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COHERENT SINGULAR COMPLEXES
IN STRONG SHAPE THEORY
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Akira Kovyama

1. Introcuction.

In [2] Borsuk introduced the concept of shape theory for compacta, and
many authors investigated and extended the theory to more general spaces.
Afterwards several authors introduced a stronger concept of the theory, which
is called strong (or fine) shape theory. The origin may be found in Christie
or Quigley [31]. Various approaches were given by Edwards and Hastings [11],
Bauer [1], Lisica [15], Kodama and Ono [18], Dydak and Segal [8], Calder and
Hastings [4], Cathey and Segal [5], and Lisica [16]. In particular [11], [1],
and considered one for arbitrary spaces. Note that those approaches are
equivalent for compacta. Recently Lisica and Mardesié developed the
coherent prohomotopy category CPHTOP, and described the strong shape category
SSH of arbitrary spaces by using the category and ANR-resolutions defined by
Mardesié (see for the summary).

In this paper we investigate the coherent prohomotopy category and con-
struct the coherent singular complex functor S.:CPHTOP—KAN. Then for
inverse systems X of spaces we define the canonical coherent maps zx: |S.(X)]
—X which have the property ;

If X is dominated by a CW-complex in CPHTOP, then tx induces an isomor-
phism in CPHTOP.

The idea to consider S.(X) goes back to Bauer [1]. However, he used a
less satisfactory coherent procategory.

Next, for inverse systems (X, X) of pointed spaces we define the i-th coherent
homotopy groups =$(X,x), which is an invariant in CPHTOP,. As another alge-
braic invariant in CPHTOP, we introduce the coherent singular homology theory
H§ by using the functor S.. Then the canonical coherent map z(xx : | Se(X, X)|
—(X,x) induces a weak equivalence. That is;

T # Tl | S X, X)N=ri(X, x) for all 7=0.

Hence we have the Hurewicz isomorphism theorem between coherent homotopy
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groups and coherent singular homology groups. Moreover we show that coherent
singular homology theory is different from Steenrod-Sitnikov’s one even on inverse
sequences of compact polyhedra. The general description of Steenrod-Sitnikov
homology theory was given by Lisica and Mardesié (see and for
more details).

In the case (X, x) is an inverse sequence of arcwise connected spaces, we
introduce another construction of the pointed CW-complex E(X, x) and the coherent
map px,x : E(X,x)—(X, x) which also have the property ;

P T EX, x)=ai(X,x)  for all i=0.

Then we have the weak equivalence f: E(X, x)—|S./(X,x)]|.
In the last section our results are summarized in strong shape theory.

" In this paper we will assume that readers are familiar with shape theory
and prohomotopy theory. is a good reference for those theories. Through-
out this paper spaces are topological spaces, and maps are continuous functions.
ANR means an absolute neighborhood retract for metrizable spaces.

The author would like to express his thanks to the referee for his valuable
suggestion.

Notations. For each n=0, let 4™ be the standard n-simplex, i.e.,
A":{(to, o, t,)ER™1 ;=0 for every i, i‘ﬁtizl} .
=0
For each 7, 0</<n, let e; be the 7-th vertex of 4"
If n>0 and 0=<j<n, the j-th face operator 07:4""'—4" is defined by
a?(to, Tty tn-—l):(tO) Tt tj—l, 0) ij) °tty tn-l) .
If n=0 and 0=<j=<n, the j-th degeneracy operator ¢7:4"*'—>A4" is defined by

U;‘l(to, tt in+1):(to, R tj—l; tj+tj+1’ tj+2; T Z(n+1) -

I=the unit interval [0, 1].

2. Coherent prohomotopy.

Throughout this paper we consider only inverse systems of spaces and maps
X=(X;, pi1, A) over directed cofinite sets.

In this section we shall introduce the coherent prohomotopy category defined
by Lisica and Mardesi¢ [19]. By a system map f:X—>Y=(Y,, quu, M) we
mean an increasing function ¢ : M—/4 and a collection of maps f,: X,um— Y,
preM, satisfying
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(1) febowow)=quu fr,  for p=g’ in M.

A coherent map f:X—Y is defined as follows; f consists of an increasing
function ¢: M— A and of maps Juid" X Xy uy =Yy =y, -+, ) EM™, n20,
which satisfy

C]youlfgo(t, x), if 7=0,
(2) Fu@F(1), x)=1 fu;{t, x), if 0<j<n,
Tualls Do - (%)) if j=n,
where x€ X, ,.,), t€d™, n>0,
(3) fulo7@®), x)=fust, x), for 0=s=n,

where x € X, ), t€4™?!, n=0, here M", n=0 denotes the set of all increasing
sequences p=(tt,, **, ptz) in M, and p;=(tro, =, fj-1, tjs1, ", ftn) and pl=
(ttos ==+, ttj, My =+, pn) for g-——(yo, o, €M™ and 0=<j<n. Every system map
f:X—Y can be viewed as a coherent map from X to Y by putting fE(t, x)=
fpojbwy())ga(pn)(x) for g:(ﬂo, “, Mn) and (¢, X)EAnXXgp(,un)-

A coherent homotopy from f to f’ is a coherent map F:XXI=(XXI, pas
x1, 4)-Y, given by @=¢, ¢/, and F, such that
(4) Fﬁ(t, x, O):fﬁ(t, Do @ (X)),

Fﬁ(t, X, 1):f:_;(t, Do’ up @ (X)),

where x € Xp(,,,, t€d”, n=0,
which is written by F: f~f’.

Next we define the composition gf of f and g:Y—>Z=(Z,, r,.,, N). In the
case f is a system map f: XY,
(5) (gf)y_(t) x):gg<t, fgl'(vn)(x)) »

where y=(v,, -, vu)EN", n=0, x€X,4,, and ted™
Hence if X and Y are rudimentary systems (X) and (Y), respectively, and f is

a map from X to Y, then (gf),(t, x)=g,¢, f(x)), for x€ X, td”, yeN", n=0.
To define composition in the other case, one decomposes 4" into subpolyhedra
P{‘:{(to, ey tedrte - -Hi_lg—%éto—}— —Hi}, 0=7=n, and considers maps
a‘? :P?_—)An—i’ ﬁ?-P‘Ln——)AI: where a?(D:(#’ 2ti+1’ Ty 2tn)) ﬁ?(t):<2t0, Ty Zti—l, #)y

$#=1—sum of remaining terms. Then

(6) (gf)y(t, X):gwo,...,yi)(,@?(l‘), f(gﬁ (v,;),-n,(,i'(vn))(a?(t): x))

where v=(v,, -, vu)€N", n=0, x€X,50,, tEP}, 0=Zi=n.
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We define the coherent identity map lx:X—X by putting for any A={4,, -,
e dr, n=0,

(8) 1,08, x)=par,2,(x), where x€X;, and ted”.

In Lisica and Mardesié showed that inverse systems of spaces and maps
over directed cofinite sets and coherent homotopy classes of coherent maps con-
struct a category. They call this category the coherent prohomotopy category
and denote it by CPHTOP. We note that our definition of composition of coherent
maps is slightly different from the original one in [19], but by the proof of [19],
Lemma 1.9.7, the coherent homotopy class of our composition coincides with the
one of the original composition. Hence we have the category CPHTOP.

Similarly, considering inverse systems of pointed spaces, pairs of spaces or
pairs of pointed spaces and suitable maps, we have the suitable coherent pro-
homotopy categories. We denote those categories by CPHTOP,, CPHTOP, and
CPHTOP,,,, respectively (cf. [21]).

3. Coherent singular complexes.

Let (X, Xo)=((X2, Xo1), paz, A) be an object of CPHTOP,. Put X=(X,,
paar, A) and Xo=(Xoz, P12 | Xoa, A). For each =0 let Si(X) be the set of all
coherent maps from 4° to X. For each 0=£k=7, /=0, we define the functions
dr=d}: Sy(X)—S;-:(X) and s,=s}:S:(X)—S;:,(X) by formulas;

(1) di(h)=ho}, and s (h)=ho} for heS,(X).

Then the triple (Si(X), d., sx) is a semi-simplicial complex, which is called the
coherent singular complex of X, and is denoted by S.(X). Similarly we have the
coherent singular complex of X,. Then it is clear that S.(X,) is a subcomplex
of S.X). We denote the complex pair (S, (X), S.(Xy)) by S.(X,X,). Then we
have the following elementary facts.

3.1. PROPOSION. (1) The complex pair S.(X,X,) is a Kan complex.
Q) If (X,X,) is the rudimentary system (X, X,)), then S.(X,X,) 7s naturally
isomorphic to the usual singular complex pair (S(X), S(Xy)).

