TWO THEOREMS ON THE EXISTENCE OF INDISCERNIBLE SEQUENCES

By

Akito Tsuboi

§ 0. Introduction.

In this paper we shall state two theorems (Theorem A and Theorem B below) concerning the existence of indiscernible sequences which realize a given type. When we know the existence of a set $A=(a_i)_{i<\omega}$ which realizes a given infinite type p, it will be convenient to assume that A is an indiscernible sequence. Of course this is not always the case. But the type p satisfies a certain condition, we can assume A to be an indiscernible sequence. The reader will find some such conditions in this paper. Our results generalize the following fact:

FACT. The following two conditions on a type $p(x_0, \dots, x_i, \dots)_{i < \omega}$ are equivalent:

- i) There is an indiscernible sequence $(a_i)_{i<\omega}$ which realizes $p(x_i)_{i<\omega}$.
- ii) There is a sequence $(a_i)_{i<\omega}$ such that $(a_{f(i)})_{i<\omega}$ realizes $p(x_i)_{i<\omega}$, whenever f is an increasing function on ω .

Our results in this paper will be used to investigate the number $\kappa_{inp}(T)$ of independent partions of T, in the sequel [3] to this paper. In § 1 below, we shall state Theorem A and Theorem B, whose proofs will be given in § 2.

§ 1. Theorems.

We use the usual standard notions in Shelah [2]. But some of them will be explained below. Let T be a fixed complete theory formulated in a first order language L(T), and $\mathfrak C$ a model of T with sufficiently large saturation (cf. p. 7 in [2]). We use α , β , γ , \cdots for ordinals and m, n, i, j, k, \cdots for natural numbers. \bar{a} , \bar{b} , and \bar{a}^i_{α} are used to denote finite tuples of elements in $\mathfrak C$. \bar{x} , \bar{y} , and \bar{x}^i_{α} are used to denote finite sequence of variables. We use capitals A_{α} , B_{α} , \cdots (X_{α} , Y_{α} , \cdots) to denote (distinct) ω -sequences of (distinct) k-tuples of (distinct) elements in $\mathfrak C$ (variables). Therefore, A_{α} has the form $(\bar{a}^i_{\alpha})_{i<\omega}$, where \bar{a}^i_{α} is a tuple of elements of $\mathfrak C$, whose length is k. For such an A_{α} ,

 $\bigcup A_{\alpha}$ means the set $\{a: a \text{ is an element of some } \bar{a}^i_{\alpha}\}$. The set of increasing functions on ω is denoted by \mathcal{F} . If $f \in \mathcal{F}$ and $A = (\bar{a}^i)_{i < \omega}$, then A^f is the sequence $(\bar{a}^{f(i)})_{i < \omega}$. Similarly, $\bigcup X_{\alpha}$ and X^f will be used. Also we assume that $\bigcup X_{\alpha}$, $\bigcup X_{\beta}$, \dots , $\bigcup Y_{\alpha}$, \dots are all disjoint.

To state our results, we require two notions, "strongly consistent" and "almost strongly consistent", on a set $p(X_{\alpha})_{\alpha<\kappa}$ of formulas of L(T) with variables in $\bigcup_{\alpha<\kappa} \bigcup X_{\alpha}$ defined by:

- i) $p(X_{\alpha})_{\alpha<\kappa}$ is strongly consistent if $\bigcup_{F\in {}^{\kappa}G}p(X_{\alpha}^{F(\alpha)})_{\alpha<\kappa}$ is consistent with T;
- ii) $p(X_{\alpha})_{\alpha < \kappa}$ is almost strongly consistent if $\bigcup_{F \in {}^{\kappa}\mathcal{F}} p(Y_{F}^{F(\alpha)})_{\alpha < \kappa}$ is consistent with T, where $F \upharpoonright \alpha$ is the restriction of F to α , and Y_{G} $(G \in {}^{\kappa} \nearrow \mathcal{F})$ are sequences of new variables.

Then our results are:

THEOREM A. The following two conditions on a type $p(X_{\alpha})_{\alpha < \kappa}$ are equivalent:

- a) $p(X_{\alpha})_{\alpha < \kappa}$ is strongly consistent.
- b) There is a sequence $(A_{\alpha})_{\alpha < \kappa}$ with the properties i) $(A_{\alpha})_{\alpha < \kappa}$ realizes $p(X_{\alpha})_{\alpha < \kappa}$ and ii) $A_{\alpha} = (\bar{a}_{\alpha}^{i})_{i < \omega}$ is an indiscernible sequence over $\bigcup_{\beta \neq \alpha} \cup A_{\beta}$ for each $\alpha < \kappa$.

