HIGHER R-DERIVATIONS OF SPECIAL SUBRINGS OF MATRIX RINGS

By

Andrzej Nowicki

1. Introduction.

Let R be a ring with identity and P be a special subring of $M_n(R)$ ([7]), i.e. P is of the form

$$P = \{A \in M_n(R); A_{ij} = 0 \text{ for } (i, j) \notin \rho\}$$
,

where ρ is a (reflexive and transitive) relation on the set $\{1, 2, \dots, n\}$, and $M_n(R)$ is the ring of $n \times n$ matrices over R.

In this paper we study the group $D_s^R(P)$ of all R-derivations of order s ([5], [8]—[11]) of P. We prove (Theorem 5.3) that every element $d \in D_s^R(P)$ has a unique representation of the form $d=d^{(1)}*d^{(2)}$, where $d^{(1)}$ is an inner derivation in $D_s^R(P)$ ([8]), and $d^{(2)}$ is an element of a certain abelian subgroup of $D_s^R(P)$ whose simple description is given in Section 3 (by * we denote the multiplication in the group $D_s^R(P)$). This theorem plays a basic role in our further considerations.

Moreover, in Section 4, we give some necessary and sufficient conditions for a ring P to have all R-derivations (all derivations) of order s of P to be inner.

In Sections 7, 8, 9 we investigate s'-integrable R-derivations of order s (where s < s') i.e. such R-derivations of order s which can be extended to R-derivations of order s' (comp. [4]). We show in Example 7.4 that, in general, there are non-integrable R-derivations of P. We prove (Theorem 9.6) that if the homology group $H_1(\Gamma)$ of the simplicial complex Γ of the relation ρ (Section 2) is free abelian, then every usual R-derivation is 3-integrable, and if, in addition, $H_2(\Gamma)$ =0 then every R-derivation of order s is s'-integrable for any s < s' (Theorem 8.6).

At the end of this paper, we formulate three open problems.

2. Preliminaries.

Throughout this paper R is a ring with identity, n is a fixed natural number and ρ is a reflexive and transitive relation on the set $I_n = \{1, 2, \dots, n\}$.

Received October 25, 1983.

We denote by $M_n(R)$ the ring of $n \times n$ matrices over R and by Z(R) the center of R.

Moreover, we use the following conventions:

S=a segment of $N=\{0, 1, \dots\}$, that is, S=N or $S=\{0, 1, \dots, k\}$ for some integer $k \ge 0$

$$s = \sup(S) \leq \infty$$
,

 $A_{ij}=ij$ -coefficient of a matrix A,

 E^{ij} =the element of the standard basis of $M_n(R)$,

 \bar{r} =the diagonal matrix whose all coefficients on the diagonal are equal to $r \in R$.

 $M_n(R)_{\rho}$ =the set $\{A \in M_n(R); A_{ij}=0 \text{ for } (i, j) \notin \rho\}$.

It is clear, that $M_n(R)_{\rho}$ is a subring of $M_n(R)$. (Conversely, if σ is a reflexive relation on I_n and $M_n(R)_{\sigma}$ is a subring of $M_n(R)$, then σ is transitive). We say that the subring $P=M_n(R)_{\rho}$ of $M_n(R)$ is special with the relation ρ .

Let P be an arbitrary ring with identity. A sequence $d=(d_m)_{m\in S}$ of mappings $d_m: P \rightarrow P$ is called a *derivation of order s of P* (see [5], [8], [9], [10], [11]) if the sollowing properties are satisfied:

- (1) $d_m(a+b)=d_m(a)+d_m(b)$,
- (2) $d_m(ab) = \sum_{i+j=m} d_i(a)d_j(b)$,
- (3) $d_0(a) = a$.

for all $m \in S$ and $a, b \in P$.

The set $D_s(P)$ of all derivations of order s of P is a group under the multiplication * defined by the formula

$$(d*d')_m = \sum_{i+j=m} d_i \circ d'_j$$
,

wehre $d, d' \in D_s(P)$ and $m \in S$ ([9], [10], [4]).

If $a \in P$ and $k \in S \setminus \{0\}$ then by [a, k] we denote the element of $D_s(P)$ defined by

$$[a, k]_{m}(x) = \begin{cases} x, & \text{if } m = 0, \\ 0, & \text{if } k \nmid m, \\ a^{r}x - a^{r-1}xa, & \text{if } m = kr > 0, \end{cases}$$

for $m \in S$, $x \in P$ ([8]).

If $\underline{a} = (a_m)_{m \in S \setminus \{0\}}$ is a sequence of elements of P then by $\Delta(\underline{a})$ we denote the inner derivation of order s of P with respect to \underline{a} ([8]), i.e., $\Delta(\underline{a})$ is a derivation of order s of P such that

$$\Delta(a)_m = (\lceil a_1, 1 \rceil * \cdots * \lceil a_m, m \rceil)_m$$

for all $m \in S$. The set of inner derivations of order s of P, denoted by $ID_s(P)$, is a normal subgroup of $D_s(P)$ ([8] Corollary 3.3).

Recall that the *usual derivation* of P is an additive mapping $\delta: P \rightarrow P$ such that $\delta(ab) = \delta(a)b + a\delta(b)$, for all $a, b \in P$.

The set of usual derivations of P corresponds bijectively to the set $D_1(P)$, namely if $d \in D_s(P)$ then d_1 is an usual derivation of P.

We now assume that P is a special subring of $M_n(R)$ with the relation ρ . Observe that we can extend every derivation of order s of R to a derivation of order s of P.

Indeed, if $\delta \in D_s(R)$ then the sequence $d = (d_m)_{m \in S}$ of mappings $d_m : P \to P$ defined by $d_m(A)_{ij} = \delta_m(A_{ij})$ (for $A \in P$, $m \in S$) is a derivation of order s of P such that $d_m(\overline{r}) = \overline{\delta_m(r)}$ for any $r \in R$, $m \in S$.

Look also on a generalization of the above fact.

EXAMPLE 2.1. Let $\overline{\rho}$ be the smallest equivalence relation on I_n containing ρ , T a fixed set of representatives of equivalence classes of $\overline{\rho}$, and $v:I_n\to T$ the mapping defined by:

$$v(p) = t$$
 iff $p \overline{\rho} t$.

Moreover, let $\underline{d} = (d^{(t)})_{t \in T}$ be a sequence of elements of $D_s(R)$. Consider the sequence $\Theta(d) = (d_m)_{m \in S}$ of mappings from P to P defined as follows

$$d_m(A)_{ij} = d_m^{(v(i))}(A_{ij})$$

for all $m \in S$, $A \in P$.

It is easy to verify that $\Theta(d)$ belongs to $D_s(P)$.

If a derivation $d \in D_s(P)$ satisfies following equivalent two conditions:

- (4) $d_m(\bar{r}A) = \bar{r}d_m(A)$ for all $m \in S$, $r \in R$, $A \in P$,
- (5) $d_m(\bar{r})=0$ for all $m \in S \setminus \{0\}$, $r \in R$,

then d is called R-derivation of order s of P, and the set of all such derivations is denoted by $D_s^R(P)$.

We define similarly an usual R-derivation, an inner R-derivation and the set $ID_s^S(P)$. It is clear, that $D_s^R(P)$ is a subgroup of $D_s(P)$, and (by [8] Corollary 3.3) $ID_s^R(P)$ is a normal subgroup of $D_s^R(P)$. An inner derivation $\Delta(\underline{A})$, where $\underline{A} = (A^{(m)})_{m \in S \setminus \{0\}}$ is a sequence of matrices of P, belongs to $ID_s^R(P)$ iff $A^{(m)} \in M_n(Z(R))$ for any m.

LEMMA 2.2. If $d \in D_s^R(P)$ then $d_m(E^{pq})_{ij} \in Z(R)$ for any $m \in S$ and all $i, j, p, q \in I_n$ such that $p \rho q$.

PROOF. Let $r \in R$. Since $\bar{r}E^{pq} - E^{pq}\bar{r} = 0$ then

$$\begin{split} 0 &= d_m (\bar{r} E^{pq} - E^{pq} \bar{r})_{ij} \\ &= \sum_{u+v=m} (d_u(\bar{r}) d_v(E^{pq}) - d_u(E^{pq}) d_v(\bar{r}))_{ij} \\ &= (\bar{r} d_m(E^{pq}) - d_m(E^{pq}) \bar{r})_{ij} \\ &r d_m (E^{pq})_{ij} - d_m(E^{pq})_{ij} r \end{split}$$

Usual derivations and usual R-derivations of P are investigated in [6], [1], [2], [7]. In this paper (Section 5) we give a description of the group $D_{\mathfrak{s}}^{\mathfrak{p}}(P)$.