ProOOF. For convenience, we consider only the absolute case. (1) Let f°,
L, e, 17, f71, -, fi* be j-simplexes of S.(X) such that d,f'=d,-,f%, k<,
k+7, I#j. Namely, by (1) and the definition of compositions, if £<I, k+7,
and [+7,
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Frmxop=rs1mx0i.)  for every AeA", n=0.
Hence, for each A=(A, -, l)=A4" n=0, we can define the map f;:4"
X \J 3 (49— X, by
Ffat, 0it @) =f4(t, 2)  for zed' and ted™
Then the collection of the maps f,; induces a coherent map 7 :gjazﬂmi)—»x.
Therefore for a fixed retraction r:A”1—>k&$Jj8,€“(Ai), defining the coherent map

f 14X by f=fr, we have an (i+1)-simplex f of S(X) such that d.f=f,
for all 2#j. That is, S.(X) is a Kan complex.

(2) Suppose that the rudimentary system (X) has the trivial index set Ay=
{2}. Then for each n=1, the set A% consists of only one degenerate element
(Ao, o, -+, Ao). Hence for every i-simplex f of S.(X),

fat, 2)=f aypleo, 2) for all (g, )edixd®, A=Ay, n=0.

Hence if f corresponds to the map 71 4i—X given by F@)=f aples 2), we have
a natural isomorphism from S.(X) to S(X).

In the latter part of this paper, if (X, X,) is the rudimentary system ((X, Xo)),
we frequently identify S.(X,X,) with (S(X), S(X;)) by the above isomorphism.

Let f:(X,X)—>(Y,Y)=(Y 4, You), gup» M) be a coherent map. For each
;=0 we define the function S;(f):S;(X)—S;(Y) by

(2) Si(f)h)y=fh for heS/(X).

Then S;(f)(S:(X)S:(Y,) for every i=0, and by the definition of composition
the collection of S;(f), /=0, is a semi-simplicial map from S.(X) to S.(Y). Hence
we have the semi-simplicial map S.(f): Se(X, Xo)—Sc(Y,Yo). We call S.(f) the
semi-simplicial map induced by f.

We have the following.

3.2. THEOREM. The corresponding S, induces a functor from CPHTOP, to
the category KAN, of Kan pairs and homotopy classes of semi-simplicial maps.

The proof of Theorem 3.2 consists of the following three lemmas. The
three lemmas are actually dependent on [19], §I. For convenience, in those
lemmas we consider only inverse systems of absolute spaces. The proofs can
be immediately applied to the relative case.

3.3. LEMMA. Let f, f':X—Y be conerent maps. If f=f', then Sc(f) is
homotopic to S.(f’).
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PrRoOOF. Let F:XXI—Y be a coherent homotopy connecting f and f’. For
each heS;(X), /=0, we define the coherent map R(h):4*XI—-Y by R(h)=
F(hx1). Then

(3) R(h)(0ix1)=R(ho}), and R(h)(eixX1)=R(ha}).

For s=0, 1, the map [i: 4*—4* X is defined by li(z)=(z, s) for ze4’. Then by
(3) the functions gi: S;(X)—S;(Y) given by gi(h)=R(h){i induce the semi-simplicial
map gs: SC(X)—__)SC(X)
For each k, 0=<k<i, let 6, : 47*—>4* X1 be the linear map given by

(e, 0) if 0=7=k,
(4) 0r(e;)= . o

(ej-1, 1) if k<yj=i+1.
Defining functions Gj: S;(X)—S;,(Y), 0=k=:, 1=0, as follows;
(5) Hh)=R(h)8, for heSi(X),

by (3), the collection {G}} gives the homotopy connecting g, and g,.

In the case h is a system map, g,(h)=fh and g,(h)=f"h. That is, {G}} is
the homotopy connecting S.(f) and S.(f”).

Assume that /1 is not a system map,

(6) 2o(1)(t, 2)=(F(h X 1)), z, 0)
:f(;zo,---.pj)(ﬁ?(t), Pgo(/zj)a)(pj)h(myj) ‘...,4)(#,,))((1}‘0), z)).
(7) (D)ut, 2= f gy BEDs Frp o iy (@), 2))

where p=(po, -+, pa)EM,, n=0, zed’, teP}.

By the same way as [19], P. 19 and P. 20, we define a decomposition of
I'x 4" into subpolyhedra Ti, 0<k=:, by putting (s, )T} whenever

(8) Lot o FSsSt+ -
and define maps ¢i: Ti—4**! by
(9) ei(s, )=(ty, =+, th-1, Gp+ -+ Ftn)—s, (bot -+ +1e)—(1—5), tres, ==+, ti).
Now we give the coherent map P(h):4*XI—Y by
(10) P(h),(t, 2, s)
= g p(BI®)y By, oty @ujs oo 0 (€8s, @} (), 2)),

=(tto, =+, p)EM™", n=0, z€d?, teP}, (s, a?t)eTr,
=k=n—j, 0=7=n (see [19], P. 20).

Then by the definition and [19], Lemma I. 3.3,

where JZ
0
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(11) P(h)(@ix1)=P(ho%), and P(h)o;x1)=P(hej),
(12) P(h)ly=fh=S:(f)Xh),
(13) P(h)l;=go(h) .

In the case h is a system map, g, h)=sfh. Hence the coherent map P(h):
4} I—Y is defined by fh.

Then by the same way as the first part the correspondence P induces a
homotopy connecting S.(f) and g,. ’

Similarly we can find a homotopy connecting S.(f’) and g,. Therefore S.(f)
is homotopic to S.(f”).

3.4. LEMMA. S.(1x) is homotopic to ls,x)-

PrROOF. Consider the decomposition of I X4™ defined in [19], P. 28, which
is formed by certain polyhedra L?CIX4", 0<j=<n:

1—
Ly={(s, DEIX At -+ S5 Stot -
We define maps y}: L}—4"7, 0=j=n, by putting

n - 2 2
(14) 73 (s, l)—(#, mtj+1; A mt") .

If heS,X), i=0, is not a system map, we define the coherent map R(h):
4* X I—-X by

(15) R(h) ¢, 2, S)=Daga;h ;20T 7(s, 1), 2)),

where A=, -, A A", zedi, (s, )e L} (see [19], P. 29).
Then by the definition and [19], §1.5,

(16) R(h)@:x1)=R(hd%), and R(h)(eix1)=R(ha}),
a7 R(h)ly=1xh=S.(1x)(h),
(18) R(h)li=h=1s,x,(h).

If h is a system map, lxh=h. Hence we define the coherent map R(h)
by h.
We define functions Gi:S;(X)—S;+:(X), 0k </, i=0, by the formula;

(19) Gi(h)=R(h)8, for heSy(X).

Then the collection {G}} innduces a homotopy connecting S.(1x) and lg, x).

3.5. LEMMA. Let f:X—Y and g:Y—Z=(Z,, ., N) be coherent maps.
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Then S.(gf) is homotopic to S.(g)S.(f).

Proor. By the same way as in [19], P. 23, we define a decomposition of
IxX4™ into subpolyhedra M7, 0=<7<k=n, which consists of all points (s, )&
I'xX 4™ satisfying

< 2—s <t L
(20) to“}“ +tj—1=T=t0 [ —*—t,-,

145

@D lerrt s FIa= St e i,

For each 0<;7=<k=n, define a map 0% : M%—4" by putting 0%(s, t)=t'=(t5, -+,
t7), where

(22) =2ty ;_lz—zfz_?t,-_l,
@3 =ty — s (ot H1),
(24) Gier=tjas, - o1 =lg-1,

(25) t;H:—l—%s—tm, t;‘:’ill;?t"’
(26) tr=1—(t{+ - +ti-)— st -+ +t0) .

If heS(X), :=0, is not a system map, we define the coherent map R(h):
At xI—Z as follows;

R(h)St, 2z, s)=(g(fh)(0%(s, 1), 2),
where y=(y,, ---, v,)EN?", n=0, zed?, (s, )e M7, (see [19], P. 27).
Then by the definition and [19], §1.4,

(28) R(h)(@ix1)=R(hd}), and R(h)(cix1)=R(hs?),
(29) R(M)ly=g(fh)=(S(g)SN(h),
(30) R(h)l,=(gHh=Sgf)(h).

If A is a system map, g(fh)=(gf)h. Hence we define the coherent map

R(h) by g(fh).
Now we define functions Gi: Sy(X)—S;:.(2), 0=k=<{, /=0, by the formula;

(31) Gi(h)=R(h)8, for heS(X).

Then by [28), [29) and [30) the collection {Gf} induces a homotopy from S.(g)S.(f)
to S.(gf).