THEOREM B. The following two conditions on a type $p(X_{\alpha})_{\alpha < \kappa}$ are equivalent:

- c) $p(X_{\alpha})_{\alpha < \kappa}$ is almost strongly consistent.
- d) There is a sequence $(A_{\alpha})_{\alpha < \kappa}$ with the properties i) $(A_{\alpha})_{\alpha < \kappa}$ realizes $p(X_{\alpha})_{\alpha < \kappa}$ and ii) $A_{\alpha} = (\bar{a}_{\alpha}^{i})_{i < \omega}$ is an indiscernible sequence over $\bigcup_{\beta < \alpha} \cup A_{\beta}$ for each $\alpha < \kappa$.

§ 2. Proofs.

The implication b) \Rightarrow a) is trivial, because the sequence $(A_{\alpha})_{\alpha < \kappa}$ realizes every $p(X_{\alpha}^{F(\alpha)})_{\alpha < \kappa}$ $(F \in {}^{\kappa} \mathcal{F})$. a) \Rightarrow b) and c) \Rightarrow d) will be proved by iterated use of Ramsey's theorem.

a) \Rightarrow b): Let's define the set r(X, Y) by

$$\begin{split} r(X, Y) &= \{ \phi(\bar{x}^{i_1} \cap \cdots \cap \bar{x}^{i_n} : \bar{y}) \longleftrightarrow \phi(\bar{x}^{j_1} \cap \cdots \cap \bar{x}^{j_n} : \bar{y}) : \ \phi \in L(T), \\ \bar{x}^{i_1}, \ \cdots, \ \bar{x}^{i_n} &\in X \ (i_1 < \cdots < i_n), \\ \bar{x}^{j_1}, \ \cdots, \ \bar{x}^{j_n} &\in X \ (j_1 < \cdots < j_n), \ \bar{y} \in \bigcup Y \} \,, \end{split}$$

where $\bar{y} \in \bigcup Y$ means that every element in the tuple \bar{y} belongs to the set $\bigcup Y$. We shall show the consistency of

$$q_{\beta}(X_{\alpha})_{\alpha < \kappa} = \bigcup_{F \in {}^{\kappa} \in F} p(X_{\alpha}^{F(\alpha)})_{\alpha < \kappa} \cup \bigcup_{\gamma < \beta} r(X_{\gamma}, \bigcup_{\delta \neq \gamma} X_{\delta})$$
,

by induction on β . If $\beta = 0$, then the consistency follows from a). If β is a limit ordinal, the consistency is clear by compactness. Let $\beta = \gamma + 1$ and suppose that $(B_{\alpha})_{\alpha < \kappa}$ realizes $q_{\gamma}(X_{\alpha})_{\alpha < \kappa}$. For given formulas $(*)\phi_i(\bar{x}_1 \wedge \cdots \wedge \bar{x}_n : \bar{y}_i) \in L(T)$ $(i=1, \cdots, m)$ and elements $\bar{b}_i \in \bigcup_{\delta \in \gamma} \cup B_{\delta}$ $(i=1, \cdots, m)$, we can choose a function $f \in \mathcal{F}$ such that

whenever $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$, by using Ramsey's theorem. Then the sequence $(B_{\delta})_{\delta < \gamma} \wedge (B_f^f) \wedge (B_{\delta})_{\delta < \gamma}$ realizes the following type:

$$q_{\gamma}(X_{\alpha})_{\alpha < \kappa} \cup \bigcup_{i=1}^{m} \{ \phi_{i}(\bar{x}_{\gamma}^{i_{1} \wedge} \cdots \wedge \bar{x}_{\gamma}^{i_{n}} : \bar{b}_{i}) \longleftrightarrow \phi_{i}(\bar{x}_{\gamma}^{j_{1} \wedge} \cdots \wedge \bar{x}_{\gamma}^{j_{n}} : \bar{b}_{i}) : i_{1} < \cdots < i_{n}, \ j_{1} < \cdots < j_{n} \}.$$

This shows the consistency of $q_{\beta}(X_{\alpha})_{\alpha < \kappa}$. This means that b) holds.

