in R)$ , then $f(x, y)=v(x+yi)$

is a real function of 2 variables.
Now consider the nice triangulation of $5_{2}$ -knot complement constructed in \S 2.

If we glue the face (with the labelled vertices) 13-14-15, and then glue the face
16-17-18, we obtain a single polyhedron $\Lambda$ illustrated in the Figure 71.

Polyhedron $\Lambda$

Fig. 71.

From this polyhedron $\Lambda$ we obtain a 3-manifold $M^{*}$ homeomorphic to $M$, if
we glue the faces $a^{+}$ and $a^{-},$

$b^{\dashv}$ and $b^{-},$ $c^{+}$ and $c^{-},$
$d^{+}$ and $d^{-}$ , respectively so that

the vertices with the same label coincide and then remove the vertices. In $M^{*}$

we take a base point $O$ in the interior of $\Lambda$ . Let $A^{+}$ and $A^{-}$ are points in the
faces $a^{+}$ and $a^{-}$ , respectively, which coincide by the glueing of $a^{+}$ and $a^{-}$ . Con-
sider an arc $l^{+}$ connecting $O$ and $A^{+}$ and an arc $l^{-}$ connecting $A^{-}$ and $O$ , in the
polyhedron. In $M^{*},$ $l^{+}\cup l^{-}$ constitutes a closed loop $a$ (with base point $O$). Simi-
larly, loops $b,$ $c,$ $d$ are defined. We also denote by $a,$ $b,$ $c,$ $d$ the corresponding
elements of $\pi_{1}(M^{*})$ or of $\pi_{1}(M)$ . Then, it is not hard to see that $\pi_{1}(M)$ is gener-
ated by $a,$ $b,$ $c,$ $d$ and has the following relators (arround the edges $+,$ $\neq,$ $\not\equiv$ ):

$((+))$ $acd^{-1}b^{-1}d=1$ ,

$((\neq))$ $cd=1$ ,
$((\not\equiv))$ $a^{-1}b^{-1}cab=1$ .

That is,

$\pi_{1}(M)\cong\langle a, b, c, d|acd^{-1}b^{-1}d=cd=a^{-1}b^{-1}cab=1\rangle$ .
Suppose that a solution $r=((\tilde{\alpha}_{1},\tilde{\beta}_{1},\tilde{\gamma}_{1}), (\tilde{\alpha}_{2},\tilde{\beta}_{2},\tilde{\gamma}_{2}), (\tilde{\alpha}_{3},\tilde{\beta}_{3},\tilde{\gamma}_{3}))$ of the equations un $\cdot$

der consideration is given. Then

$\tilde{\alpha}_{i,t}\tilde{\beta},\tilde{\gamma}i\neq 0,1,$ $\infty$ ,
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for if one of them is equal to $0$ , then the left-hand-side of $(+)$ or $(\neq)$ or $(\not\equiv)$

would become $0$ , and if $\tilde{\alpha}_{1}=1$ , for instance, then $\tilde{\gamma}_{1}=0$ by (0) . Since each triple
$(\tilde{\alpha}\iota, \beta_{i},\tilde{\gamma}_{i})$ satisfies the equations (0) , it determines a non-degenerated simplex in
the hyperbolic 3-space as mentioned above. For $i=1,2,3$ , we obtain 3 non-
degenerated simplexes $\Delta_{1},$ $\Delta_{2},$ $\Delta_{s}$ . In the hyperbolic 3-space we glue the faces
13-14-15, and then the faces 16-17-18, in the following manner.

When a positively oriented simplex and a negatively oriented simplex are
glued together, we glue these so that both are on the same side of the glueing

surface. (See Figure 72.)

$(_{theg1ueingsurface}^{Theshadedareais}.)$

Fig. 72.

When two positively oriented simplexes (or two negatively oriented simplexes)

are glued together, we glue these so that they are on the opposite side of the
glueing surface, as usual. (See Figure 73.)

$\left(\begin{array}{lll}The & shaded & isarea\\the & \epsilon^{1ueing} & surface.\end{array}\right)$

Fig. 73.

It would be needless to explain how to glue a flattened simplex. Thus the topol-
ogical polyhedron $\Lambda$ becomes a geometric polyhedron $\Lambda^{*}$ , which may contain con-
cave or crushed parts. Each face of $\swarrow 1^{*}$ is a geometric (hyperbolic) ideal triangle.

For instance $a^{-}$ and $a^{+}$ with the labelled vertices 1, 2, 3 are geometric ideal
triangles. Now there is a unique isometry $A$ which maps $a^{-}$ to $a^{\vdash}$ so that the

vertices with the same labels coincide. We correspond this $A\in I^{\iota}(H^{3})\cong PSL(2, C)$

to the generator a of $\pi_{1}(M)$ . ( $I^{+}(H^{3})$ is the group of all orientation preserving

isometries of $H^{3}$ onto itself.)

Similarly we correspond to $b$ the isometry $B$ which maps $b^{-}$ to $b^{+}$ so that the
vertices with the same labels coincide. Similarly we correspond isometries $C,$ $D$

to $c,$
$d$ respectively. This correspondence can be uniquely extended to a homo-

morphism of the free group generated by $a,$ $b,$ $c,$ $d$ to PSL $(2, C)$ . Then the
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necessary and sufficient condition for this homeomorphism to induce a homo-

morphism of $\pi_{1}(M)$ to PSL $(2, C)$ is that following relations hold:

$(((+)))$ $ACD^{-1}B^{-1}D=I$ , (1: identity mapping)

$(((\neq)))$ $CD=I$ ,

$(((\not\equiv)))$ $A^{-1}B^{-1}CAB=I$ ,

corresponding to the relators $((+)),$ $((\neq)),$ $((\not\equiv))$ of the presentation of $\pi_{1}(M)$ . But

it is not hard to see that these relations hold whenever $(+),$ $(\neq),$ $(\not\equiv)$ hold. Thus

we could associate to each solution $r$ a representation $\pi_{1}(M)\rightarrow PSL(2, C)$ , up to

equivalence. (“ Up to equivalence” is caused by the ambiguity of placing the

polyhedron $\Lambda^{*}$ in $H^{3}.$ )

\S 7. Miscellaneous examples of the construction of hyperbolic structures.

1. A concrete example of a hyperbolic structure of a closed 3-manifold.

Let $J$ be a hyperbolic regular ideal dodecahedron, whose dihedral angles are
the right angle. We color the faces of $J$ with four colors (say, red, blue, yellow

and green) in the manner of four color problem. Let $J_{i}(i=1, \cdots, 8)$ be 8 copies

of $J$. We glue the faces of $J_{i}(i=1, \cdots, 8)$ pairwise as follows:
(i) for red faces, we glue the corresponding points of $J_{i}$ and $J_{j}$ , where the

pair $(i,j)$ is indicated as follows:

I I I $I$

.

Similarly,
(ii) for blue faces, the pair $(i,j)$ is as follows:

$1256X$ $3478X$

.

(iii) for yellow faces, the pair $(i, j)$ is as follows:

(iv) for green faces, $(i,j)$ is as follows:
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It is easy to observe that by this glueing we obtain a closed hyperbolic 3-
manifold $M_{1}$ .

If we do not glue the 8 copies of one specified face of $J$, we obtain a hyper-
bolic 3-manifold $M_{2}$ with a totally geodesic boundary surface of genus 2 (It is
obvious that $M_{2}$ is connected).

2. Another example of hyperbolic 3-manifold with totally geodesic boundary.
Consider the Heegaard diagram of Figure 74.

Fig. 74.

The manifold $M$ with this diagram is obtained from genus 3 handlebody by
attaching a 2-handle along the loop determined by the diagram. $\partial M$ is a genus
2 surface. A presentation of the fundamental group of $M$ can be read from the
diagram:

$\pi_{1}(M)\cong\langle a, b, c|a^{2}b^{-1}c^{2}a^{-1}b^{2}c^{-1}=1\rangle$ .

As is \S 4, $M$ is homeomorphic to the manifold obtained from the polyhedron $P$ of
Figure 75 by glueing the faces as in the specified way.

Fig. 75.
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Thus $M$ has a nice triangulation as shown in the Figure 76.

Fig. 76.

12 edges are all identified after the glueing. $M$ is homeomorphic to a mani-
fold obtained from the two polyhedra of Figure 77 by glueing hexagon-faces in
the specified way.

Fig. 77.

Now we invoke a theorem of hyperbolic plane geometry. First we define a
relation $H(x, y)$ as follows: $H(x, y)(x, y\in R^{+})$ if and only if the following right-
angled hexagon is possible in the hyperbolic plane.

$H(x, y)$

Fig. 78.

Theorem $\forall x\in R^{+}\exists\downarrow y\in R^{+}H(x, y)$ .
Moreover $y$ , as a function of $x$ , is strictly decreasing, varying from $\infty$ to $0$ .

Now choose $a\in R^{+}$ such that a regular triangle with sides of length $a$ has
angles of $30^{o}$ . Then we choose $b$ such that $H(a, b)$ . Then we can construct a
polyhedron as illustrated in Figure 77.

$H(a, b)$

Fig. 79.
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The dihedral angle along an edge of length $b$ is $30^{o}$ and the dihedral angle along
an edge of length a is $90^{o}$ . If we glue two such polyhedra as in the Figure 77
by isometries, obtain a desired hyperbolic structure. For the total angle along
the only one edge is $30^{o}\times 12=360^{o}$ , and hence no singularity occurs along the
edge and also it is obvious that the boundary is totally geodesic.

\S 8. Proof of the Nice Triangulation Theorem.

In this section we shall give a rigorous proof of the Nice Triangulation The-
orem stated in \S 1.

Suppose that a compact 3-manifold $M$ with boundary is given. $M$ has a
handle decomposition and hence is obtained from a handlebody by attaching some
2-handles along loops $\{l_{i}\}$ on the boundary of the handlebody. If we cut the
handlebody by meridian disks, we obtain $D^{3}$ with a graphic picture on $\partial D^{8}$ . This
graphic picture is called a Heegaard diagram of $M$ (Of course we assume that
the meridian loops and the loops $\{l_{i}\}$ interest transversely in a finite number of
points.)

Moreover we can assume that the graph is connected and that each meridian
loop intersects $\{l_{i}\}$ in at least 3 points. (We do not assume that the graph is
normal. So it may contain the part illustrated in the Figure 80. So it is easy to
obtain the graph which satisfies the above assumption.)

Fig. 80.

Now let $m$ be a fixed meridian loop (named the distinguished loop) and $P$ be
a fixed intersection point of $m$ with $\{l_{i}\}$ . We add redundant intersection in $m$

arround $P$ as in the Figure 81.

Fig. 81.
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Now consider the dual graph $D$ of this graph as in \S 4. The dual graph
exists because the Heegaard diagram is connected. In $D$ , the face corresponding
to the distinguished loop contains the following part illustrated in the Figure 82.

Fig. 82.

As in \S 2 or \S 4, we can add edges consistent with glueing (without adding any
vertices) to obtain a triangulation of the $S^{2}$ , as shown in the Figure 83. Any 1-
gon or 2-gon does not occur.

Fig. 83.

Finally consider this as a cone with the vertex $V$. Then we obtain a nice tri-
angulation of $M$ as in \S 2 or \S 4. $q.e.d$.
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