Coherent singular complexes in strong shape theory 269

3.6. REMARK. By the same way we have functors on CPHTOP and
CPHTOP,. We also denote those functors by S..

4. The canonical coherent map 7x: |S.(X)|—X.

Let |-| : KAN—CW be the geometric realization functor, where KAN is the
category of Kan complexes and homotopy classes of semi-simplicial maps, and
CW is the category of CW-complexes and homotopy classes of maps (see [27],
Chapter III). Let (X, X=Xz, Xo2), p2s, 4) be an object of CPHTOP,. Now
the coherent map zx: |S.(X)|—X is defined as follows:

For 2=, -+, An)€A™, n=0, the map 7 :4"X|S.(X)|—X;, is given by

(1) Ti@: lh; ZI):hi(t, Z) )

where (h, 2)eS,(X)x 4t i=0, ted™.
Indeed, for each 24", n=0, r; is well-defined and continuous, and 7;(|S.(X,)!)

CXo1,- Moreover,

(2) @31, |h, 2)=hy@}(), 2)
B Daga,ha(t, 2)
~{ ha(t, 2)
PagaTads |k, 21) it j=0,
:{ 3, |k, 2]) if 0<j<n,

where (h, z)=S(X) x4t =0, ted™?, 0<7<n,
(3) T2(03(@), |h, 2])=h,(6}®), 2)=h,5(t, 2)=1;(, |h, 2]),
where (h, 2)eS;(X)Xx4t, i=0, ted™?, 0<7<n.

We note that maps 7,;|4" X |S.(X,)| actually induce the coherent map 7y,:
[S.(Xo)|—X,, and therefore zx is the coherent map from (]S.(X)], |S.(Xo)]|) to
(X, X,) as pairs. We call zx the canonical coherent map of (X, X,).

For convenience, we denote the CW-pair (|S.(X)|, |S:.(Xs)|) and the pointed
CW-complex (|S.(X)], |({c})]) by |SAX, X,)| and |S.(X, x)|, respectively, where
cn:d4"—>X, n=0, is the constant coherent map.

4.1. PROPOSIAION. Let f:(X,X0)—(Y,Y,) be a coherent map. Then frx=
7y | Se(f)].

Proposition 4.1 is easily obtained by definitions. By Theorem 3.2 and Prop-
osition 4.1 we have the following theorem, which is called the stability theorem
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in coherent prohomotopy theory (see or [28]).

4.2. THEOREM. Let (X,X,) be an object of CPHTOP,. If (X,X,) 7s domi-
nated by a CW-pair (P, P,) in CPHTOP,, then the canonical coherent map tx:
1S(X, Xo) | —=(X, X,) induces an isomorphism in CPHTOP,.

Proor. Let f:(X,X)—(P, P,) and g:(P, P,)—(X,X,) be coherent maps
such that gf=~1x,x,. By Proposition 4.1 we consider the following diagram.
We remark that if Y is the rudimentary system (Y), then S.(Y)=S(Y) and wy
is the canonical map wy: |S(Y)|—>Y.

| Se(£)1 |Sc(g)]

15U X, X)| —=LL 5 18P, Pyl —287 5 |Su(X, X
»
\
TX wpl |p TX
l"
(X, Xo) / > (P, Py) s (x X

Since (P, P,) is a CW-pair, it is well-known that wp is a homotopy equivalence.
Hence wp has a homotopy inverse p. Then we have

(4) (1S(@)prx=1S(@) | pwp| Sc(f)| =S IS(N=Lis,x.xp1 >
(5) x(|S(@)lpf)=gwrof=gf=1x,xy -

Therefore zx induces an isomorphism in CPHTOP,,.

4.3. COROLLARY. Let (X,X,) be an object of CPHTOP,. Then the following
are equivalent conditions;

(@) (X,X,) 7s dominated by a CW-pair in CPHTOP,,

(b) (X,X,) 7s equivalent to a CW-pair in CPHTOP,,

(©) (X,X,) 7s equivalent to a simplicial pair with weak topology in CPHTOP,,
(@) (X, X,) is equivalent to a simplicial pair with metric topology in CPHTOP,,
(e) (X,X,) s equivalent to an ANR pair :n CPHTOP,.

5. Coherent prohomotopy groups r$(X, x).

Let (X, x) be an object of CPHTOP,. For each :=0, we denote the set of
all coherent homotopy classes of coherent maps from (S%, s,) to (X, X) by n$(X, x).
If =1, by using H-cogroup structure of S?, n¢(X,x) isa group. Indeed, if n=2,
n{(X,X) is an abelian group. We call #$(X,x) the i-th coherent prohomotopy
group of (X, x).
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For a coherent map f:(X,x)—(Y,y) we define the function f,:=z§(X,x)—
7i{(Y,y) by

(1) f+(leD)=[fp]  for each [plexi(X,x).

Clearly f. is a group-homomoiIphism for /=1, and depends only on the coherent
homotopy class of f. We call f, the homomorphism induced by f.

Similarly, for an object (X,A,x) of CPHTOP,, and a coherent map f:
(X, A, x)—(Y,B,Vv), we can define the i-th coherent prohomotopy group 7§(X, A, X)
of (X,A,x) and the homomorphism fy:7{(X,A,x)—r{(Y.B,y) induced by f.
Then we easily have the following.

5.1. THEOREM. The following statements hold ;

(@) for i=1 the correspondence w§ induces a functor from CPHTOP, fo GR,
and for i=2, induces a functor from CPHTOP,, to GR, where GR is the category
of groups and homomorphisms,

(b) for an object (X,A,x) of CPHTOP, , we have the following natural exact
sequence,

ac

? 7
(2) > 28K A, X) ——> 7HALX) > 71X, X) —> 7K, A, X) —>

where i:(A,xX)—(X,x) and j:(X,x)—>(X, A, X) are natural system maps induced

by inclusions, and 0° is the boundary homomorphism given by the restriction.

Next we will consider the relation between m;(]S./(X,x)|) and 7#{(X,x). By
Theorem 5.2, when we investigate coherent prohomotopy groups, we can widely
use the usual homotopy theory. A direct application will appear in Theorem 6.2.

5.2. THEOREM. Let (X,x)=(X2, x2), pasr, A) be an object of CPHTOP,.
Then the canonical coherent map tx: |S(X,x)|—(X,X) induces isomorphisms

()5 (| S(X, X)) =ri(X, x)  for all i=0.

The proof is given by a modification of [34], and is long but mechanical.
Hence we show only the outline of the proof here.

Outline of the proof. Let (Z, z,) be a compact polyhedron and let T=(K, ?)
be its triangulation such that K is an ordered simplicial complex and z, is its
vertex. For each k-simplex s=<v,), ***, Vny Of K, the linear homeomorphism
ps:4¥—]|s| is defined by

(3) 0s(e;)=va ¢ for each 7, 0=j=%.
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Let f:(Z, z,)—(X,x) be a coherent map. The function @F:(Z, z,)—|S.(X, x)]|
is defined as follows;
For any point z=Z there is a simplex s of K such that ze|s|, where

S= L, **» Vnry. Now we define

(4) f@=1fps ps'@].

Obviously @7% is well-defined and continuous, and @%(z,)=|({c,})|. Moreover
x @7 =/.

Indeed, for 2=(4,, -+, An)eA”, n=0, z€|s|CZ and ted®,

(tx@1),(t, 2)=1,(t, PY(2))=7,(t, |fps 05 (2)])
=(fps)at, p5'(2)=fa(t, 2).

If (Z, z)=(S?% s,), 1=0, by the above result, (z;)s: 7,(|S(X,x)])—>7HX, x)
is surjective. The injectivity of (rx); will be immediately obtained by the fol-
lowing two claims.

Claim 1. Let T=(K, t) and T'=(K’, t’) be triangulations of (Z, z,) by ordered
simplicial complexes such that K’ is a subdivision of K and z, is a vertex of K.
Let f, f':(Z, z0)—(X,X) be coherent maps. If f=~f', then @T~dF.

Claim 2. Let T=(K, t) be a triangulation of (Z, z,) by an ordered simplicial
complex K with its vertex z,. Then the following holds;

QL ;=g for cvery map g:(Z, 29— |S.(X. )|

Proof of Claim 1. For each s=0, 1, let /;: Z—Z XI be the map defined by
l(z)=(z, s) for z€Z. Then T,=(K, l,t) and Ti=(K’, [,t’) are triangulations of
Zx {0} and Z X {1}, respectively. Now we have the triangulation T*=(T%*, t*)
of ZxI which satisfies;

(i) every vertex of T* is either one of T, or of T3,
(ii) T* contains both T, and T as subcomplexes, and {z,} X[ as a 1-simplex.

Moreover T* can be ordered such that;

(a) every vertex of T, is before any vertex of T4,
(b) both [,t and [,t’ are order-preserving.

Let F:(Z, zo)xI—(X,x) be a coherent homotopy connecting f and f’. Then
we consider the map @7*: Z xI—|S.(X,x)|. By (ii) and the construction of &%,
P ({zo} XI)=|({ca})|. For any z€|s|=|vaw, = Var|, by (i) and (iD), (z, 0)
Else*| =Wnio), 0), =+, Wniry, 0)]. Moreover p,.:4*—]|s.*| is given by p,«(u)
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=(0,(u), 0) for ueA*. Hence p;'(z)=psi(z, 0), and
(Fpsg)a(t, u)=F; (&, ps(u), 0)=1:(¢, ps(u)=(fp:)2, u),
where 2=(2,, -+, An) =A™, n=0, usd* 1=4®. Therefore
@z, 0)=|Fpsp, psiz, 0)|=|fps p5'@)|=P%2),

where ze|s|=|vnw, > Vaay | ©Z. That is, @F*|Z x {0} =D%.
Similarly we have that @%7*|Z X {1} =@%.. Therefore OL*: 0T~ D7,

Before proving Claim 2, we introduce the concept of simpliciality of maps.
Let T=(K,t) be an ordered triangulation of a polyhedron Z and let go:Z——»
[S.(X)| be a map. If for each simplex s of K, there are h,=S.X) and an
order-preserving simplicial map a;: |s|—4%®, where ¢(s)=dim h,, such that

(5) o(2)=1h;, a,(z)] for each z<|s|,
¢ is said to be simplicial with respect to T. Then we have;

Claim 3. If a map ¢:Z—|S(X)| is simplicial with respect to T, then
QT =
szo SD'

Proof of Claim 3. Let s be any k-simplex of 7. Then
(zx(ol1sINa(t, 2)=7,(¢, p@)=1,(t, | hs, as(2)])

:(h(s')_&(t: as(Z»:(hsas)i(ty Z) ,

where 2=(2,, -+, A,)e4™, n=0, z|s|, te4™. Moreover a,p,:4"—4!® is in-
duced by a monotone function 4[n]—4[q(s)]. Hence for every z<|s|,

D% o(@)=1(rxp)ps, p5'@) | =](hsas)ps, p57(2)]

== l hs(asps); Ps_l(Z) I = l hs, as(z)l -—‘—90(2) .
Therefore % ,=o.

By a slight modification of [34], P. 103, we have the following.

Fact. Let T=(K, t) be an ordered triangulation of a compact polyhedron
(Z, z,) such that z, is a vertex of K. Then for any map g:(Z, zo)—|S(X,x)|
there are a subdivision T’ of T and a map ¢:(Z, z,)—|S(X,X)| such that

(i) ¢ s simplicial with respect to T,
i) g=p as maps (Z, z)—|S{X,x)].

Proof of Claim 2. For any map g:(Z, z,)—|S.(X,x)|, by Fact, there are a
subdivision 77 of T and a map ¢:(Z, z,)—|S.(X,x)| such that
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(6) ¢ is simplicial with respect to 77,

(7) g=¢ rel z,
By (7) and Claim 1,

(8) ¢€Xx:¢rTXso
By (6) and Claim 3,
(9) T o=

Hence by (8), (9) and (7), we have
(10) (Dﬁxg: g

Therefore the proof of Claim 2 is completed. That is, we complete the proof
of Theorem 5.2.

By the same way as the proof of Theorem 5.2 we can show the next result,
which is the relative version of Theorem 5.2.

5.3. COROLLARY. For an object (X, A,x) of CPHTOP,,, the canonical coheren:
map tx: |S(X, A, x)| (X, A, X) induces isomorphisms

(tx)s (| SUX, A, X)N=ri(X, A X)) for all =1,

6. Coherent singular homology groups H(X: G).

Let (X, A)=((X3, A1), paa, A) be an object of CPHTOP, and let G be an
abelian group. For each /=0, we define

(1) H{(X,A:G)=H,S(X,A):G),

which is called the i-th coherent singular homology group of (X,A) with the
coefficient group G. If G is the additive group of all integers Z, then we
denote H4(X,A :2) by H%(X,A).

Let f:(X,A)—(Y,B)=(Y,, B.), qup, M) be a coherent map. Then we
have the homomorphism f4: H%(X, A :G)—~H%(Y,B:G), defined by

(2) =S«

We call fi the homomorphism induced by f.

Considering CPHTOP as a full subcategory of CPHTOP,, we define H4(X : G)
and fx:HY(X:G)—»H%Y :G) for a coherent map f:X—Y. We note that if
(X,A) is a rudimentary system ((X, A)), then H{(X, A : G) is the usual singular
homology group H.(X, A:G).
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6.1. THEOREM. (a) The correspondence Hg induces a functor fram CPHTOP,
to GR.

(b) For an object (X,A) of CPHTOP,, the following is a natural exact
sequence ;

0° i
(3) ...___;.HgH(X,A:G)-—)Hg(A:G)——LHg(X_ZG)

J
S H(X A G) — e

(¢) For an object (X,A) of CPHTOP,, the canonical coherent map zx:
|S(X, A)|—(X, A) induces isomorphisms ;

(tx)x : Hi(|S(X,A)| : G)=H{(X,A:G) for every i=0

and every abelian group G.

PROOF. Both (a) and (b) are immediate consequences of Theorem 3.2 and
well-known results. We will show only (c). A semi-simplicial map % a:
S(X, A)—-S(]S(X,A)|) is given by

(4) ni(h)(u)=1h, u| for heS;(X) and uesdt
Then by [27], Proposition 16.2,
(5) Mxa)i t HY(X, A :G)=H(|S(X, A : G).

On the other hand, for any heS;(X), :=0, 24", n=0,
(Se(zx)n x,a)(h) (¢, w)=(Sc(rx)n x,a)(A))2 (@, w)

=(rxn x,0 (M), u)
=730, 7 x.0(A)(W)
=730, |, ul)
=hy(t, u),

where (t, u)ed™x4*. Hence S.(rx)%x,a =1ls,x,a>. Therefore by (5) we have

(tx)x s Hi(|SA X, A)| : G)=HY{X,A :G) for every 7=0.
For an object (X,x) of CPHTOP, we define the function @ %, : 7(X, x)—
H4X) by the formula;
(6) D & (Lh])=hs«(1)  for every [h]leni(X,X).

Then the following square is commutative ;
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15X, D) — 2 2ox, v
) SDfSC(LE” @IéX,r)
HA(S.0D > Hi(X)
(Tl)*

where ¢fs,xx1 is the usual Hurwicz homomorphism of |S.(X,x)|. We will call
Qi , the i-th coherent Hurewicz homomorphism of (X,x). By Theorem 5.2 and
Theorem 6.1(c) we have

6.2. THEOREM (Hurewicz isomorphism theorem in coherent prohomotopy).
Let (X,X) be an object of CPHTOP,. Then

(@) if 7yX,x)=0 for every k, 0=k=<i+1, wherei=2, Pix,): ri(X,x)=H{X),
and O, is an epimorphism,
(b) if n§(X,x)=0,then D'xy, is an epimorphism and its kernel is the com-

mutator subgroup of w{(X,X).

) Similarly, for an object (X,A,x) of CPHTOP,, we can define the i-th
coherent Hurewicz homomorphism @%x a.x : 78X, A, x)>HYX,A:G). Then we
have the following, which is the relative version of Theorem 6.2.

6.3. THEOREM (relative Hurewicz isomorphism theorem in coherent prohomo-
topy). Let (X,A,x) be an object of CPHTOP,, Then if niX,A,x)=0 for
every k, 0=k=<i—1, where i=2, and n{(A,X)=0, then

@<x ax TH XA X)=HI(X,A).

In [17], Lisica and Mardesi¢ defined a strong homology of inverse systems,
which is an invariant of coherent prohomotopy: For an abelian group G they
associate with X=(X;, pa1, A) a chain complex Cy(X:G), defined as follows.
A strong p-chain of X, p=0, is a function x, which assigns to every 1€4™ a

singular (p+n)-chain x;EC,+n(X3,: G). The boundary operator d:Cp(X: G)—
C,(X:G) is defined by the formula

(7) (=D)™dx)3 =005 )= Pagaye(520)— 23 (— 1y,

here 0 denotes boundary of singular chains. By definition,

(8) Hy(X:G)=Hp(Cy(X: G)),
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which is called the p-th strong homology group of X with the coefficient group G.
With a coherent map f:X—Y=(Y,, ¢.., M) they associate a chain map
fe:Cy(X: G)>Cu(Y: G), given by

(9) (FeNu= 3 F s 45 .o ey X 49

where pe M", n=20, x=C,(X: G). Then f, induces a homomorphism fy: HH(X: G)
—H3(Y :G) for each p=0. fy is called the homomorphism induced by f. For
more details, see and [23].

For every coherent singular 7-simplex heS(X), /=0, we define a strong
i-chain &(h) of X by the formula

B(h)=ha(drx 4D for 2€A™, n=0,

here 4"X4* is the singular (i-+n)-chain of 4"Xx 4% described in [23], §3 (c.f.
[32], §5.3). Then the correspondence & induce a homomorphism from C;(S.(X))
to Ci(X), which is also denoted by & The homomorphism & have the following
property.

6.4. PROPOSITION. d*&(h)=£&(d°h) for heS;X), i=1, where d°* and d° are
boundary operators of strong chain complex and coherent singular complex, respec-

tively.

PROOF. For every 2=(4,, -, Ap)= 4", n=0,

0(E(h)2)=0(h 14(d™ X 4))=h 3,(0(4™ X 4%))
= h 354" X Ai+(—1)" 47 X 3.4%)

=hae B (— 18P X A~ 1" 3, (—1) 4" XA
= 3 (1R 14 0P X A+ 1)" 2 (= 1) h 447 XBY(A )
=P 2y1#haga (P X A+ 33 (— 1V hyp(dntx 4
+(— D" 2 (— D ha (A" < 45
= Dag1,ab (W) 3 (DR (=1 3 (—DHEG3D; -
Hence by (7) and the definitions,

(= 1)@ =(—1)" 3 (—D*&(hdp;
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=(—D)"&( 3 (—D*hdh;=(—DE(d*(h);s
By Proposition 6.4, we have the natural homomorphism
e HyX: G)-»HYX:G) for each :=0.

Then the following natural problem is posed;

PROBLEM 1. Uuder what conditions of X and G is the homomorphism &%
isomorphism ?

We note that there is an inverse sequence X of compact polyhedra such that
&L H(X)—Hi(X) is not surjective. The details will be discussed in the next
section.

7. Fundamental singular complexes.

Let X=(X,, pan+1) be an inverse sequence of spaces and maps. For each
i=1, 2, ---, let Ki(X) be the set of all strong fundamental sequences from 4° to
X in the sense of Lisica [15]. That is, every he K;(X) consists of maps hn:
4*—Y ,, and of maps Anmms:: I X4*—Y , such that

(1) hnm+1(0, wW)y=hm(u),

(2) hmm+r(l, W=Pmmsrhmei(U) .

For each /=0 and each %, 0<k=<:, the k-th degeneracy operator d,=d}: K(X)
—K;_.(X) and the k-th face operator s,=s}: K;(X)—K;.,(X) are defined as follows ;
(3) dih)n=hnof and di(h)mmi1=hnm(1X3)),

(4) siMm=hnot and s pmi1=hmnm(1X0D).

Then we have a semi-simplicial complex K(X)=(K;(X), d, sz). The proof of
Proposition 3.1 (1) essentially shows that K(X) is also a Kan complex. We call
K(X) the fundamental singular complex of X. Moreover by the same way as §4,
a canonical strong fundamental sequence vy :|K(X)|—X can be defined by

(5) va(ll, u)=hnu),
(6) me+1(t: |h; ul):hmm+1(t; u),

where (h, u)e K;(X)x 4%, =0, t<l.

With every heS;(X), i=0, we associate a strong fundamental sequence he
K;(X) by considering maps hn:4*—X, and hpum,: I X4*—X,, where we have
identified I with 4' by identifying tI with (1—¢, t)e4*. Then by (3.1), (3)
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and (4) the above correspondence induces a semi-simplicial map f :S.(X)—K(X).
Using the method of [20], we can show the following.

7.1. THEOREM. The semi-simplicial map f induces an isomorphism in KAN.

In order to prove Theorem 7.1 we rewrite from [20], the proof of Lemma
1.1, the concept of the standard extension h’ of a strong fundamental sequence
h:4°—X. Let L;C4™ denote the 1-simplex connecting e;-; to ¢; and let

L*=L,\JL,\J--\UL,C4".

Then there are a retraction 7”: 4" L™ and a homotopy D" : I X 4»—4"™ such that

(7) DO, t)=t,

(8) D1, y=r"@®),

(9) D*(1;X0%)=03D""*, 7=0, n.

By induction on =0 we will define maps hp: A" X 4*—> X, for m=(mo, -+, my)
EN",

Assume that m is non-degenerate. For each j, 0=<;=<Fk, let w%:I—L*C4*
be the linear map which takes 0 to ¢;-; and 1 to ¢;, Put {(m)=m,—m, We
define a map hy: L' X 4'—X, by

(10) hm(W§‘“"(t), u):pmo,m0+j—lhm0+j—l.m0+j(t’ u), tel, 1=7=lm).

We consider the linear map v, : 4"—4*® which takes the vertex e; of 4™ to the
vertex em;-m, of 4™, Now the map Ay :4"X4‘>X,, is defined by

11 hu(t, w)=huy(r* ™y (@), u), uedt, tedr.

If m is degenerate, m=k’ for some keN""! and some j, 0=<;=<n—1. Then
we define
(12) ha(, w)=hg(a?7'(1), u), vedt, tedr.

Proof of Theorem 7.1. By definitions, the standard extension of strong
fundamental sequences induces the semi-simplicial map g : K(X)—S.(X). By the
definition,

(13) fe=lgx -

For any heS,(X), i1=0, g;f:(h) is the standard extension of the strong
fundamental sequence f;(h) associated with h. Now we define the coherent
map R(h):4*XI—X as follows (see [20], Lemma 1.2);

(i) if m=(m,, ---, m,) is non-degenerate, we define R(h), by
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(1) R(h)g(t, u, s)=hu(D*®(s, vy(0), u),

where m*=0m,, mo-+1, me+2, -+, my, my+1, -+, my).
(i) if m is degenerate, m=k’ for some keN"' and some j, 0=;=n—1.
Then we put

(15) R(W)u@, u, s)=R(h)x(a37'@®), n, s), tedr.
Then by the definition of composition of coherent maps
R(h)@7x1)=R(ho?) and R(h)o}XxX1)=R(ha?}).
Moreover,
R(h)ly=h=1s,x(h) and R(h),=f(h)'=g:f:«(h).
Hence by the same way as § 3, the correspondence R :S,(X)—S,:,(X) induces a

homotopy connecting 1s,x, and gf.

Similarly we have the relative and the pointed versions of Theorem 7.1.
We denote the Kan pairs of an inverse sequence (X, x) of pointed spaces and an
inverse sequence (X, X,) of pairs by K(X,x) and K(X, X,), respectively.

7.2. COROLLARY. f4:HE{X:G)-H(K(X):G) for every abelian group G.

7.3. COROLLARY. The map |f|:|S.(X)|—|K(X)| s the homotopy equivalence
with |g| as its homotopy inverse.

7.4. COROLLARY. The canonical fundamental seduence vex,o | KX X)[—(X, x)
induces isomorphism
(ao)s  m(| KX X)) D=a(X,x)  for every =0,
where #;(X,X) 7s the i-th strong homotopy group of (X, X) defined by Lisica [ 15].
PROOF. Let h: (S so)—(X,x) be a strong fundamental sequence and h’:

(S, so)—(X, x) be its standard extension. Then by Theorem 5.2 there is a map
D, 2 (S, s9)—|SAX,x)| such that

(16) ox@n =h'".

Since yx,0|f| is the strong fundamental sequence associated with 7., the
strong fundamental sequence (¥ (x,o|fD)@r =yx (| f|Pr) is associated with

7x@,. Hence by
vx(| f1@n)=h.
Let a, B:(S% so)—|K(X,x)| be maps such that
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(17) 2(5@“22(&@,@ .

We note that rx|g| is the standard extension of vxx. Hence rx|g|a and
tx| g|a are standard extensions of yxna and vx.x B3, respectively. By and
Theorem 5.2,

(18) l lgla=|g|B.
Hence by Corollary 7.3 we have that

a=|fllgla=|fllglp=8.

Therefore we have Corollary 7.4.

Next we introduce the Steenrod-Sitnikov homology of an inverse sequence
X=(Xm, pmm+r) (c.f. [16] and [22]). For each /=0, a s—s i-chain is a function
x which assigns to every m a singular 7-chain x(m)—Ci;(X,:G) and to every
(m, m+1) a singular (7-+1)-chain x(m, m-+1)eC; (X, : G). The set of those
s—s i-chains is donoted by C:i-%(X:G). The boundary operator d:Ci34(X:G)—
Ci~*(X: G) is defined by the formula;

(dx)m)=0(x(m)), and
(20) (dx)(m, m+1)=pmme1a(x(m+1))—x(m)—0(x(m, m+1)),

where 0 denotes the boundary of singular chains. Then we define
(21) H#(X:G)=H,(Ci*(X:G)) for each 7=0.