c) \Rightarrow d): The proof of this case is similar to that of a) \Rightarrow b). For each $F=(f_{\alpha})_{\alpha<\beta}\in {}^{\kappa>}\mathcal{F}$, we prepare new variables $X_F=(\bar{x}_F^i)_{i<\omega}$. We shall show the contency of

$$q'_{\beta}(X_F)_{F \in {}^{\kappa}} >_{\mathfrak{F}} = \bigcup_{F \in {}^{\kappa} \mathfrak{F}} p(X_{F \upharpoonright \alpha}^{F(\alpha)}) \cup \bigcup_{\gamma < \beta} \bigcup_{F \in {}^{\gamma} \mathfrak{F}} r(X_F, \bigcup_{\delta < \gamma} X_{F \upharpoonright \delta}^{F(\delta)}),$$

by induction on β . As in a) \Rightarrow b), we can assume that β is a successor and that $\beta = \gamma + 1$. Let $(B_F)_{F \in {}^{\kappa} >_{\mathcal{F}}}$ realize $q'_{1}(X_F)_{F \in {}^{\kappa} >_{\mathcal{F}}}$. For given $\phi_{i,j}(\bar{x}_{1} \cap \cdots \cap \bar{x}_{n} : \bar{y}) \in L(T)$ $(i=1, \dots, l; j=1, \dots, m)$, $F_{i} \in \gamma_{\mathcal{F}}$ $(i=1, \dots, l)$, and $b_{i,j} \in \bigcup_{\bar{\delta} < \gamma} \cup B_{F_{i}}^{F_{i}}(\bar{\delta})$ $(i=1, \dots, l; j=1, \dots, m)$, we can choose a function $f \in \mathcal{F}$ such that, for each i, j,

whenever $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$, by using Ramsey's theorem. Then define $(A_F)_{F \in {}^{k} >_{\mathcal{I}}}$ by

$$A_F = B_F$$
 if $lh(F) < \gamma$,
 $A_F = B_F^f$ if $lh(F) = \gamma$,
 $A_{F^{\hat{}}(g)^{\hat{}}H} = B_{F^{\hat{}}(g \circ h)^{\hat{}}H}$ if $lh(F) = \gamma$.

It is a routine to check that $(A_F)_{F\in {}^{\kappa_{\mathcal{F}}}}$ realizes the following type:

$$q_{\scriptscriptstyle T}'(X_F)_{F \in {}^{\scriptscriptstyle E}\mathfrak{F}} \bigcup \bigcup_{\substack{1 \leq i \leq l \\ 1 \leq j \leq n}} \{\phi_{i,\,j}(\bar{x}_{F_{i}}^{\,\underline{i}_{1}} \smallfrown \cdots \smallfrown \bar{x}_{F_{i}}^{\,\underline{i}_{n}} : \bar{b}_{i,\,j}) \\ \longleftrightarrow \phi_{i,\,j}(\bar{x}_{F_{i}}^{\,\underline{j}_{1}} \smallfrown \cdots \smallfrown \bar{x}_{F_{i}}^{\,\underline{i}_{n}} : \bar{b}_{i,\,j}) : i_{1} < \cdots < i_{n}, \ j_{1} < \cdots < j_{n}\}.$$

The above argument shows the consistency of $q'_{\beta}(X_F)_{F \in {}^{\kappa}\mathcal{F}}$. Let $(A_F)_{F \in {}^{\kappa}\mathcal{F}}$ realize $q'_{\kappa}(X_F)_{F \in {}^{\kappa}\mathcal{F}}$ and define $(A_{\alpha})_{\alpha < \kappa}$ by

^(*) Exactly speaking, n depends on i, but we can assume that n does not depend on i without loss of generality.

$$A_{\alpha} = A_{(id)}_{\beta < \alpha} = \underbrace{A_{(id,id,\cdots)}}_{\alpha \text{ times}}.$$

 $(A_{\alpha})_{\alpha < \kappa}$ is the desired sequence which satisfies the conditions i) and ii) of d).

d) \Rightarrow c): For each $\alpha < \kappa$ and each $f \in \mathcal{F}$, let $E_{\alpha,f}$ be an elementary map such that

- 1) $\operatorname{dom}(A_{\alpha,f}) = \bigcup_{\beta \leq \alpha+1} \bigcup A_{\beta}$, $E_{\alpha,id} =$ the identity map,
- 2) $E_{\alpha,f} \upharpoonright (\bigcup_{\beta < \alpha} \cup A_{\beta}) = \text{the identity map,}$
- 3) $E_{\alpha,f}(\bar{a}_{\alpha}^i) = \bar{a}_{\alpha}^{f(i)}$, for each $i < \omega$.

Using these $E_{\alpha,f}$ ($\alpha < \kappa$, $f \in \mathcal{F}$), let's define elementary maps I_F ($F \in \mathcal{F} > \mathcal{F}$) such that

- 4) $\operatorname{dom}(I_F) = \bigcup_{\alpha \leq lh(F)} \bigcup A_{\alpha}$,
- 5) $I_F \upharpoonright (\bigcup_{\alpha < lh(F)} \cup A_\alpha) \subseteq I_G \upharpoonright (\bigcup_{\alpha < lh(G)} \cup A_\alpha)$, for all $F, G \in \mathcal{F}$ such that $F \subseteq G$,
- 6) $I_{F^{(f)}} = I_{F^{(id)}} \circ E_{lh(F),f}$.