Let $s < \infty$, and S' be a segment of N such that $S \subseteq S'$. We say (comp. [4]) that an R-derivation $d \in D_s^R(P)$ is s'-integrable (where $s' = \sup(S') \le \infty$) if there exists an R-derivation $d' \in D_s^R(P)$ such that $d'_m = d_m$ for all $m \in S$. We will study such derivations in Sections 7, 8, 9.

Now we will define the graph Γ of the relation ρ . Let \sim be the equivalence relation on I_n defined by:

$$x \sim y$$
 iff $x \rho y$ and $y \rho x$.

Denote by [x] the equivalence class of $x \in I_n$ with respect to \sim , and let I'_n be the set of all equivalence classes. We define a relation ρ' of partial order on I_n as follows:

$$[x]\rho'[y]$$
 iff $x\rho y$.

We will denote the pair (I'_n, ρ') by $\Gamma(\sigma \Gamma(\rho))$ and calle it the graph of ρ . Elements of I'_n we calle vertices of Γ and pairs (a, b), where $a\rho'b$ and $a\neq b$, arrows of Γ .

Let us imbed the set of the vertices of Γ in an Euclidean space of a sufficiently high dimension so that the vertices will be linearly independent.

If a_0 , a_1 , \cdots , a_k are elements of I'_n such that $a_i\rho'a_{i+1}$ and $a_i\neq a_{i+1}$ for $i=0,1,\cdots,k-1$, then by (a_0,a_1,\cdots,a_k) we denote the k-dimensional simplex with vertices a_0,\cdots,a_k ([3]). The union of all 0, 1, 2 or 3-dimensional such simplicies we will denote also by Γ . Therefore, Γ is a simplicial complex of dimension ≤ 3 .

Let $C_k(\Gamma)$, for k=0, 1, 2, 3, be the free abelian group whose free generators are k-dimensional simplicies of the complex Γ . We have the following standard complex of abelian groups:

$$0 \longrightarrow C_3(\varGamma) \stackrel{\widehat{\partial}_3}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} C_2(\varGamma) \stackrel{\widehat{\partial}_2}{-\!\!\!-\!\!\!\!-\!\!\!\!-} C_1(\varGamma) \stackrel{\widehat{\partial}_1}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} C_0(\varGamma) \stackrel{\widehat{\partial}_1}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} 0 \ ,$$

where

$$\hat{\partial}_1(a, b) = (b) - (a),$$

$$\hat{\partial}_2(a, b, c) = (b, c) - (a, c) + (a, b),$$

$$\hat{\partial}_3(a, b, c, d) = (b, c, d) - (a, c, d) + (a, b, d) - (a, b, c).$$

Then $H_1(\Gamma) = \text{Ker } \partial_1 / \text{Im } \partial_2$, $H_2(\Gamma) = \text{Ker } \partial_2 / \text{Im } \partial_3$ and (by the Künneth formulas)

$$H^1(\Gamma, G) = \text{Hom}(H_1(\Gamma), G)$$

for an arbitrary abelian group G (see [3]).

In the sequel P denotes a special subring of $M_n(R)$ with the relation ρ .

3. Transitive mappings.

Recall from [7] that a mapping $\varphi: \rho \to Z(R)$ is called *transitive* if $\varphi(p, r) = \varphi(p, q) + \varphi(q, r)$ for $p \rho q$, $q \rho r$. In this paper such mappings will be called *usual transitive mappings* from ρ to R.

DEFINITION 3.1. A sequence $f=(f_m)_{m\in S}$ of mappings $f_m: \rho \to Z(R)$ is called a transitive mapping of order s from ρ to R if the following properties are satisfied:

- (a) $f_0(p, q)=1$ for all $p \rho q$,
- (b) $f_m(p, r) = \sum_{i+j=m} f_i(p, q) f_j(q, r)$ for all $m \in S$ and $p \rho q \rho r$.

We denote by $TM_s(\rho, R)$ the set of transitive mappings of order s from ρ to R.

By the above definition it follows that if $f \in TM_s(\rho, R)$ then

$$f_1(p, r) - f_1(p, q) - f_1(q, r) = 0$$

i.e. f_1 is an usual transitive mapping from ρ to R, and

$$f_2(p, r) - f_2(p, q) - f_2(q, r) = f_1(p, q) f_1(q, r)$$
,
 $f_3(p, r) - f_3(p, q) - f_3(q, r) = f_1(p, q) f_2(q, r) + f_2(p, q) f_1(q, r)$

for all $p \rho q \rho r$.

It is easy to prove

LEMMA 3.2. (1) $f_m(p, p)=0$, for all $p \in I_n$, $m \in S \setminus \{0\}$.

(2) If $p \rho q$ and $q \rho p$, and $f_2(p, q) = \cdots = f_m(p, q) = 0$ for some $m \ge 2$, then

$$f_k(p, q) = (-1)^k f_1(p, q)^k = f_1(q, p)^k$$
 for $k = 0, \dots, m$.

EXAMPLE 3.3. If $Q \subseteq R$ and $\varphi : \rho \to Z(R)$ is an usual transitive mapping then the sequence $(f_m)_{m \in S'}$ where $f_m(p, q) = (m!)^{-1} \varphi(p, q)^m$, is a transitive mapping of order s from ρ to R.

EXAMPLE 3.4. Let

$$\rho =$$
 $\begin{array}{c}
1 \longrightarrow 2 \\
 \end{array}$

Put $f_m(1, 2) = f_m(1, 3) = 1$ and $f_m(2, 3) = 0$ for all $m \in S \setminus \{0\}$. Then $f = (f_m)_{m \in S}$ belongs to $TM_s(\rho, R)$.

EXAMPLE 3.5. Let

$$\rho =$$

$$\downarrow$$

If f_m , for any $m \in S \setminus \{0\}$, is an arbitrary mapping from ρ to Z(R) then $(f_m)_{m \in S}$ is a transitive mapping of order s from ρ to R.

Let $f, g \in TM_s(\rho, R)$. Denote by f*g the sequence $(h_m)_{m \in S}$ of mappings from ρ to Z(R) defined by

$$h_m(p, q) = \sum_{i+j=m} f_i(p, q) g_j(p, q)$$

for all $m \in S$ and $p \rho q$.

Then f*g belongs to $TM_s(\rho, R)$ and it is easy to check that the set $TM_s(\rho, R)$, under the multiplication *, is an abelian group.

For every $f \in TM_s(\rho, R)$ we will denote by Δ^f the sequence $(\Delta_m^f)_{m \in S}$ of mappings $\Delta_m^f: P \rightarrow P$ defined by the following formula

$$\Delta_m^f(A)_{pq} = f_m(p, q) A_{pq}$$
,

for all $A \in P$ and $p \rho q$.

Then we have

LEMMA 3.6. The sequence Δ^f is an R-derivation of order s of P.

PROOF. Every Δ_m^f is obviously an R-additive mapping. Let $A, B \in P$ and

 $p \rho q$. Then

$$\left(\sum_{k=0}^{m} \Delta_{k}^{f}(A) \Delta_{m-k}^{f}(B)\right)_{pq} = \sum_{k=0}^{m} \sum_{i=1}^{n} \Delta_{k}^{f}(A)_{pi} \Delta_{m-k}^{f}(B)_{iq}$$

$$= \sum_{k=0}^{m} \sum_{i=1}^{n} f_{k}(p, i) f_{m-k}(i, q) A_{pi} B_{iq}$$

$$= \sum_{i=1}^{n} f_{m}(p, q) A_{pi} B_{iq}$$

$$= f_{m}(p, q) (AB)_{pq}$$

$$= \Delta_{m}^{f}(AB)_{pq}.$$

Therefore

$$\Delta_m^f(AB) = \sum_{k=0}^m \Delta_k^f(A) \Delta_{m-k}^f(B) ,$$

for all $m \in S$ and A, $B \in P$.

PROPOSITION 3.7. The mapping $f \mapsto \Delta^f$ is a group monomorphism from $TM_s(\rho, R)$ to $D^R_s(P)$.

PROOF. The condition $\Delta^{f*g} = \Delta^f * \Delta^g$ follows from definition of multiplications. Suppose now that $\Delta^f = \Delta^g$ for some f, $g \in TM_s(\rho, R)$. Then, for $\rho \rho q$ and $m \in S$, we have

$$f_m(p, q) = \Delta_m^f(E^{pq})_{pq} = \Delta_m^g(E^{pq})_{pq} = g_m(p, q)$$
,

i.e. f=g.

4. Inner derivations.

Recall from [7] that if f is an usual transitive mapping from ρ to R then f is called *trivial* iff there exists a mapping $\sigma: I_n \to Z(R)$ such that $f(p, q) = \sigma(p) - \sigma(q)$ for all $p \rho q$. We say that the relation ρ is regular over R iff every usual transitive mapping from ρ to R is trivial.

Combining [8] Theorem 4.2 with results of the paper [7] we obtain the following two theorems

THEOREM 4.1. Let P be a special subring of $M_n(R)$ with the relation ρ . The following conditions are equivalent:

- (1) Every R-derivation of order s of P is inner,
- (2) Every usual R-derivation of P is inner,
- (3) The relation ρ is regular over Z(R),
- (4) The relation ρ' is regular over Z(R),

(5) $H^1(\Gamma(\rho), Z(R)) = 0$.

THEOREM 4.2. Let P be a special subring of $M_n(R)$ with the relation ρ . Denote by w, w_s , u, u' the following sentences:

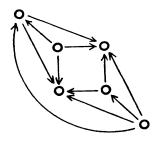
w="Every usual derivation of R is inner", w_s ="Every derivation of order s of R is inner", u="The relation ρ is regular over Z(R)", u'="The relation ρ' is regular over Z(R)".

Then the following conditions are equivalent:

- (1) Every derivation of order s of P is inner,
- (2) Every usual derivation of P is inner,
- (3) w and u,
- (4) w_s and u,
- (5) w and u',
- (6) w_s and u',
- (7) $w \text{ and } H^{1}(\Gamma(\rho), Z(R))=0,$
- (8) w_s and $H^1(\Gamma(\rho), Z(R)) = 0$.

Example 4.3. If $P=M_n(R)_{\rho}$ where

- a) $n \leq 3$, or
- b) the graph $\Gamma(\rho)$ is a tree, or
- c) the graph $\Gamma(\rho)$ is a conne (i.e. there exists $b \in I_n$ such that $b\rho a$ or $a\rho b$ for any $a \in I_n$) in particular $P = M_n(R)$ or P is the ring of triangular $n \times n$ matrices over R, or
 - d) the graph $\Gamma(\rho)$ is of the form



then every R-derivation (or every derivation, if every usual derivation of R is inner) of order s of P is inner (see [7]).

5. The group $D_s^R(P)$.

In this section we give a description of the group $D_s^R(P)$.

We start from the following two lemmas.

LEMMA 5.1. Let $d \in D_s^R(P)$, $m \in S \setminus \{0\}$. Assume that $d_k(E^{qq})_{pq} = 0$ for $k = 1, 2, \dots, m$ and all $p \neq q$. Then

- (i) $d_k(E^{pp})_{pp}=0$ for $k=1, 2, \cdots, m$ and any $p \in I_n$, and
 - (ii) $d_k(E^{ij})_{pq}=0$ for $k=1, 2, \dots, m$ and all $i \rho j$, $p \rho q$ such that $(p, q) \neq (i, j)$.

PROOF. (by induction with respect to m). If m=1 then this lemma follows from [7] Lemma 3.1. Let m>1 and suppose that the conditions (i) and (ii) hold for any k < m. We show that then

- (1) $d_m(E^{ij})_{pq}=0$ for $i\neq p$, $j\neq q$,
- (2) $d_m(E^{pp})_{pp}=0$ for any $p \in I_n$,
- (3) $d_m(E^{pp})_{pj}=0$ for $p\neq j$,
- (4) $d_m(E^{pq})_{iq}=0$ for $p\neq i$,
- (5) $d_m(E^{pq})_{pj}=0$ for $q\neq j$.

For example we verify (1) and (2). The proofs of the conditions (3)-(5) are similar.

(1) Let $i \neq p$, $j \neq q$, and $p \rho q$, $i \rho j$. Then

$$\begin{split} d_m(E^{ij})_{pq} &= d_m(E^{ij}E^{jj})_{pq} \\ &= \sum_{k+l=m} (d_k(E^{ij})d_l(E^{jj}))_{pq} \\ &= \sum_{k+l=m} \sum_r d_k(E^{ij})_{pr} d_l(E^{jj})_{rq} \,. \end{split}$$

Hence, by induction, we have

$$\begin{split} d_m(E^{ij})_{pq} &= \sum_r (d_0(E^{ij})_{pr} d_m(E^{jj})_{rq} + d_m(E^{ij})_{pr} d_0(E^{jj})_{rq}) \\ &= \sum_r (0 d_m(E^{ij})_{rq} + d_m(E^{ij})_{pr} 0) = 0. \end{split}$$

(2) Let $p \in I_n$. Then

$$\begin{split} d_{m}(E^{pp})_{pp} &= d(E^{pp}E^{pp})_{pp} \\ &= \sum_{i+j=m} (d_{i}(E^{pp})d_{j}(E^{pp}))_{pp} \\ &= \sum_{i+j=m} \sum_{r} d_{i}(E^{pp})_{pr}d_{j}(E^{pp})_{rp} \\ &= \sum_{r} (d_{0}(E^{pp})_{pr}d_{m}(E^{pp})_{rp} + d_{m}(E^{pp})_{pr}d_{0}(E^{pp})_{rp}) \\ &= d_{m}(E^{pp})_{pp} + d_{m}(E^{pp})_{pp}. \end{split}$$

Hence $d_m(E^{pp})_{pp} = 0$.

LEMMA 5.2. Let $d \in D_s^R(P)$. Assume that $d_m(E^{qq})_{pq} = 0$ for all $m \in S \setminus \{0\}$ and all $p \rho q$. Then the sequence $f = (f_m)_{m \in S}$ of mappings from ρ to R defined by $f_m(p, q) = d_m(E^{pq})_{pq}$ for $p \rho q$ is a transitive mapping of order s from ρ to R.

PROOF. Lemma 2.2 implies that $f_m(p, q) \in Z(R)$ for all $p \rho q$. Now let $p \rho q \rho r$, $m \in S$. By Lemma 5.1 we have

$$\begin{split} f_m(p, r) &= d_m(E^{pr})_{pr} = d_m(E^{pq}E^{qr})_{pr} \\ &= (\sum_{i+j=m} d_i(E^{pq})d_j(E^{qr}))_{pr} \\ &= \sum_{i} \sum_{i+j=m} d_i(E^{pq})_{pt}d_j(E^{qr})_{tr} \\ &= \sum_{i+j=m} d_i(E^{pq})_{pq}d_j(E^{qr})_{qr} \\ &= \sum_{i+j=m} f_i(p, q)f_j(q, r) \,, \end{split}$$

i.e. $f \in TM_s(\rho, R)$.

Now we can prove the following

Theorem 5.3. Let P be a special subring of $M_n(R)$ with the relation ρ . Every R-derivation d of order s of P has a unique representation:

 $(0) \quad d = \Delta(\underline{A}) * \Delta^f,$

where

- (1) $\underline{A} = (A^{(m)})_{m \in S \setminus \{0\}}$ is a sequence of matrices $A^{(m)} \in P \cap M_n(Z(R))$ such that $A_{ii}^{(m)} = 0$ for $i = 1, 2, \dots, n$,
 - (2) f is a transitive mapping of order s from ρ to R.

PROOF. (I). Let $d \in D_s^R(P)$. We define matrices $A^{(1)}$, $A^{(2)}$, \cdots inductively as follows:

$$A_{pq}^{(1)} = d_1(E^{qq})_{pq}$$
,

and

$$A_{pq}^{(m+1)} = d_{m+1}^{(m)}(E^{qq})_{pq}$$
 for $1 \le m < s$,

where

$$d^{(m)} = ([A^{(1)}, 1] * \cdots * [A^{(m)}, m])^{-1} * d.$$

Put $\delta = (\delta_m)_{m \in S}$, where $\delta_0 = id_P$ and $\delta_m = d_m^{(m)}$ for $m \ge 1$. Let $\underline{A} = (A^{(m)})_{m \in S \setminus \{0\}}$ and let $f = (f_m)_{m \in S}$ be the sequence of mappings from ρ to R defined by

$$f_m(p, q) = \delta_m(E^{pq})_{nq}$$

for all $m \in S$, $p \rho q$.

We show that \underline{A} and f satisfy conditions (0), (1) and (2) of this theorem. Observe first that

- a) $d_k^{(m)} = d_k^{(k)}$ for any $k \leq m$,
- b) δ is an R-derivation of order s of P,
- c) $d = \Delta(\underline{A}) * \delta$.

Now we prove that

d) $\delta_m(E^{qq})_{pq}=0$ for $m \in S \setminus \{0\}$ and $p \neq q$.

In fact, for m=1 we have

$$\begin{split} \delta_{1}(E^{qq})_{pq} &= d_{1}^{(1)}(E^{qq})_{pq} \\ &= ([A^{(1)}, 1]^{-1}*d)_{1}(E^{qq})_{pq} \\ &= -[A^{(1)}, 1]_{1}(E^{qq})_{pq} + d_{1}(E^{qq})_{pq} \\ &= -(A^{(1)}E^{qq} - E^{qq}A^{(1)})_{pq} + A_{pq}^{(1)} \\ &= -A_{pq}^{(1)} + A_{pq}^{(1)} = 0 \end{split}$$

and, if m>1 then

$$\begin{split} \delta_{m}(E^{qq})_{pq} &= d_{m}^{(m)}(E^{qq})_{pq} \\ &= ([A^{(m)}, m]^{-1} * d^{(m-1)})_{m}(E^{qq})_{pq} \\ &= (\sum_{i+j=m} [A^{(m)}, m]_{i}^{-1} \cdot d_{j}^{(m-1)})(E^{qq})_{pq} \\ &= [A^{(m)}, m]_{m}^{-1}(E^{qq})_{pq} + \Big(\sum_{i=1}^{m-1} Od_{i}^{(m-1)}\Big)(E^{qq})_{pq} + d_{m}^{(m-1)}(E^{qq})_{pq} \\ &= -(A^{(m)}E^{qq} - E^{qq}A^{(m)})_{pq} + A_{pq}^{(m)} \\ &= -A_{pq}^{(m)} + A_{pq}^{(m)} = 0 \,. \end{split}$$

Using b), d), a) and Lemma 5.1 we have

e)
$$A_{pp}^{(m)} = d_m^{(m-1)} = d_m^{(m)} (E^{pp})_{pp} = 0$$
 for $m \ge 2$.

Moreover, $A_{pp}^{(1)} = 0$, since

$$A_{pp}^{(1)} = d_1(E^{pp})_{pp} = d_1(E^{pp}E^{pp})_{pp} = A_{pp}^{(1)} + A_{pp}^{(1)}$$
.

Observe also that

f) $A^{(m)} \in M_n(Z(R)) \cap P$ (by Lemma 2.2),

and

g) f is a transitive mapping of order s from ρ to R (by b), d) and Lemma 5.2).

It remains to show that

h) $\delta = \Delta^f$.

If $X \in P$, $m \in S$ and $p \rho q$ then

$$\delta_m(X)_{pq} = \delta_m(\sum_{i,j} \overline{X}_{ij} E^{ij})_{pq}$$

Andrzej Nowicki

$$\begin{split} &= (\sum_{i,j} \overline{X}_{ij} \delta_m(E^{ij}))_{pq} \\ &= \sum_{i,j} X_{ij} \delta_m(E^{ij})_{pq} \\ &= X_{pq} \delta_m(E^{pq})_{pq} \quad \text{(by d) and Lemma 5.1)} \\ &= X_{pq} f_m(p,q) \\ &= \Delta_m^f(X)_{pq}, \quad \text{i.e.} \quad \delta = \Delta^f. \end{split}$$

(II). Suppose that

$$\Delta(A)*\Delta^f = \Delta(B)*\Delta^g$$

where \underline{A} , f and \underline{B} , g satisfy conditions (1) and (2). Then, for $p \neq q$,

$$A_{pq}^{(1)} = (\Delta(\underline{A})*\Delta^f)_1(E^{qq})_{pq} = (\Delta(\underline{B})*\Delta^g)_1(E^{qq})_{pq} = B_{pq}^{(1)}$$
.

So $A^{(1)} = B^{(1)}$.

Suppose that $A^{(1)} = B^{(1)}$, ..., $A^{(m)} = B^{(m)}$ for some m < s. Then $\Delta(0, \dots, A^{(m+1)}, A^{(m+2)}, \dots) * \Delta^f = ([A^{(1)}, 1] * \dots * [A^{(m)}, m])^{-1} * \Delta(\underline{A}) * \Delta^f$ $= ([B^{(1)}, 1] * \dots * [B^{(m)}, m])^{-1} * \Delta(\underline{B}) * \Delta^g$ $= \Delta(0, \dots, 0, B^{(m+1)}, B^{(m+2)}, \dots) * \Delta^g ,$

hence

$$\begin{split} A_{pq}^{(m+1)} = & (\Delta(0, \cdots, 0, A^{(m+1)}, A^{(m+2)}, \cdots) * \Delta^f)_{m+1} (E^{qq})_{pq} \\ = & (\Delta(0, \cdots, 0, B^{(m+1)}, B^{(m+2)}, \cdots) * \Delta^g)_{m+1} (E^{qq})_{pq} \\ = & B_{pq}^{(m+1)} \quad \text{for} \quad p \neq q \,, \end{split}$$

and hence

$$A^{(m+1)} = B^{(m+1)}$$
.

Therefore, by induction, A = B.

Further we have

$$\Delta^{f} = \Delta(\underline{A})^{-1} * (\Delta(\underline{A}) * \Delta^{f})$$
$$= \Delta(\underline{B})^{-1} * (\Delta(\underline{B}) * \Delta^{g}) = \Delta^{g}$$

hence, by Proposition 3.7, we obtain that f=g. This completes the proof.

6. Corollaries to Theorem 5.3.

Let S' be a segment of N such that $S \subset S'$ and let $s' = \sup(S') \leq \infty$. We say that a transitive mapping $f \in TM_s(\rho, R)$ is s'-integrable if there exists a transitive mapping $f' \in TM_s(\rho, R)$ such that $f'_m = f_m$ for all $m \in S$.

As an immediate consequence of Theorem 5.3 we have

COROLLARY 6.1. The following conditions are equivalent:

- (1) Every R-derivation of order s of P is s'-integrable,
- (2) Every transitive mapping of order s from ρ to R is s'-integrable.

If U is an ideal in P, then $U=[U_{ij}]$, where U_{ij} are ideals of R for any i, j (see [7] Lemma 2.1). Therefore from Theorem 5.3 we get

COROLLARY 6.2. If $d \in D_s^R(P)$ and U is an ideal in P then $d_m(U) \subseteq U$ for all $m \in S$.

Observe also that from Theorem 5.3 follows

COROLLARY 6.3. If $d \in D_s^R(P)$ and C is the center of P, then $d_m(C)=0$ for all $m \in S \setminus \{0\}$.

Denote by I(P) the set of all matrices $A \in P$ such that $A_{pp} = 0$ for all $p \in I_n$. It is easy to verify the following two lemmas.

LEMMA 6.4. The following conditions are equivalent:

- (1) I(P) is an ideal in P,
- (2) I(P) is a left-ideal in P,
- (3) I(P) is a right-ideal in P,
- (4) $AB \in I(P)$ for all $A, B \in I(P)$,
- (5) $AB-BA \in I(P)$ for all $A, B \in I(P)$,
- (6) $AB-BA \in I(P)$ for all $A \in I(P)$, $B \in P$,
- (7) The relation ρ is partial order.

LEMMA 6.5 The following two conditions are equivalent:

- (1) AB=0 for all $A, B \in I(P)$,
- (2) There do not exist three different elements a, b, $c \in I_n$ such that $a \rho b \rho c$.

Combining Lemma 6.4 with Theorem 5.3 and Lemma 3.2(1) we obtain

COROLLARY 6.6. Let $d \in D_s^R(P)$. If the relation ρ is a partial order then $d_m(P) \subseteq I(P)$ for all $m \in S \setminus \{0\}$.

We end this section with

COROLLARY 6.7. Assume that there do not exist three different elements $a, b, c \in I_n$ such that $a \rho b \rho c$. Let $d = (d_m)_{m \in S}$ be a sequence of mappings from P to

P such that $d_0=id_P$.

Then d is an R-derivation of order s of P if and only if every mapping d_m (for $m \in S \setminus \{0\}$) is an usual R-derivation of P.

PROOF. If $d \in D_s^R(P)$ then, by Corollary 6.6 and Lemma 6.5, $d_i(A)d_j(B) = 0$ for i > 0 or j > 0 and any A, $B \in P$. Therefore $d_m(AB) = Ad_m(B) + d_m(A)B$, for any $m \in S \setminus \{0\}$ and A, $B \in P$. Conversely, if any d_m is an usual R-derivation of P then, by Corollary 6.6, $d_m(A) \subseteq I(P)$ for any $A \in P$, hence, by Lemma 6.5, $d_i(A)d_j(B) = 0$ for any A, $B \in P$ and i > 0 or j > 0. Therefore

$$d_m(AB) = Ad_m(B) + d_m(A)B$$

$$= \sum_{i+j=m} d_i(A)d_j(B), \quad \text{i.e.} \quad d \in D_s^R(P).$$

7. Integrable R-derivations.

Let S' be a segment of N such that $S \subset S'$ and let $s' = \sup(S') \leq \infty$.

In the sequel we shall study s'-integrable R-derivations of order s of P.

In this section, we give some examples of such R-derivations and we show that in general there are non-integrable R-derivations.

Notice first that, by Corllary 6.1, we may reduce our investigations and to study only s'-integrable transitive mappings of order s from ρ to R.

Observe also, that it suffices to consider the case where ρ is a partial order. It follows from the following

LEMMA 7.1. The following conditions are equivalent:

- (1) Every transitive mapping of order s from ρ to R is s'-integrable,
- (2) Every transitive mapping of order s from ρ' to R is s'-integrable.

PROOF. Denote by W some fixed set of representatives of the cosets with respect to \sim .

(1)=(2). Let $g \in TM_s(\rho', R)$. Consider the sequence $f = (f_m)_{m \in S}$ of mappings from ρ to Z(R) defined by $f_m(x, y) = g_m([x], [y])$ for all $m \in S$ and $x \rho y$. If $x \rho y \rho z$ then $[x] \rho'[y] \rho'[z]$ and we have

$$f_{m}(x, z) = g_{m}([x], [z])$$

$$= \sum_{i+j=m} g_{i}([x], [y])g_{j}([y], [z])$$

$$= \sum_{i+j=m} f_{i}(x, y)f_{j}(y, z)$$

for all $m \in S$. Therefore $f \in TM_s(\rho, R)$, and, by (1), there exists $f' \in TM_{s'}(\rho, R)$

such that $f'_m = f_m$ for all $m \in S$.

Put
$$g'_i([a], [b]) = f'_i(a, b)$$
 for $i \in S'$ and $a, b \in W$.

Then $g'=(g'_i)_{i\in S'}$ is a transitive mapping of order s' from ρ' to R. Indeed, if $[a]\rho'[b]\rho'[c]$, then $a\rho b\rho c$ and we have

$$\begin{split} g_i'(\llbracket a \rrbracket, \llbracket c \rrbracket) &= f_i'(a, c) \\ &= \sum_{p+q=i} f_p'(a, b) f_q'(b, c) \\ &= \sum_{p+q=i} g_p'(\llbracket a \rrbracket, \llbracket b \rrbracket) g_q'(\llbracket b \rrbracket, \llbracket c \rrbracket) \quad \text{ for all } i \in S'. \end{split}$$

Moreover, if $m \in S$, $[a] \rho'[b]$ then

$$g'_{m}([a], [b]) = f'_{m}(a, b) = f_{m}(a, b) = g_{m}([a], [b]),$$

i.e. $g'_m = g_m$ for all $m \in S$.

(2) \Rightarrow (1). Let $f \in TM_s(\rho, R)$. We define the element $g \in TM_s(\rho', R)$ by

$$g_m([a], [b]) = f_m(a, b),$$

where $m \in S$ and $a, b \in W$.

Let g' be such an element in $TM_{s'}(\rho', R)$ that $g'_m = g_m$ for all $m \in S$. We shall construct (by induction) a sequence $f' \in TM_{s'}(\rho, R)$ such that

(i)
$$f'_m = f_m$$
 for all $m \in S$,

and

(ii)
$$f'_k(a, b) = g'_k([a], [b])$$
 for all $a, b \in W$ and $k \in S'$.

If $t \leq s$ then we put $f'_t = f_t$.

Now let $s \le t < s'$ and assuume that $(f'_0, f'_1, \dots, f'_t) \in TM_t(\rho, R)$ and the mappings f'_0, f'_1, \dots, f'_t satisfy the condition (ii). If $x \rho y$ then we put

$$f'_{t+1}(x, y) = g'_{t+1}([a], [b])$$

$$= \sum_{i=1}^{t} f'_{i}(x, a) f'_{t+1-i}(a, y)$$

$$- \sum_{i=1}^{t} f'_{i}(y, b) f'_{t+1-i}(b, y)$$

$$+ \sum_{i=1}^{t} f'_{i}(a, b) f'_{t+1-i}(b, y),$$

where a, b are elements of W such that $x \sim a$, $y \sim b$. Lemma 3.2 implies that $f'_{t+1}(a, b) = g'_{t+1}([a], [b])$ for $a, b \in W$.

It remains to show that

$$f'_{t+1}(x, z) - f'_{t+1}(x, y) - f'_{t+1}(y, z) = \sum_{i=1}^{t} f'_{i}(x, y) f'_{t+1-i}(y, z)$$

for $x \rho y \rho z$.

For this purpose we introduce the following notices:

$$(x_1, x_2, x_3) = \sum_{i=1}^{t} f'_i(x_1, x_2) f'_{t+1-i}(x_2, x_3) \quad \text{for} \quad x_1 \rho x_2 \rho x_3,$$

$$A(x_1, x_2, x_3, x_4) = (x_2, x_3, x_4) - (x_1, x_3, x_4)$$

$$+ (x_1, x_2, x_4) - (x_1, x_2, x_3) \quad \text{for} \quad x_1 \rho x_2 \rho x_3 \rho x_4.$$

Observe that

(iii)
$$A(x_1, x_2, x_3, x_4) = 0$$
.

In fact,

$$A(x_{1}, x_{2}, x_{3}, x_{4}) = -\sum_{i=1}^{t} (f'_{i}(x_{1}, x_{3}) - f'_{i}(x_{2}, x_{3})) f'_{t+1-i}(x_{3}, x_{4})$$

$$+ \sum_{i=1}^{t} f'_{i}(x_{1}, x_{2}) (f'_{t+1-i}(x_{2}, x_{4}) - f'_{t+1-i}(x_{2}, x_{3}))$$

$$= -\sum_{i=1}^{t} f'_{i}(x_{1}, x_{2}) f'_{t+1-i}(x_{3}, x_{4})$$

$$- \sum_{i=1}^{t} f'_{i}(x_{1}, x_{2}) f'_{q}(x_{2}, x_{3}) f'_{r}(x_{3}, x_{4})$$

$$+ \sum_{i=1}^{t} f'_{i}(x_{1}, x_{2}) f'_{q}(x_{2}, x_{3}) f'_{r}(x_{3}, x_{4})$$

$$+ \sum_{i=1}^{t} f'_{p}(x_{1}, x_{2}) f'_{q}(x_{2}, x_{3}) f'_{r}(x_{3}, x_{4})$$

$$- 0$$

Observe also that if a, b, c are such elements of W that $a\rho b\rho c$ then, by (ii), we have

(iv)
$$g'_{t+1}([a], [c]) - g'_{t+1}([a], [b]) - g'_{t+1}([b], [c]) = (a, b, c)$$
.

In fact, since $g' \in TM_{s'}(\rho', R)$ we have

$$\begin{split} g'_{t+1}([a], [c]) - g'_{t+1}([a], [b]) - g'_{t+1}([b], [c]) \\ &= \sum_{i=1}^{t} g'_{i}([a], [b]) g'_{t+1-i}([b], [c]) \\ &= \sum_{i=1}^{t} f'_{i}(a, b) f'_{t+1-i}(b, c) \\ &= (a, b, c). \end{split}$$

Now, let $x \rho y \rho z$ and let a, b, c be such elements of W that $a \sim x$, $b \sim y$, $c \sim z$. Then, by (iii), (iv) and by the fact that (y, y, z) = 0 (Lemma 3.2) we obtain

$$\begin{split} f'_{t+1}(x, z) - f'_{t+1}(x, y) - f'_{t+1}(y, z) \\ &= (a, b, c) \\ &+ (x, a, z) - (z, c, z) + (a, c, z) \\ &- (x, a, y) + (y, b, y) - (a, b, y) \\ &- (y, b, z) + (z, c, z) - (b, c, z) \\ &= ((a, y, z) - (x, y, z) + (x, a, z) - (x, a, y)) \\ &- ((b, c, z) - (a, c, z) + (a, b, z) - (a, b, c)) \\ &+ ((b, y, z) - (a, y, z) + (a, b, z) - (a, b, y)) \\ &- ((b, y, z) - (y, y, z) + (y, b, z) - (y, b, y)) \\ &+ (x, y, z) - (y, y, z) \\ &= A(x, a, y, z) - A(a, b, c, z) + A(a, b, y, z) - A(y, b, y, z) \\ &+ (x, y, z) - (y, y, z) \\ &= (x, y, z) - (y, y, z) \\ &= (x, y, z). \end{split}$$

This completes the proof.

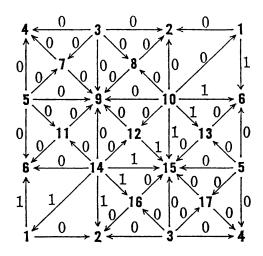
EXAMPLE 7.2. Let P be such as in Example 4.3. Since $D_s^R(P) = ID_s^R(P)$ then every R-derivation of order s of P is s'-integrable (for any s').

EXAMPLE 7.3. Let $P=M_4(R)$, where

$$\rho = \bigvee_{1}^{1} \xrightarrow{\qquad \qquad } 3 \qquad \text{i.e.} \quad P = \begin{bmatrix} R & 0 & R & R \\ 0 & R & R & R \\ 0 & 0 & R & 0 \\ 0 & 0 & 0 & R \end{bmatrix}.$$

There exist R-derivations of order s of P which are not inner ([7]). But, by Corollary 6.1 and Example 3.5, every R-derivation of order s of P is s'-integrable, for any $s' \leq \infty$ (see also Corollary 6.7).

Example 7.4. Consider the following relation ρ on the set I_{17}



(see [7] Section 5).

Let $R=Z_2$ and let $f_1: \rho \to Z_2$ be the usual transitive mapping from ρ to Z_2 defined by the numbers at the arrows (for example $f_1(14,1)=1$, $f_1(10,2)=0$).

Let $f_0(a, b)=1$ for all $a\rho b$. Then $f=(f_0, f_1)$ is a transitive mapping of order 1 from ρ to Z_2 . We show that f is not 2-integrable. Suppose that there exists $f_2: \rho \rightarrow Z_2$ such that

$$f_2(a, c) = f_2(a, b) + f_2(b, c) + f_1(a, b) f_1(b, c)$$

for any $a\rho b\rho c$.

Denote $f_2(a, b)$ by (a, b). Then we have

$$1 = f_1(14, 1)f_1(1, 6)$$

$$= (14, 6) + (14, 1) + (1, 6)$$

$$= [(14, 12) + (10, 12) + (10, 1) + (1, 2) + (3, 2) + (3, 4) + (5, 4) + (5, 6)]$$

$$+ [(1, 2) + (3, 2) + (3, 4) + (5, 4) + (5, 6) + (1, 6) + (10, 1) + (10, 12) + (14, 12)] + (1, 6)$$

$$= 0 :$$

The above example and Corollary 6.1 show that there exist non-integrable R-derivations of P.

8. A necessary condition for s'-integrability.

Let $\Gamma = \Gamma(\rho) = (I'_n, \rho')$ be the graph of the relation ρ (see Section 2), and $f \in TM_s(\rho', R)$.

If a, b, c are such elements in I'_n that $a\rho'b\rho'c$ then by t(a, b, c) we denote the element (a, c)-(a, b)-(b, c) of $C_1(\Gamma)$, and by $\bar{f}_{m+1}(a, b, c)$, for $m \in S$, we denote the element

$$\sum_{i=1}^{m} f_i(a, b) f_{m+1-i}(b, c)$$

of Z(R).

For example:

$$\bar{f}_1(a, b, c) = 0$$
,
 $\bar{f}_2(a, b, c) = f_1(a, b) f_1(b, c)$,
 $\bar{f}_3(a, b, c) = f_1(a, b) f_2(b, c) + f_2(a, b) f_1(b, c)$.

Consider the following equality (in the group $C_1(\Gamma)$):

(*)
$$\sum_{i=1}^{k} z_{i} t(a_{i}, b_{i}, c_{i}) = 0,$$

where $k \in \mathbb{N}$, $z_1, \dots, z_k \in \mathbb{Z}$ and $a_i \rho' b_i \rho' c_i$ for $i=1, 2, \dots, k$.

DEFINITION 8.1. Let $s < \infty$. We say that Γ is an s-graph over R if for any transitive mapping f of order s from ρ' to R and for any equality of the form (*) holds

$$\sum_{i=1}^{k} z_i \bar{f}_{s+1}(a_i, b_i, c_i) = 0.$$

For example, Γ is a 1-graph over R if for every usual transitive mapping $\varphi: \rho' \rightarrow Z(R)$ and for every equality (*) holds

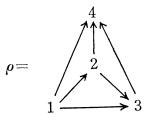
$$\sum_{i=1}^{k} z_i \varphi(a_i, b_i) \varphi(b_i, c_i) = 0,$$

and Γ is a 2-graph over R if for every $f=(f_0, f_1, f_2) \in TM_2(\rho', R)$ and for every equality (*) holds

$$\sum_{i=0}^{k} z_i (f_1(a_i, b_i) f_2(b_i, c_i) + f_2(a_i, b_i) f_1(b_i, c_i)) = 0.$$

In Section 9 we prove that every graph Γ is a 1-graph and is a 2-graph over an arbitrary ring R.

Example 8.2. Let



We show that $\Gamma = (I_4, \rho)$ is an s-graph over an arbitrary ring R, for any $s \in N$. Observe, that for Γ we have only one equality of the form (*). Namely,

$$[(1,4)-(1,2)-(2,4)]-[(1,3)-(1,2)-(2,3)]$$

$$+[(2,4)-(2,3)-(3,4)]-[(1,4)-(1,3)-(3,4)]=0$$
,
i.e. $t(1,2,4)-t(1,2,3)+t(2,3,4)-t(1,3,4)=0$.

If $s \in \mathbb{N}$, $f \in TM_s(\rho, R)$, then we have

$$\begin{split} \bar{f}_{s+1}(1,2,4) - \bar{f}_{s+1}(1,2,3) + \bar{f}_{s+1}(2,3,4) - \bar{f}_{s+1}(1,3,4) \\ &= \sum_{k=1}^{s} \left[f_k(1,2) f_{s+1-k}(2,4) - f_k(1,2) f_{s+1-k}(2,3) \right. \\ &+ f_k(2,3) f_{s+1-k}(3,4) - f_k(1,3) f_{s+1-k}(3,4) \right] \\ &= \sum_{k=1}^{s} f_k(1,2) \left(f_{s+1-k}(3,4) + \sum_{\substack{p+q=s-k+1\\p\geq 1,\, q\geq 1}} f_p(3,4) f_q(2,3) \right) \\ &- \sum_{k=1}^{s} \left(f_k(1,2) + \sum_{\substack{p+q=k\\p\geq 1,\, q\geq 1}} f_p(1,2) f_q(2,3) \right) f_{s+1-k}(3,4) = 0 \,. \end{split}$$

Now we prove a necessary condition for any R-derivation of order s of P to be (s+1)-integrable.

PROPOSITION 8.3. Let $P=M_n(R)_{\rho}$. If every R-derivation of order s of P is (s+1)-integrable then $\Gamma=\Gamma(\rho)$ is an s-graph.

PROOF. Consider in $C_1(\Gamma)$ the equality of the form (*) and let $f \in TM_s(\rho', R)$. There exists, by Corollary 6.1 and Lemma 7.1, a transitive mapping $f' \in TM_{s+1}(\rho', R)$ such that $f'_m = f_m$ for all $m = 0, 1, \dots, s$. Observe that, for $i = 1, 2, \dots, k$, we have

$$f'_{s+1}(a_i, c_i) - f'_{s+1}(a_i, b_i) - f'_{s+1}(b_i, c_i) = \bar{f}_{s+1}(a_i, b_i, c_i)$$
.

Let $\varphi: C_1(\Gamma) \to Z(R)$ be the group homomorphism defined (for free generators) by $\varphi(a, b) = f'_{s+1}(a, b)$.

Then we have

$$\begin{split} \sum_{i=1}^k z_i \overline{f}_{s+1}(a_i, \ b_i, \ c_i) &= \sum_{i=1}^k z_i (f'_{s+1}(a_i, \ c_i) - f'_{s+1}(a_i, \ b_i) - f'_{s+1}(b_i, \ c_i)) \\ &= \sum_{i=1}^k z_i (\varphi(a_i, \ b_i) - \varphi(a_i, \ b_i) - \varphi(b_i, \ c_i)) \\ &= \varphi\Big(\sum_{i=1}^k z_i t(a_i, \ b_i, \ c_i)\Big) \\ &= \varphi(0) \\ &= 0 \,. \quad \text{This completes the proof.} \end{split}$$

We obtain some examples of s-graphs by the following

LEMMA 8.4. If $H_2(\Gamma)=0$ then Γ is an s-graph over R for any natural s.

PROOF. Suppose that in $C_1(\Gamma)$ the equality (*) holds, and let $f \in TM_s(\rho', R)$. We must to show that $\sum_{i=1}^k z_i \bar{f}_{s+1}(a_i, b_i, c_i) = 0$.

Consider the group homomorphism $\varphi: C_2(\Gamma) \to R$ defined for free-generators by $\varphi(a, b, c,) = \bar{f}_{s+1}(a, b, c)$. Since $\sum_{i=1}^k z_i(a_i, b_i, c_i) \in \operatorname{Ker} \partial_2$ and $\operatorname{Ker} \partial_2 = \operatorname{Im} \partial_3$ (see Section 2) then

$$\sum_{i=1}^k z_i(a_i,\ b_i,\ c_i) = \sum_{j=1}^l u_j \big[(x_j,\ y_j,\ w_j) - (x_j,\ y_j,\ t_j) + (x_j,\ w_j,\ t_j) - (y_j,\ w_j,\ t_j) \big]$$

for some $u_1, \dots, u_l \in \mathbb{Z}$ and $x_j \rho' y_j \rho' w_j \rho' t_j, j=1, 2, \dots, l$.

Therefore, by Example 8.2, we have

$$\begin{split} \sum_{i=1}^k z_i \overline{f}_{s+1}(a_i, \ b_i, \ c_i) &= \varphi \Big(\sum_{i=1}^k z_i(a_i, \ b_i, \ c_i) \Big) \\ &= \sum_{j=1}^l u_j [\ \overline{f}_{s+1}(x_j, \ y_j, \ w_j) - \overline{f}_{s+1}(x_j, \ y_j, \ t_j) \\ &+ \overline{f}_{s+1}(x_j, \ w_j, \ t_j) - \overline{f}_{s+1}(y_j, \ w_j, \ t_j) \Big] \\ &= \sum_{j=1}^l u_j 0 = 0 \,. \quad \text{This completes the proof.} \end{split}$$

REMARK 8.5. The necessary condition for any R-derivation of order s of P to be (s+1)-integrable given in Proposition 8.3 is not sufficient. For example, let Γ be such as in Example 7.4. Then Γ is one-dimensional triangulation of the projective plane, and therefore $H_2(\Gamma)=0$ (see [3]). So, by Lemma 8.4, Γ is a 1-graph over Z_2 . But, by Example 7.4, there exists an R-derivation d of order 1 of $P=M_n(R)_\rho$ (where $R=Z_2$) such that d is not 2-integrable.

THEOREM 8.6. Let P be a special subring of $M_n(R)$ with the relation ρ , and let $\Gamma = \Gamma(\rho)$ and $s < s' \leq \infty$. If $H_2(\Gamma) = 0$ and $H_1(\Gamma)$ is a free abelian group then every R-derivation of order s of P is s'-integrable.

PROOF. It follows from Corollary 6.1 and Lemma 7.1 that it is sufficient to prove that every transitive mapping of order s from ρ' to R is (s+1)-integrable.

Let $f \in TM_s(\rho', R)$ and consider a group homomorphism $\varphi : \operatorname{Im} \partial_2 \to Z(R)$ defined (for generators) by $\varphi(\partial_2(a, b, c)) = -\overline{f}_{s+1}(a, b, c)$. Observe that, by Lemma 8.4, φ is a well defined mapping. Since $H_1(\Gamma)$ is free then φ we can extend to a group homomorphism $\varphi' : \operatorname{Ker} \partial_1 \to Z(R)$. Further, by [7] Lemma 5.5, we can extend φ' to a group homomorphism $\varphi'' : C_1(\Gamma) \to Z(R)$. Put $f_{s+1}(a, b) = \varphi''(a, b)$ for all $a\rho'b$. We show that, for any $a\rho'b\rho'c$, holds

$$\begin{split} f_{s+1}(a, c) &= \sum_{i+j=s+1} f_i(a, b) f_j(b, c) \\ &= f_{s+1}(a, b) + f_{s+1}(b, c) + \sum_{i=1}^s f_i(a, b) f_{s+1-i}(b, c) \,. \end{split}$$

In fact

$$f_{s+1}(a, b) - f_{s+1}(a, b) - f_{s+1}(b, c)$$

$$= \varphi''(a, c) - \varphi''(a, b) - \varphi''(b, c)$$

$$= -\varphi''(\partial_2(a, b, c))$$

$$= -\varphi(\partial_2(a, b, c))$$

$$= \bar{f}_{s+1}(a, b, c)$$

$$= \sum_{i=1}^s f_i(a, b) f_{s+1-i}(b, c).$$

Therefore $(1, f_1, \dots, f_s, f_{s+1})$ is a transitive mapping of order (s+1) from ρ' to R, i.e. f is (s+1)-integrable. This completes the proof.

9. s-graphs.

In this section, using some additional properties of s-graphs, we describe (for fixed s < s') a new class of special subrings of $M_n(R)$ in which every R-derivation of order s is s'-integrable.

Let $\Gamma = (I'_n, \rho')$ be the graph of the relation ρ and let $W(\Gamma) = Z[X_{(a,b)}; a\rho'b]$ be the ring of polynomials over Z in commuting indeterminates, one for each pair (a, b), where $a\rho'b$. Denote by $T(\Gamma)$ the ring $W(\Gamma)/I(\Gamma)$, where $I(\Gamma)$ is the ideal in $W(\Gamma)$ generated by all elements of the form

$$X_{(a,c)} - X_{(a,b)} - X_{(b,c)}$$

for $a\rho'b\rho'c$.

Moreover, denote by $\langle a, b \rangle$ the coset of the element $X_{(a,b)}$ in $T(\Gamma)$.

The following lemma plays a basic role in our further considerations.

LEMMA 9.1. Let n be a power of a prime number p. If in the proup $C_1(\Gamma)$ holds the equality of the form (*), then in the ring $T(\Gamma)$ the following equality holds

$$\sum_{i=1}^k z_i \sum_{j=1}^{n-1} (1/p) \binom{n}{j} \langle a_i, b_i \rangle^j \langle b_i, c_i \rangle^{n-j} = 0.$$

PROOF. Observe that the equality (*) is equivalent to an equality of the form

(**)
$$\sum_{i=1}^{u} (a'_i, c'_i) + \sum_{j=1}^{v} ((a''_j, b''_j) + (b''_j, c''_j))$$

$$= \sum_{i=1}^{v} (a''_i, c''_i) + \sum_{i=1}^{u} ((a'_i, b'_i) + (b'_i, c'_i)),$$

where $a_i'\rho'b_i'\rho'c_i'$, $a_j''\rho'b_j''\rho'c_j''$ for some integers u, v and $i=1, \dots, u$, $j=1, \dots, v$. Hence it suffices to prove that, in the ring $T(\Gamma)$, we have

$$\sum_{i=1}^{u} \sum_{k=1}^{n-1} (1/p) \binom{n}{k} \langle a'_{i}, b'_{i} \rangle^{k} \langle b'_{i}, c'_{i} \rangle^{n-k}$$

$$= \sum_{i=1}^{v} \sum_{k=1}^{n-1} (1/p) \binom{n}{k} \langle a''_{j}, b''_{j} \rangle^{k} \langle b''_{j}, c''_{j} \rangle^{n-k}.$$

Let α , $\beta:C_1(\Gamma)\to W(\Gamma)$ be the group homomorphisms defined, for free generators, as follows:

$$\alpha(a, b) = X_{(a, b)}$$

and

$$\beta(a, b) = X_{(a, b)}^n$$
.

Further we denote $X_{(a,b)}$ by (a, b) (for all $a\rho'b$).

Applying α to the equality (**) we obtain the equality (**) in the ring $W(\Gamma)$. Applying β to the equality (**) we obtain the following equality in $W(\Gamma)$:

(1)
$$\sum_{i=1}^{u} (a'_i, c'_i)^n + \sum_{j=1}^{v} ((a''_j, b''_j)^n + (b''_j, c''_j)^n)$$

$$= \sum_{j=1}^{v} (a''_j, c''_j)^n + \sum_{i=1}^{u} ((a'_i, b'_i)^n + (b'_i, c'_i)^n).$$

Let

$$B_i = (a'_i, b'_i) + (b'_i, c'_i)$$
 for $i=1, 2, \dots, u$,

and

$$C_j=(a''_j, c''_j),$$

 $A_i = (a_i', c_i')$.

$$D_j = (a_j'', b_j'') + (b_j'', c_j'')$$
 for $j = 1, 2, \dots, v$.

Rise both sides of the equality (**) in $W(\Gamma)$ to the *n*-th power and apply (1). Then we have

(2)
$$\sum_{i=1}^{u} \sum_{k=1}^{n-1} {n \choose k} (a'_i, b'_i)^k (b'_i, c'_i)^{n-k} - \sum_{j=1}^{v} \sum_{k=1}^{n-1} {n \choose k} (a''_j, b''_j)^k (b''_j, c''_j)^{n-k}$$

$$= \sum_{\substack{i_1, \dots, i_u = n \\ i_1, \dots, i_u \neq n}} (i_1, \dots, i_u) \{A_1^{i_1} \dots A_u^{i_u} - B_1^{i_1} \dots B_u^{i_u}\}$$

$$+ \sum_{\substack{j_1 + \dots + j_v = n \\ j_1, \dots, j_v \neq n}} (j_1, \dots, j_v) [D_1^{j_1} \dots D_v^{j_v} - C_1^{j_1} \dots C_v^{j_v}]$$

$$+ \sum_{k=1}^{n-1} {u \choose k} [\left(\sum_{i=1}^{u} A_i\right)^k \left(\sum_{j=1}^{v} D_j\right)^{n-k} - \left(\sum_{i=1}^{u} B_i\right)^k \left(\sum_{j=1}^{v} C_j\right)^{n-k}],$$

where (i_1, \dots, i_u) , $(j_1, \dots j_v)$ are Newton symbols, i.e.

$$(n_1, \dots, n_k) = \frac{(n_1 + \dots + n_k)!}{n_1! \dots n_k!}$$
 for integers $n_1, \dots, n_k \ge 0$.

Since n is a power of a prime number p then every Newton symbol in the equality (2) is divisible by p, and therefore, since $W(\Gamma)$ is a ring with no Z-torsion, we can divide both sides of the equality (2) by p. We obtain the new equality in $W(\Gamma)$, we denote it by (3).

Observe, that the right side of the equality (3) is an element of the ideal $I(\Gamma)$. Therefore, in the ring $T(\Gamma)$, we have the equality (***). This completes the proof.

As a consequence of Lemma 9.1 we obtain

Theorem 9.2. Every graph Γ is a 1-graph over an arbitrary ring R.

Observe, that this theorem is obvious if R is a 2-torsion-free ring. In fact. Let $f_1: \rho' \to Z(R)$ be an usual transitive mapping and suppose that $\lim_{\to \infty} C_1(\Gamma)$ the equality of the form (*) holds. Consider the group homomorphism $\varphi: C_1(\Gamma) \to Z(R)$ such that $\varphi(a, b) = f_1(a, b)^2$, for all $a\rho'b$. Then we have

$$\begin{split} 2\sum_{i=1}^{k} z_{i} f_{1}(a_{i}, b_{i}) f_{1}(b_{i}, c_{i}) \\ &= \sum_{i=1}^{k} z_{i} \left[(f_{1}(a_{i}, b_{i}) + f_{1}(b_{i}, c_{i}))^{2} - f_{1}^{2}(a_{i}, b_{i}) - f_{1}^{2}(b_{i}, c_{i}) \right] \\ &= \sum_{i=1}^{k} z_{i} \left[\varphi(a_{i}, c_{i}) - \varphi(a_{i}, b_{i}) - \varphi(b_{i}, c_{i}) \right] \\ &= \varphi\left(\sum_{i=1}^{k} z_{i} t(a_{i}, b_{i}, c_{i})\right) \\ &= \varphi(0) \\ &= 0. \end{split}$$

PROOF OF THEOREM 9.2. Let $f \in TM_1(\rho', R)$ and suppose that in $C_1(\Gamma)$ the equality of the form (*) holds. Let $h:W(\Gamma)\to Z(R)$ be the ring homomorphism such that $h(X_{(a,b)})=f_1(a,b)$ for all $a\rho'b$. Since f_1 is an usual transitive mapping then h induces a ring homomorphism $\bar{h}:T(\Gamma)\to Z(R)$ such that $\bar{h}(\langle a,b\rangle)=f_1(a,b)$. From Lemma 9.1, for n=2, we have

$$\sum_{i=1}^{k} z_i f_1(a_i, b_i) f_1(b_i, c_i) = \bar{h} \left(\sum_{i=1}^{k} z_i \langle a_i, b_i \rangle \langle b_i, c_i \rangle \right)$$

$$= \bar{h}(0) = 0. \quad \text{This completes the proof.}$$

LEMMA 9.3. If in $C_1(\Gamma)$ the equality (*) holds then in the ring $T(\Gamma)$ we have

$$\sum_{i=1}^{k} z_i \langle a_i, b_i \rangle \langle b_i, c_i \rangle \langle a_i, c_i \rangle = 0.$$

PROOF. From Lemma 9.1, for n=3, we get

$$0 = \sum_{i=1}^{k} z_{i} \langle \langle a_{i}, b_{i} \rangle^{2} \langle b_{i}, c_{i} \rangle + \langle a_{i}, b_{i} \rangle \langle b_{i}, c_{i} \rangle^{2})$$

$$= \sum_{i=1}^{k} z_{i} \langle a_{i}, b_{i} \rangle \langle b_{i}, c_{i} \rangle \langle \langle a_{i}, b_{i} \rangle + \langle b_{i}, c_{i} \rangle)$$

$$= \sum_{i=1}^{k} z_{i} \langle a_{i}, b_{i} \rangle \langle b_{i}, c_{i} \rangle \langle a_{i}, c_{i} \rangle.$$

Theorem 9.4. Every graph Γ is a 2-graph over an arbitrary ring R.

PROOF. Let $f \in TM_2(\rho', R)$ and suppose that in $C_1(\Gamma)$ holds (*). Consider the group homomorphism $\varphi: C_1(\Gamma) \to Z(R)$ such that

$$\varphi(a, b) = f_1(a, b) f_2(a, b)$$

for all $a\rho'b$.

Then we have

$$\begin{split} 0 &= \varphi(0) \\ &= \sum_{i=1}^k z_i (\varphi(a_i, c_i) - \varphi(a_i, b_i) - \varphi(b_i, c_i)) \\ &= \sum_{i=1}^k z_i [(f_1(a_i, b_i) + f_1(b_i, c_i)) (f_2(a_i, b_i) + f_2(b_i, c_i)) \\ &+ f_1(a_i, b_i) f_1(b_i, c_i)) - f_1(a_i, b_i) f_2(b_i, c_i)] \\ &= \sum_{i=1}^k z_i [f_2(a_i, b_i) f_1(b_i, c_i) + f_1(a_i, b_i) f_2(b_i, c_i)] \\ &+ \sum_{i=1}^k z_i f_1(a_i, b_i) f_1(b_i, c_i) f_1(a_i, c_i) \,. \end{split}$$

Since, by Lemma 9.3,

$$\sum_{i=1}^{k} z_i f_1(a_i, b_i) f_1(b_i, c_i) f_1(a_i, c_i) = 0$$

then

$$\sum_{i=1}^{k} z_{i} [f_{2}(a_{i}, b_{i}) f_{1}(b_{i}, c_{i}) + f_{1}(a_{i}, b_{i}) f_{2}(b_{i}, c_{i})] = 0.$$

This completes the proof.

Using a similar method we can prove the following

THEOREM 9.5. Let Γ be a graph and R be a ring.

- a) If R is 2-torsion-free then Γ is a 3-graph over R,
- b) Γ is a 4-graph over R,
- c) If R is 6-torsion-free then Γ is a 5-graph over R,
- d) Γ is a 6-graph.

Using the above theorems and arguments from the proof of Theorem 8.6 we obtain

THEORREM 9.6. Let P be a special subring of $M_n(R)$ with the relation ρ . Assume that the homology group $H(\Gamma(\rho))$ is free abelian. Then

- (1) Every R-derivation of order s < 3 of P is 3-integrable.
- (2) If R is 2-torsion-free then every R-derivation of order s < 5 of P is 5-integrable.
- (3) If R is 3!-torsion-free then every R-derivation of order s < 7 of P is 7-integrable.

We end this paper with the following open problems:

- 1). Let $\Gamma = (I_n, \rho)$ be a fixed graph (i.e. ρ is a partial ordering relation on I_n) and let s < s'. Suppose that for every R any R-derivation of order s of $M_n(R)_{\rho}$ is s'-integrable. Is $H_1(\Gamma)$ a free group?
- 2). Find numbers n, s, a ring R, and a partial order ρ on I_n such that the graph $\Gamma=(I_n, \rho)$ is not s-graph over R.
 - 3). Is every graph a 3-graph over an arbitrary ring?

References

- [1] Abdeljaouad, M., Note on the automorphisms and derivations of a quasi-matrix algebra. Scient. Papers College Gen. Ed. Univ. Tokyo, 21 (1971), 11-17.
- [2] Burkow, W.D., Derivations of generalized quasi-matrix rings (Russian). Mat. Zametki, 24 (1978), 111-122.
- [3] Hilton, P.J. and Wylies, S., Homology Theory, Cambridge, 1960.
- [4] Matsumura, H., Integrable derivations. Nagoya Math. J., 87 (1982), 227-245.
- [5] Miller, J.B., Homomorphisms, higher derivations, and derivations of associative algebras. Acta Sci. Math., 28 (1967), 221-232.
- [6] Mürase, I., On the derivations of a quasi-matrix algebra. Scient. Papers College Gen. Ed. Univ. Tokyo, 14 (1964), 157-164.
- [7] Nowicki, A., Derivations of special subrings of matrix rings and regular graphs, Tsukuba J. Math., 7 (1983), 281-297.
- [8] —, Inner derivations of higher orders, Tsukuba J. Math., 8 (1984), 219-225.
- [9] Ribenboim, P., Algebraic theory of higher-order derivations. Transactions of the Royal Society of Canada, ser. IV, 7 (1969), 179-187.

- [10] ——, Higher derivations of rings I. Rev. Roum. Math. Pures Appl., 16 (1971), 77-110.
- [11] ——, Higher derivations of rings II. Rev. Roum. Math. Pures Appl., 16 (1971), 245-272.

Institute of Mathematics, N. Copernicous University, Torun 87-100, ul. Chopina 12/18, Poland.