For each m=1, let a, :Ci (X :G)—Ci(X, : G) be the chain map given by
an(x)=x(@m). Then the family {a,} induces a homomorphism a: H{*X:G)—
lim (H;(Xn), pmm+1r)- Concerning a we have the following.

7.5. PROPOSITION. a is an epimorphism and there is an isomorphism f:
im* (H;+1(Xn), pPmm+)—Ker(a). Then is, the following sequence is exact;

0—> Li_ml (His1(Xn), Pmmsre) _@—) Hi*X:G)

a
> Lan(Hz(Xm): pmm+1') —>0.
Each strong fundamental sequence h: 4°*—X can be identified with the s—s
i-chain of X by the formula;
him)=h,, and h(m, m+1D)=hnms1.

Then we have a natural homomorphism {f : H;(K(X))—=H{ (X : G).
On the other hand, each strong :-chain of X can be considered as a s—s i-
chain of X. Hence there is the natural homomorphism 8% : H{(X: G)—H{ %X : G).
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By the definitions

O%Ex=L4f+ .

Hi(S.(X):G) ———L) H(K(X):G)
£k Ck
Hi(X:G) T >H{%(X:G)
X

By [22], §8° 6% is an isomorphism. Hence by Corollary 7.2, if {} is not
surjective, the &} is also not surjective. Next we will show that there is an
inverse system X of l-dimensional compact polyhedra such that Ck is not sur-
jective.

7.6. ExAMPLE. Let {S;} be a collection of pairwise disjoint copies of the 1-
sphere S*. Let x, be a point which does not belong to U1 S;. For each m>=1, put
1z

(22) Xn={x} US;U --- US,,,
and define the map p,mi1: Xpnii—Xn by
(23) pmm+1le:1Xm and pmm+1(sm+1):x0-

We will show that the inverse system X=(X,, pmm+) has the required property.
We note that X is movable, and

(24) Um (Hy(Xn), pmm+1)= 1L Hi(Sm) ,
for H(Xp)=H,(S,)X --- X H(S,) for each m=1.

Assume that i is surjective. Let z=(z,,)= IIl H,(S.,) be an element such
mez

that z,+#0 for all m=1. Then by Proposition 7.5 there is an element x e H(K(X))
such that

(25) ali(x)=z.
That is,
(26) anlk(x)=(zy, -+, Zm) for every m=1.

Take integers a;, 1</=<n, and hie K,(X), 1=/=<n, such that

27) a,h'+ - +a,h"e Z,(C,(K(X))) represents x in H,(K(X)).
Then
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(28) an+1Ci(x):[a1hrlz+1"|‘ o Fanhiil,

where [h] is the homology class of heZ,(X,+,). In fact, since 4' is connected,
for each 7, 1</<n, there is k() {1, 2, ---, n+1} such that

(29) hi€Z:(Skw) -
By and [29), we have that

(30) tnlh(0) & TTH(S k) F IT Hi(S)=HXasr).

But it contradicts the assumption that z,#0 for all m=1. It follows that {x is
not surjective. Note that H,(K(X))=@Z and H{*(X)=IIZ.
Finally we will consider a condition under which {% is an isomorphism.

7.7. THEOREM. Let (X,X) be an inverse sequence of pointed compact poly-
hedra. If #.(X,x)=0 for every k, 0=k=i—1, where i=2, then

Ck: HiKX)=Hi*(X).

PROOF. We may assume that X, is a singleton. The following sequare is

commutative.
I KE ) — 2 EEDL L kx)
(Vex,o)s Cx
74X, %) Yre >Hi~(X),

where ¢lgx.x1 is the Hurewicz homomorphism of | K(X,x)| and ¢ix x is the
homomorphism defined in [12]. Since 7,(X,x)=0 for every &k, 0=k=:i—1, by
Corollary 7.4, the usual Hurewicz isomorphism theorem and [12], Corollary 3,
both @ixx.xi and ¢ixy, are isomorphisms. Therefore (% is an isomorphism.

7.8. REMARK. By [33] and [14], the condition #,(X,x)=0 for every &,
0<k=<i—1, is equivalent to the condition that (X, x) is approximatively (:—1)-
connected and pointed Si-movable. Hence we may call [12], Corollary 3 the
Hurewicz isomorphism theorem in strong shape theory.

7.9. REMARK. Our definitions of K(X) and H§ are slight generalizations
of and [30]. But our method may be more useful in order to generalize the
construction to more general spaces and investigate its algebraic properties.
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PROBLEM 1’. What condition of X implies that L)% is an isomorphism?

8. The CW-complex E(X, x).

In this section we assume that (X, X)=(Xn, xn), Pmn+1) IS an inverse sequence
of pointed arcwise connected spaces. Then by the way of Edwards and Geoghegan
[9], we construct a pointed CW-complex E(X,x) and a strong fundamental
sequence p x,x : E(X, x)—(X,x) as follows;

By [9], Lemma 2.2, we have the following diagram;

(X, xl)(_;bl,—z_ (X, x2)<-—£2-i-—(Xs, x) eL

t ls ls

(Y, 9)=(Xs, 2) € (31, 92) 2 (35, 30) e

such that for each m=1, 2, ---,

(1) ImPmmi1=@mm+ilm+1,
(2) t» is a homotopy equivalence, and
(3) ' Gmm+1 is a fibration (see [32], Theorem 2.8.9).

For each m=1, let u,: (Y m, Ym)—(Xn, xn) be a homotopy inverse of i£,.
Then by (1), there is a homotopy #mm+1: I XY m+1, Ym+1)—>(Xm, xn) such that

(4) Unm+1: UnGmn+1ZPmm+1Um+r -

The collections {u,} and {#mm+:} induce the strong fundamental sequence u:
X, V)=((Y m, ¥m), gmm+1)—(X,X).

Let S: TOP—KAN and |-|: KAN—CW be the usual singular-complex and
geometric realization functors (see [27]). Then we have the inverse sequences
S(Y,¥)=(S¥ n, ym)y S(@nm+1)) and |S(Y, V)| =(IS¥ n, yu)l, |S(@mm+)|), and the
strong fundamental sequence @: |S(Y,y)|—(Y,y), which is induced by canonical
maps @n: |SV m ¥u) |2 m, ym). Let q={qa} :lim S(Y, y)—S(Y, y) be the pro-
jection.

Now we define

(5) E(X,x)=]lim S(Y,y)|, and
(6) pxo=uolql:EX,x)—>(X,x), where [q|={|qal}.

In [9], Edwards and Geoghegan proved that, if (X,X) 7s dominated by a
pointed CW-complex and each (Xn, xn) has a homotopy type of a pointed CW-
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complex, then px ., induces an isomorphism in pro-HTOP. In this section, with-
out an additional assumption of (X, x), we shall show the following property of

Pxx-

8.1. THEOREM. (px.0)s: mi(E(X, X))=7:(X,X) for all i=0.

The other pointed CW-complex and strong fundamental sequence having the
same property were obtained in Corollary 7.4 by the quite different way. But
px.x Is more constructive than vy, and may be effective for calculating
74X,x). A comparison of two constructions will be discussed in the next sec-
tion. The key tools of the proof of Theorem 8.1 are the following two lemmas.

8.2. LEMMA ([6]). Let (Z,2)=(Zmn, Zm), "mm+1) be an inverse sequence such
that every Vmms1 iS a Serre fibration. Then there is the following short exact
Sequence ;

* —> M (7r11(Z my Zm)s Tmmsrs) —> wa(lim (Z, 2))

[43
— Llr_n(n'n(Zm, Zm); Tmm+1g) — *.

In particular, in the case n=0, B:Um"(7y(Zn, Zm), rmme1z) =Ker a.

8.3. LEMMA ([33]). There is the following short exact sequence;

~
LA

5 —> M (Tnss(Xmy %)y Prmsrs) —> FalX, X)

—_— l(il_n(n'n(Xm; .Xm), pmm+1#) —> %,

In particular, in the case n=0, 5 :1im"(7:(Xm, Xm), Pmm+1w)=Ker 6.

Concerning the relation between exact sequences of Lemma 8.2 and Lemma
8.3 we have the next result.

8.4. LEMMA. Let (Z,2)=(Zm, 2m), Ymm+1) be an inverse sequence such that
eVery ¥mms1 is a Serre fibvation. Then the following diagram is commutative ;

¥ > imX(zps(Zn, 7)) ——> Ta(im (Z, 2) ——>

” — lr#

(e

% ——> UM (734:(Zm, 2m)) ——> TW(Z, 2) ————>

L_i_r_n(ﬂ:n(Zm; Zm)) —> %

|

Im (73(Zm, Zm)) —> *,
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where t is the strong fundamental sequence induced by the projections r :lim(Z, z)
—(Z my Zm), m=1.

PROOF. Since Ory=a clearly holds, we will show only the equation ryf=25.
Identify S™*! with S*xI/S™x {0, 1} \U {s,} XI, where s, is the base point of S=”.

Let ([fx]) be a given element of ﬁlnn+1(2m, Zn). For each m=1, put

(7)) gn=fml|S"X{1/2} :(S", s0) —> (Zn, Zm)

(8) Gu=fm|S*"X[1/2, 1D*(rmm+1f m+11S®X[0, 1/2]): (S™, so) XI —> (Z n, Zm) -
Then G, : gn="nm+18n+1rel. s, for every m=1. Now put

(9) g:=g,, and

(10) G1:(S™, s)XI —>(Z,z) by Gi(x, )=g(X).

Assume that we have already defined maps g :(S”, so)—(Zs, zi), G :(S™, so)

XI—(Z4, z4) and Gy_y 4 :(S™, s)) XIXI—(Z 4y, z4-1) for all £<i, which satisfy
the followings;

(i)e Gr:8r=grrel.s,, and
(i) k-1 Gk—l.k:ck—lzrk,k—lék—lv
Gk—l,k(x) 0’ t):ék—l(t> and ék-l,k(x) 1, t):ék—l(x) t) .

Note that (i), holds. Since G;G;: gi=ri+18i+1rel. s, and 7,4, is a Serre fibra-
tion, there is a homotopy Gis1:(S™, so) XI—(Z 41, 2i+,) such that

(11) 71141Gi=G*Gy

(12) Gl S"X {1} =gi1;.
Now we define the map i :(S”, So)—(Zi41, Zi+1) DY
(13) 8i11=G 11| S"X {0} .

Moreover it is easily see that there is a homotopy G; ;i1 : (S?, so) XIXI—(Z;, z;)
satisfying the condition (ii);. Hence we have maps g;, G; and G; ., for all
i=1, satisfying conditions (i); and (ii);.

Thus we have strong fundamental sequences g=(gn, Gr) and g=(gn, G, ms1]
S?X {0} XI):(S™, so)—(Z,z) such that g=g and r;..8:+:,=g: for every 7=1.
Then by definitions

(14) BULS =D =Llim{gn}],
(15) E({([fnDH)=[gl=[g), where {([faD}
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is the equivalence class of ([f,]) in Um'(7n41(Zm, Zn), Pmm+1s). Hence

£ UL m DD =ra((Um{gn} D=[&n, Gn)]
=[g1=E({({f=DH
where G, :(S?, sp)XI—(Z,, zn) 1s the homotopy given by Gn(x, t)=Fn.(x).
Therefore ryf==5.
Proof of Theorem 8.1. By Lemma 8.3 and the five Lemma, we have
(16) Us: 7Y, y)=7,(X,X) for every n=0, and
(17

s 7T(|SY,y))=7.Y,y) for every n=0.

Let r={rn} :lim|S(Y,y)|—|S(Y,y)| be the projection. Since |S(gmnm+s)l
|Gm+il=1Gm| for every m=1, there is the map s:|lim S(Y,y)|—lim|S(Y,y)|
such that

(18) YmS=|qm| for every m=1.

For each n=0, we consider the following diagram, where the third row is the
Cohen’s exact sequence in KAN, (see [3], Theorem IX. 3.1), and ¥ and ¥, are
natural isomorphisms defined by [27], Lemma 16.3.

5> UM (Tpi2(| SV, ym)]) =25 2,(IS(Y, 1) —Z> lim (20 (1 S(Vm, y)]) —> #

| n

*—>li<_.n_117rn+1(ls(ym; Ym)|) —> ﬁn(LI_I_HIS(Y, J’)l)—z* l(i_lll(ﬂ'n(ls(ym: ym)l)‘_—") *

1o

limY 7o lim S(Y, 3)1) lim ¥,

] 1w

* = M (741(S(Ym, ym)) —— w,(lim S(Y, »)) > im (2 oSV, Ym)) ——> *
Then by Lemma 8.4, the upper squares are commutative. Hence
(19) Ly Uim|S(Y, y)=z,.(Y,y)  for every n=0.

Since ryBUM' ¥ )=1q|s¥ f=rss:¥ 5, by [19), fUM' Y ,,)=s:¥ 5. By [I8), as,¥
=(lim ¥ )@ Hence we have that

(20) $z¥ : m,(lim S(Y, y)) =7, (im | SCY, v)1) for every n=0,
Since ¥ : z,(lim S(Y, y))=x.(|lim S(Y,y)|) for every n=0, by [I8), (19) and [20),

21) lq]s: 7o ([lim S(Y, y))=#,(IS(Y,y)])  for every n=0.
Therefore by [16), (17), (21 and (6) we have shown that p, satisfies the




288 Akira Kovama

desired ﬁroperty.

9. The comparison of E(X,x) with |K(X,x)]|.

In this section we will consider only an inverse sequence (X, X)=(Xn, Xn), Pmm+1)
of pointed arcwise connected spaces. The purpose of this section is to define a
weak homotopy equivalence f: E(X,x)—|K(X,x)|.

For each 71=0, every element x<(lim S(Y,y)); is a collection of maps x,:
Ai*—=Y ,, such that gmms1Xms1=xn for every m=1. Hence we may consider x as
a strong fundamental sequence x:4'—Y. That is, the correspondence induces
a function G;:(lim S(Y,y));—K(Y);. Then it is clear that

G;di*'=diG;s; and Gipsi=siG; for every k&, 0=Zk=:.
Hence we have a semi-simplicial map
G={Gi} :1im S(Y,y) — K(X).

Let ¢! be an element of (lim S(Y,y)); such that ch(4*)={yn} for every m=1.
Then by definition, G;(c?)=c;= K(Y); for every ;/=0. Hence G is a semi-simplicial
map from lim S(Y,y) to K(Y,y). Therefore G induces a map

(1) g=|G|: E(X,x)=|lim S(Y,y)| — [K(Y,y)|.

9.1. LEMMA. vy, g2=w|q].

E(X, £)=lim S(Y, )| g K,y
17l ly(Y_,g)
IS(Y, )] > (¥,9)

Proor. For any x<(lim S(Y,y)); ¢=0 and any tedt, n=0,
Q@ allx, t)=v.(] Gi(x), t)=(Gi(x)a()=x,(), and
(@la)a(lx, t)=wn(1Ga(x), t])=@a(| xn, t])=x().

Hence (y(v,y)2).=(@]|ql), for every n=1.
Similarly we can see that ((v,y)@)nn+1=(@|q|)nn+ for eevery n=1. There-

fore v,y g=wlql.

We define a function K(u): K(Y,v)—K(X,X) by
(2) K(u);(h)=uh for everA heK(Y); and every ¢=0.
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Then it is easily seen that K(u) is a semi-simplicial map and y(y,y, | K(u)| =uy x,x-
Therefore, defining the map
(3) f=1Kuwlg: EX,x)—> |KX,. %),

by Corollary 7.4, Lemma 9.1 and the proof of Theorem 8.1 we have the following.

9.1. THEOREM. The map f:E(X,x)—|K(X,X)| is a weak homotopy equiva-
lence.

K
EX, ) ———> | K(Y, )] KWL kx, 0
(g1 Y.y Vx, »
1S(Y, 9)] ————= (Y, 3) > (X, %)
Y,y ; .

9.2. COROLLARY. If #(X,x)=0, then the map [:E(X,x)—|K(X,x)| is a
homotopy equivalence.

By Corollary 9.2 and [14], Corollary, the following is obtained.

9.3. COROLLARY. Let (X,X)={(Xm, Xm), Pmm+1) be an inverse sequence of
pointed compact connected polyhedra. If (X,X) is pointed 1-movable, then the map
1 E(X,x)—| K(X,X)|is a homotopy equivalence.

PROBLEM 2. For every inverse sequence (X, X)=Xm, Xm), Dmm+1), 1S the map
f:E(X,x)—>|K(X,X)| a homotopy equivalence?

10. Summary in strong shape theory.

In [25], Mardesié defined resolutions of pairs of spaces. A system map p=
(pa} 1 (X, A)=(X,A)=(X,, Az), pax, A) is a resolution of the pair (X, A) pro-
vided that the following conditions are satisfied for any ANR-pair (P, Q), that
is, a pair of ANR’s such that Q is a closed subset of P, and for any open cover-
ing <&V of P;

(R1) for every map f:(X, A)—(P, Q), there are A4 and a map g:(Xj,
A))—(P, Q) such that gp, and f are ¢V-near maps,

(R2) there exists an open covering &V’ of P such that whenever A=A and
g, g’ (X;, A)—(P, Q) are maps such that the maps gp; and g’p; are <’-near,
then there exists A’=2 in A such that gp,: and g’paa are ¢V-near maps.
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If all (X, A;) are ANR-pairs, p is called an ANR-resolution of (X, A).

If A, Az and Q are all empty sets or singletons, from the above definition,
we have the definitions of (ANR-) resolutions p: X—>X=(X;, pii., 4) of a single
X or p:(X, a)~((Xa, ay), paz, A) of a pointed space (X, a), respectively (c.f.
[24]).
In [197], Lisica and Mardesi¢ defined a strong shape category SSH whose
objects are all spaces. Morphisms F': X—Y are given by triples (p, q, [f]), where
p and q are ANR-resolutions of X and Y, respectively, [f] is a morphism in
CPHTOP. Two triples (p, q, [f]) and (p’, q’, [f’]) are eqivalent if

(1) LAEI=010/],

where [7]: X—X, and [j]:Y—Y’ are unique morphisms in CPHTOP such that
[z]J[pl=[p’] and [j1[ql=[q’]. We define F the equivalence class of (p, 9, [fD.

Let F and G be morphisms in SSH given by triples (p, q, [ f]) and (q’, 1, [g]),
respectively. Then the composition GF is given by the triple (p, 1, [gif]),
where [j] is the unique morphism in CPHTOP such that [;][q]=[q’]. Note
that we may assume that q=q’.

The identity morphism on X is defined by (p, p, [1x]).

Lisica and Mardesié investigated CPHTOP,, and defined a strong shape
category of pairs by using ANR-resolution of pairs. In this paper, although we
use their results, we leave the details.

In this section we will summarize our results in strong shape theory. First,

by §3 and §4 we have the followings.

10.1. THEOREM. If a space X is dominated by a CW-complex in SSH, then
X is equivalent to the CW-complex |S.(X)| in SSH, where p: X—X is an ANR-
solution of X.

10.2. COROLLARY. The following are equivalent conditions;

(a) a space X is dominated by a CW-complex in SSH,
(b) X is equivalent to a CW-complex in SSH,

(¢) X is equivalent to a simplicial complex in SSH,
(d) X is equivalent to an ANR in SSH.

For a pointed space (X, x) we define the strong shape group n¥(X, x), i=0, by
(2) ni(X, x)=r{(X,X),

where p: (X, x)—(X, x) is an ANR-resolution of (X, x). The morphism F: (X, x)
—(Y, y) given by a triple (p, q, [f]) defines the homomorphism F,: ni(X, x)—
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ni(Y, y) by
(3) Fo=f, ni(X,x) —> mi(Y,y).

F. is called the homomorphism induced by F.

Then by §5, =f is a functor from SSH, to GR. Similarly, by using ANR-
resolutions of pairs, we can define the relative strong shape group =#{(X, A, x).
If A is P-embedded in X, by [25], Theorem 3, there exists an ANR-resolution
p: (X, A4, x)—(X,A,x) such that p|(4, x):(4, x)—(A,x) is an ANR-resolution of
(A, x). Hence if A is P-embedded in X, the following sequence is exact;

0

2
> 2 (X, A, ) —> XA, %) —> 7YX, %)

S (X, A, x)

where 7:(A4, x)—(X, x) and j:(X, x)—(X, A, x) are inclusion maps.

Let p: (X, x)—(X,x) be an ANR-resolution of (X, x). Then we call the
strong shape morphism given by the triple (1, p, [tx,x 1)) the canonical strong
shape morphism, and denote by 7(x, o :|Sc(X, x)|—(X, x). Similarly, we can
define the canonical strong shape moryhisms of an absolute space or a pair of
spaces. By Theorem 5.2 the next theorem is obtained.

10.3. THEOREM. The canonical strong shape morphism of a pointed space
(X, x) induces isomorphism ;

T, o Tl | S(X, 0))=ai(X, x) for all i=0.

We note that, if (X, x) is a pointed compactum, the strong shape group
73(X, x) is naturally isomorphic to the approching group z.(X, x) defined by

Quigley [31].
For each space X we define the coherent singular homology group of X by

(4) H{(X, G)=H{X:G) for an belian group G,

where p: X—X is an ANR-resolution of X. The morphism F:X—Y given by a
triple (p, q, [f]) admits the homomorphism Fy:H{X:G)—H{Y :G) defined by

(5) Fy=f« H{(X:G) —> H{X:G).

We call Fy the homomorphism induced by F. Then by §6, H¢ is a functor from
SSH to GR.

Similarly we can define the relative coherent singular homology group
HEX, A:G) of a pair (X, A) of spaces. Then if A is P-embedded in X, the
following segence is clearly exact;
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0 7
> He (X, A:G) —> Hi(A:G) —> H{(X: G)

Jx
—> HY{X, A:G) —> +-.

Moreover by Theorem 6.1 we have the following.

10.4. THEOREM. The canonical strong shape morphism of a pair (X, A)
induces isomorphisms ;

T, ne s Hi(|S{(X, A)| : G)=H{X, A:G) for all i=0.

Let p: (X, x)—(X,x) be an ANR-resolution of a pointed space (X, x). The
Hurewicz homomorphism @;:ni(X, x)—>H{(X) is defined by

(6) D, =0xx : 7{(X,X) — H{X).

Then we have the following Hurewicz isomorphism theorem between strong
shape groups and coherent singular homology groups.

10.5. THEOREM. (a) If #ny(X, x)=0 for all 0=k=<i—1, where 1=2, then
D, 73X, x)2HYX), and D;., is an epimorphism.

(b) If ny(X, x)=0, then @,:n{(X, x)—>H{X) is the surjective and its kernel
is the commutator subgroup of mi(X, x).

Let X be a compactum and let X=(Xn, pmm+1) be an inverse sequence of
compact polyhedra whose limit is X. Then the collection p={p,} of projections
is clearly an ANR-resolution of X. Hence by Theorem 7.1 and Corollary 7.2

10.6. THEOREM. There is a natural isomorphism from HE(X : G) to Hy(K(X) :G)
for every abelian group G.

Therefore we identify H{(X: G) with H(K(X):G). Moreover, its is known
that H{-*(X: G) is the Steenrod-Sitnikov homology group Hi:{(X:G). It follows
that the natural homomorphism (% : H{(X:G)—H$:4(X: G) is given by

(7) Cy=C%.
Then by Example 7.6 {% is not even an epimorphism, in general.

More exactly, using Example 7.6, we will show that H{ is different from
the Steenrod-Sitnikov homology theory.

10.7. ExaAMPLE. For each n=1, 2, ---, define

S.={(x, ) eR*|(x—1/n)*+y:=(1/2n(n+1))%}, and
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X=10, 0)} US, .
Then we have the planar 1-dimensional compactum

X=UX,.

nzl

Moreover lg?n diam (X,)=0. Hence if Hg is the Steenrod-Sitnikov homology theory,
by [29], it must be that the homomorphism w : Hg(X)— Ti[}H;(X@: nf;[1 Hi(X)
given by

(8) w(a)=@nla), rla), ) for each a=H{(X),

where 7, : X—X, is the retraction such that rn(jy1 S.)=1{(0, 0)}, is an isomorphism.

On the other hand, if *=1, the homomorphism w is equal to the homomo-
rphism al} defined in Example 7.6. Hence w is not an epimorphism. That is,
H¢ is not the Steenrod-Sitnikov homology theory.

10.8. REMARK. In [30], Ono defined the S—C homology theory on the class
of compacta. By Example 10.7 we easily see that the S—C homology theory is
different from the Steenrod-Sitnikov homology theory.

Concerning the natural homomorphism (% we have the next result by

Theorem 7.7.

10.9. THEOREM. If wi(X, x)=0 for all k, 0=k=i—1, where i=2, then (%:
H{(X)=Hizi(X).

Finally we consider a pointed contunuum (X, x). Let (X, X)=(Xn, X2), Prn+1)
be an inverse sequence of pointed compact connected polyhedra, whose limit is
(X, x). Then we define the pointed CW-complex E(X, x) by E(X,x). Properties
of E(X, x) are summarized as follows;

10.10. THEOREM. (a) There is a strong shape morphism px, =z : E(X, x)—
(X, x) such that

P, ms: T(EX, x)=ri(X, x)  for all i=0.
(b) There is a weak homotopy equivalence F: E(X, x)—|S.(X, x)|.

In particular, if (X, x) is pointed 1-movable, F is a homotopy equivalence.
Related to Theorem 10.10 (b), we pose the following problem.

PROBLEM 2'. Is the map F:E(X, x)—|S:.(X, x)| a homotopy equivalence?
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