Suppose that we have already constructed I_F ($F \in {}^{\alpha >} \mathcal{I}$). Our construction splits into the following two cases:

CASE 1. $\alpha = \beta + 1$. For each $F \in {}^{\beta}\mathcal{F}$, let J be an arbitrary elementary map such that $J \supseteq I_F$ and $\text{dom}(J) = \bigcup_{\gamma \leq \alpha} \bigcup A_{\gamma}$. Then put $I_{F \wedge (f)} = J \circ E_{\beta, f}$.

Case 2. α is a limit ordinal. For each $F \in {}^{\alpha}\mathcal{F}$, let $I_F^* = \bigcup_{\beta < \alpha} (I_{F \upharpoonright \beta} \upharpoonright (\bigcup_{\gamma < \beta} A_{\gamma}))$. By 5), I_F^* is an elementary map. We define I_F as an elementary map such that $I_F \supseteq I_F^*$ and $\mathrm{dom}(I_F) = \bigcup_{\beta < \alpha} \cup A_{\beta}$. If we put $A_F = (I_F(\bar{\alpha}_{lh(F)}^i))_{i < \omega}$, then $(A_F)_{F \in {}^{\kappa} >_{\mathcal{F}}}$ guarantees the almost strong consistency of $p(X_{\alpha})_{\alpha < \kappa}$, i.e., it realizes the type $\bigcup_{F \in {}^{\kappa}\mathcal{F}} p(Y_{F \upharpoonright \alpha}^{F(\alpha)})_{\alpha < \kappa}$. For this we must show that $(A_F^{F(\alpha)})_{\alpha < \kappa}$ realizes $p(X_{\alpha})_{\alpha < \kappa}$ for each $F \in {}^{\kappa}\mathcal{F}$. But this is clear, since the followings hold in turn:

```
 \begin{split} &(A_{\alpha})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa};\\ &((I_F(\bar{a}_{\alpha}^i))_{i<\omega})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa};\\ &((I_{F\upharpoonright\alpha+1}(\bar{a}_{\alpha}^i))_{i<\omega})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa};\\ &((I_{F\upharpoonright\alpha\wedge(id)}\circ E_{\alpha,F(\alpha)}(\bar{a}_{\alpha}^i))_{i<\omega})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa};\\ &(((I_{F\upharpoonright\alpha}(\bar{a}_{\alpha}^i))_{i<\omega})^{F(\alpha)})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa};\\ &((A_{F\upharpoonright\alpha}^{F(\alpha)})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa};\\ \end{split}
```

REMARK. If T is stable, any indiscernible sequence becomes an indiscernible set. Hence, in such cases, we can require in b) and d) that A_{α} is an indiscernible set. We are inspired by Chapter III of [2]. In fact, the construction of I_F^* in

the proof of d) \Rightarrow c) is very similar to that of F_{η} in Theorem 3.7 of [2]. We use Theorems A and B freely in our forthcoming paper [3].

Added in proof.

In Theorems A and B, each sequence X_{α} ($\alpha < \kappa$) is assumed to be an ω -sequence of finite tuples of variables (to avoid unnecessary complexity). But the restriction to ω -sequence is not necessary. By using compactness, we can prove Theorems A and B for a type $p(X_{\alpha})_{\alpha < \kappa}$ with $lh(X_{\alpha}) = \lambda$, where λ is an arbitrary infinite cardinal. Moreover, if $p(X_{\alpha})_{\alpha < \kappa}$ is a strongly consistent type of a stable theory T, its realization $(A_{\alpha})_{\alpha < \kappa}$ can be assumed to be independent over some A with $|A| = \kappa$. (Precisely speaking, $\bigcup_{\alpha < \kappa} A_{\alpha}$ is independent over A.) To prove this, we must note that for each $A_{\alpha} = (\bar{a}_{\alpha}^{i})_{i < \lambda}$, the average type $Av(A_{\alpha}/A_{\alpha})$ is a unique non-forking extension of $Av(A_{\alpha}/(\bar{a}_{\alpha}^{i})_{i < \omega})$ to the domain A_{α} . A hint for its proof will be found in [3].

References

- [1] Sacks, G.E., Saturated Model Theory, W.A. Benjamin, Reading Mass., 1972.
- [2] Shelah, S., Classification Theory and the Number of Non-isomorphic Models, Studies in logic, North-Holland, Amsterdam, 1978.
- [3] Tsuboi, A., On the number of independent partitions, to appear in J. Symb. Logic.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan