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1. Introduction.

Let R be a ring with identity and P be a special subring of M,(R) (7)),
i.e. P is of the form

P={AeM,(R); A;;=0 for (i, j)&p},

where p is a (reflexive and transitive) relation on the set {1, 2, ---, n}, and M,(R)
is the ring of nXn matrices over R.

In this paper we study the group DZ(P) of all R-derivations of order s ([5],
[8]—[11]) of P. We prove that every element d=DF(P) has a
unique representation of the form d=d™=*d‘®, where d¥ is an inner derivation
in DE(P) ([8]), and d® is an element of a certain abelian subgroup of DZF(P)
whose simple description is given in Section 3 (by * we denote the multiplication
in the group DF(P)). This theorem plays a basic role in our further considera-
tions.

Moreover, in Section 4, we give some necessary and suffiecient conditions for
a ring P to have all R-derivations (all derivations) of order s of P to be inner.

In Sections 7,8,9 we investigate s’-integrable R-derivations of order s (where
s<s’) i.e. such R-derivations of order s which can be extended to R-derivations
of order s’ (comp. [4]). We show in Example 7.4 that, in general, there are
non-integrable R-derivations of P. We prove that if the homology
group H,(I") of the simplicial complex I of the relation p (Section 2) is free
abelian, then every usual R-derivation is 3-integrable, and if, in addition, H,(I")
=0 then every R-derivation of order s is s’-integrable for any s<s’ (Theoreml
8.6).

At the end of this paper, we formulate three open problems.

2. Preliminaries.

Throughout this paper R is a ring with identity, n is a fixed natural number
and p is a reflexive and transitive relation on the set I,={1, 2, ---, n}.
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We denote by M,(R) the ring of nXn matrices over R and by Z(R) the
center of R.
Moreover, we use the following conventions :

S=a segment of N={0, 1, ---}, that is, S=N or S={0, 1, :--, k} for some
integer k=0
s=sup (S)=oo,
A;;=ij-coefficient of a matrix A,
E#=the element of the standard basis of M,(R),
7=the diagonal matrix whose all coefficients on the diagonal are equal
to rER,
M, (R),=the set {A=M,(R); A:;=0 for (i, j)& p}.

It is clear, that M,(R), is a subring of M,(R). (Conversely, if ¢ is a re-
flexive relation on I, and M,(R), is a subring of M,(R), then ¢ is transitive).
We say that the subring P=M,(R), of M,(R) is special with the relation p.

Let P be an arbitrary ring with identity. A sequence d=(dn)mes Of map-
pings d,:P—P is called a derivation of order s of P (see [5], [8], [9] [10],
[11]) if the sollowing properties are satisfied :

(1) dnla+b)=dn(a)+dnb),
(2) dm(ab)=i+§mdi(a)d,-(b>,
(3) dia)=a,

for all meS and q, beP.
The set D,(P) of all derivations of order s of P is a group under the multi-
plication * defined by the formula

(d*d )yn=_ 22 ds°dj,
i+j=m

wehre d, d’eD(P) and meS ([9], [10], [4).

If acP and =S\ {0} then by [a, 2] we denote the element of D (P) de-
fined by
X, if m=0,
La, k]a(x)=40, if kfm,

ax—a‘xa, if m=kr>0,
for meS, x=P ([8)).

If a=(an)mesua iS a sequence of elements of P then by A(a) we denote the
inner derivation of order s of P with respect to a ([8]), i.e., A(a) is a derivation
of order s of P such that
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A(Q)m:([al; 1]* *[am, m])m

for all m=S. The set of inner derivations of order s of P, denoted by ID(P),
is a normal subgroup of D,(P) ([8] Corollary 3.3).

Recall that the wusual derivation of P is an additive mapping 0:P—FP such
that d(ab)=0(a)b-+ad(b), for all a, beP.

The set of usual derivations of P corresponds bijectively to the set D,(P),
namely if d=D,(P) then d, is an usual derivation of P.

We now assume that P is a special subring of M,(R) with the relation p.

Observe that we can extend every derivation of order s of R to a derivation
of order s of P.

Indeed, if d=D,(R) then the sequence d=(dn)mes Of mappings dn:P—F
defined by dn(A);;=0n(A;;) (for AP, meS) is a derivation of order s of P
such that d,(7)=08,() for any r€R, meS.

Look also on a generalization of the above fact.

ExAMPLE 2.1. Let p be the smallest equivalence relation on [, containing
p, T a fixed set of representatives of equivalence classes of p, and v:I[,—T the
mapping defined by :
v(p)=t iff ppt.
Moreover, let d=(d®),cr be a sequence of elements of D (R). Consider the
sequence @(d)=(dn)mes of mappings from P to P defined as follows

dn(A)iy=dR "’ (Aj)

for all meS, A=P.
It is easy to verify that @(d) belongs to Dy (P).

If a derivation d= D,(P) satisfies following equivalent two conditions :

(4) dn(FA)=rdn(A) for all meS, reR, A€P,
(5) dn()=0 for all meS\{0}, reR,

then d is called R-derivation of order s of P, and the set of all such derivations
is denoted by DZF(P).

We define similarly an usual R-derivation, an inner R-derivation and the set
ID$(P). 1t is clear, that D®(P) is a subgroup of D(P), and (by Corollary
3.3) IDE(P) is a normal subgroup of DZ(P). An inner derivation A(A4), where
A=(A™)nesua 1S a sequence of matrices of P, belongs to IDEP) iff A™ e
M (Z(R)) for any m.
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LEMMA 2.2. If deDEP) then d.(E?);;=Z(R) for any meS and all i, j, p, q
€1, such that ppq.

PROOF. Let r&R. Sinoe FEP?—EP%¥=0 then
0=dm(7qu—qui_’)ij
=3 (du(PdLEP)—du(E™)dyF));

=(Fdn(EP?)—dn(EPYF);;
7’dm(qu)ij"—dm(qu)1:.;'7'

Usual derivations and usual R-derivations of P are investigated in [6], [1],
[2], [7]. In this paper (Section 5) we give a description of the group DZ(P).

Let s<oo, and S’ be a segment of N such that S&S’. We say (comp. [4])
that an R-derivation deDXP) is s’-integrable (where s’=sup(S’)<c0) if there
exists an R-derivation d’eDZE(P) such that d},=d,, for all meS. We will study
such derivations in Sections 7, 8, 9.

Now we will define the graph I of the relation p. Let ~ be the equivalence
relation on I, defined by:

x~y iff xpy and ypx.

Denote by [x] the equivalence class of x=1, with respect to ~, and let I, be
the set of all equivalence classes. We define a relation p’ of partial order on I,
as follows:

[xlo’[y] iff xpy.

We will denote the pair (I, p’) by I'[(or I'(p)) and calle it the graph of p.
Elements of I, we calle vertices of I' and pairs (a, b), where ap’b and a+b.
arrows of I

Let us imbed the set of the vertices of I" in an Euclidean space of a suffi-
ciently high dimension so that the vertices will be linearly independent.

If a,, a;, -+, a, are elements of I; such that a;p’a;s; and a;#a;4; for i=
0,1, ---, k—1, then by (a,, a,, -, a,) we denote the k-dimensional simplex with
vertices a,, -:-, a; ([3]). The union of all 0, 1, 2 or 3-dimensional such simplicies
we will denote also by I. Therefore, I' is a simplicial complex of dimension
<3

Let C.(I"), for k=0, 1, 2, 3, be the free abelian group whose free generetors
are k-dimensional simplicies of the complex I. We have the following standard
complex of abelian groups:
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5 0. 0,

0 - Cy(I) > C,(I) ¢y ——0,

Ca(I)

where
0.(a, b)=(b)—(a),

0:(a, b, c)=(b, c)—(a, ©)+(a, b),
ds(a, b, ¢, d)=(b, ¢, d)—(a, ¢, d)+(a, b, d)—(a, b, 0).
Then H,(I")=Ker 0,/Im 0,, Hy(I')=Ker 0,/Im 0, and (by the Kiinneth formulas)
HYI', G)=Hom (H,(I'"), G)

for an arbitrary abelian group G (see [3]).

In the sequel P denotes a special subring of M,(R) with the relation p.

3. Transitive mappings.

Recall from that a mapping ¢: p—Z(R) is called transitive if o(p, r)=
o(p, @)+¢lg, r) for ppg, gpr. In this paper such mappings will be called usual
transitive mappings from p to R.

DEFINITION 3.1. A sequence f=(fm)mes Of mappings f,:p—Z(R) is called
a transitive mapping of order s from p to R if the following properties are
satisfied :

(@) folp, ¢)=1 for all ppgq,
(d)  fulp, r):H]Z,:mfi(p, Qfq, r) for all meS and ppqpr.

We denote by TM,(p, R) the set of transitive mappings of order s from p
to R.
By the above definition it follows that if f<TM,(p, R) then
f1(p, N)—11(p, ©)—fi(q, r)=0,

i.e. f, is an usual transitive mapping from p to R, and
f2(p, ) —1:(p, @)—falq, =11(p, O)f(q, 7),

f3(p3 r)_ffi(pr q>—f3(q: r):fl(p, Q)fz((]: 7’>+f2(f), q>f1((I7 7’)

for all ppgpr.
It is easy to prove

LEMMA 3.2. (1) falp, p)=0, for all p=l,, meS\{0}.
2) If ppq and qpp, and f(p, @)=+ =fu(p, =0 for some m=2, then
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fk(py q):(—ﬁl)kfl(p’ f])k:fl(CI» p)k fO?’ k:()) T, M.

ExaMPLE 3.3. If Q=R and ¢:p—Z(R) is an usual transitive mapping then
the sequence (fn)mes: where fn(p, )=m)* o(p, @)™, is a transitive mapping of
order s from p to R.

ExAaMPLE 3.4. Let

1— 2
o= \ / .
3
Put fn(l, 2)=fn(1, 3)=1 and fn(2, 3)=0 for all m=S\{0}. Then f=(fm)nes
belongs to TM(p, R).

ExAMPLE 3.5. Let

11—
= |
4

If fn, for any meS\{0}, is an arbitrary mapping from p to Z(R) then (fn)mes
is a transitive mapping of order s from p to K.

D ——> WO
[ ]

€ ——

Let f, g&TM(p, R). Denote by fxg the sequence (h,)nes of mappings from
p to Z(R) defined by

hm(p) Q):ngm fi(p! Q)gj(p’ Q)

for all meS and ppgq.

Then f*g belongs to TM,(p, R) and it is easy to check that the set TM(p, R),
under the multiplication *, is an abelian group.

For every feTMp, R) we will denote by A’ the sequence (A})n,es of map-
pings Af, : P—P defined by the following formula

Ait(A)pq:fm(P, q)qu»
for all AP and ppq.
Then we have

LEMMA 3.6. The sequence A7 is an R-derivation of order s of P.

PrRoOOF. Every Af, is obviously an R-additive mapping. Let A, BEP and
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ppg. ‘Then
(Z MDA (B)) =33 Al(A)pidh-4(Big
k=0 pq k=01=1
=33 f4lp, ) n-sliy D ApiBug
=3 fu(p, @ AniBug
:fm<p: Q)(AB)pq
 =AL(AB)p, .
Therefore

AL(AB)= 3 A{(A)AL_(B),

k=0

for all meS and A, BeP.

PROPOSITION 3.7. The mapping f—AS is a group monomorphism from
TM(p, R) to DE(P).

PrOOF. The condition A’+#=A’%A¢ follows from definition of multiplications.
Suppose now that A7=A# for some f, g&TM(p, R). Then, for ppq and me<S,
we have

fulp, Q)=DH(EP) pg=A%(E?Y) pe=gn(P, ),
ie. f=g.

4. Inner derivations.

Recall from that if f is an usual transitive mapping from p to R then f
is called trivial iff there exists a mapping o :I,—Z(R) such that f(p, ¢9)=0o(p)—
o(q) for all pogq. We say that the relation p is regular over R iff every usual
transitive mapping from p to R is trivial.

Combining [8] with results of the paper we obtain the
following two theorems

THEOREM 4.1. Let P be a special subring of My(R) with the relation p.
The following conditions are equivalent :

(1) Every R-derivation of order s of P is inner,
(2) Every usual R-derivation of P is inner,

(3) The relation p is regular over Z(R),

(4) The relation p’ is regular over Z(R),
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() HUI'(p), Z(R))=0.

THEOREM 4.2. Let P be a special subring of M,(R) with the relation p.
Denote by w, w, u, u’ the following senlences:

w="%“FEvery usual derivation of R is inner”,
ws="%“Fvery derivation of order s of R is inner”,
u="“The relation p is regular over Z(R)”,
u'=%“The relation p’ is regular over Z(R)”.

Then the following condz'tz'bns are equivalent :

(1) Every derivation of order s of P is inner,
(2) Every usual derivation of P is inner,

3) w and u,

4) w, and u,

B) w and W,

6) w, and v,

(7 w and HI(p), Z(R))=0,

8) ws and H'(I'(p), Z(R))=0.

ExaMPLE 4.3. If P=M,(R), where

a) n=3, or

b) the graph ['(p) is a tree, or

c) the graph I'(p) is a conne (i.e. there exists [, such that bpa or apb
for any a€l,) in particular P=M,(R) or P is the ring of triangular nXn matrices

over R, or
d) the graph I'(p) is of the form

then every R-derivation (or every derivation, if every usual derivation of R is
inner) of order s of P is inner (see [7])).

5. The group DZ(P).

In this section we give a description of the group DE&(P).
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We start from the following two lemmas.

LEMMA 5.1. Let d=DE(P), meS\{0}. Assume that d.(E%),,=0 for k=
1,2, .-, mand all p#q. Then

(1) de(EPP),,=0 for k=1,2, ---, m and any p<I,,
and
(ii) dp(EY)pe=0 for k=1,2, ---, m and all ipj, ppq such that (p, ¢)+@, j).

Proor. (by induction with respect to m). If m=1 then this lemma follows
from Lemma 3.1. Let m>1 and suppose that the conditions (i) and (ii)
hold for any 2<m. We show that then

(1) dn(E®),,=0 for i#p, j#q,
(2) dn(E??),,=0 for any p<r,,
(3) dn(E?P),;=0 for p+#j,
4) dn(E?P?;,,=0 for p=+1,
B) dn(EPY,;=0 for g+j.

For example we verify (1) and (2). The proofs of the conditions (3)-(5) are
similar.

(1) Let ¢#p, j#¢q, and ppgq, ipj. Then
dn(EY) pg=dmn(EYE)pq
= 3 (d(EY)di(E7))p,
k+l=m

= E de(Eij)prdl(Ejj)rq-

kE+l=m T

Hence, by induction, we have
dm(EY)pq=2 (A EV)prd m(EW)rgt dm(EY) prd o EF)rg)
=3 (0d n(E)ryrt d n(E),0)=0.
(2) Let pel,. Then
dn(EP?),,=d(EP?PEP?)
= 2 (d(EPP)d{EP))pp

i+j=m

= 2 Edi(Epp)prdj(Epp)rp

t+j=m

=X (do(Epp)prdm(Epp)rp"l'dm(Epp)prdo(Epp)rp)

=dn(EPP)pptdn(EPP)pp .
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Hence dn(E??),,=0.

LEMMA 5.2. Let d=DE(P). Assume that dn(E%)p,=0 for all meS\ {0} and
all ppq. Then the sequence f=(fn)mes of mappings from p to R defined by
Fnlp, Q)=dn(EPY,, for ppq is a transitive mapping of order s from p to R.

PROOF. implies that fn(p, 9)=Z(R) for all ppg. Now let ppqpr,
meS. By we have
fn(p, 7’):dm(Epr)pr:dm(quEqr)pr
=(i3‘_=,m d(E*)d (ET))p,

=21 2 d(EPYpd(ET)r
t i+j=m

:i+j2=m di(qu)pqdj(EqT)qr

:i+§m fi(p’ q)fj(q, r),

ie. feTMp, R).
Now we can prove the following

THEOREM 5.3. Let P be a special subring of Mn(R) with the relation p.
Every R-derivation d of order s of P has a unique representation :

0) d=A(A)*A7,
where

(1) A=(A"™)pcsun IS a sequence of matrices A'™ e PN\M(Z(R)) such that
A =0 for i=1,2, -+, n,

(2) f is a transitive mapping of order s from p to R.

ProOOF. (I). Let deDfP). We define matrices A®Y, A®, ... inductively
as follows :
AR=d,(EW),,
and
Afat =g {m (E19),, for 1=m<s,
where

d™=(A®, 17% - x[A™ m])"2xd .

Put 6=(0m)mes, Where d,=idp and 0,=d{™ for m=1. Let A=(A™)necsuo and
let f=(fn)mes be the sequence of mappings from p to R defined by
fm(p, 4):5m(qu)pq
for all meS, ppgq.
We show that A and f satisfy conditions (0), (1) and (2) of this theorem.
Observe first that
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a) d{™=d® for any k=m,
b) & is an R-derivation of order s of P,
c) d=A(A4)*o.
Now we prove that
d) 0n(E1p,=0 for meS\{0} and p+gq.
In fact, for m=1 we have
51(qu)pq:d{1)(qu)pq
=([A®, 117 '%d),(E®)p,
_._____[A(l)’ 1]1(qu)pq+d1(qu)pq
:_(A(l)qu_quAu))pq_{_qu)

=—A+AR=0
and, if m>1 then
On(EM) pg=d " (E")pq
=A™, m] *d ™ V), (EY),,
:(1: > [A™, m]7 ed ™ V) (E")p,

+7=m

=LA, mIg(EDet (8 0dim=2)(E) ot dig = (B,
—:__(A(m)qu_quA(m))pq_!_Aglg)

=— A+ A =0.

Using b), d), a) and we have
e) A =diV=di(E??),,=0 for m=2.
Moreover, Agy=0, since
Ag:z)):dl(Epp)pp:dl(EppEpp)pp:Agz)»‘}"A;% .
Observe also that
f) A™eM(Z(R)NP (by Lemma 2.2),
and
g) f is a transitive mapping of order s from p to R (by b), d) and
5.2).
It remains to show that
h) d=A’.
If XeP, meS and ppqg then

5m(X)pq:6m(i§.;XijE“)pq
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= Xi0m(EY))pq

= X;0m(E)p, &
=Xp0m(E?Y),, (by d) and Lemma 51)
=Xpafn(b, @)

=AL(X) g, ie, d=A".
(II). Suppose that
A(A)*A" =A(B)*A®

where A, f and B, g satisfy conditions (1) and (2).
Then, for p+#gq,

AL =(AA*A),(B)po=(A(B+AR),(E®) =B .

So AY=BW,
Suppose that AV=B® ... A™=B™ for some m<s. Then

A(O’ 0’ A(m“), A(m+2)’ --')*Af:([A“), 1]* *[A(m), m])“*A(.A)*Af
=([BY, 1] --- x[B™, m])"*A(B)*A*
:A(O) Y O) B(m+1)) B(m+2), '")*Ag,

hence
Afe=(A(0, ---, 0, A™¥D, AP N5 AT ) 11 (E99) 5
:(A(O: ) O) B(m+1), B(m+2): "')*Ag)m+1(qu)pq
=By for p+#q,
and hence

Am+Dd — Bom+n

Therefore, by induction, A=B.
Further we have
AT =A(A)'*(A(4)*AT)

=A(B)'+(A(B)*A*f)=A*®

hence, by [Proposition 3.7, we obtain that f=g. This completes the proof.

6. Corollaries to Theorem 5.3.

Let S’ be a segment of N such that SCS’ and let s’=sup(S’)<o0. We say
that a transitive mapping f< TM,(p, R) is s’-integrable if there exists a transitive
mapping f’&TM,p, R) such that f,=f, for all meS.

As an immediate consequence of we have



Higher R-derivations of special subrings of matrix rings 239

COROLLARY 6.1. The following conditions are equivalent:

(1) Every R-derivation of order s of P is s’-integrable,
(2) Every transitive mapping of order s from p to R is s’-integrable.

If U is an ideal in P, then U=[U,;], where U;; are ideals of Rforanyi, j
(see Lemma 2.1). Therefore from we get

COROLLARY 6.2. If deDEP) and U is an ideal in P then d(U)SU for all

meS.

Observe also that from follows

COROLLARY 6.3. If deDE(P) and C is the center of P, then d,(C)=0 for all
me S\ {0}.

Denote by I(P) the set of all matrices A€P such that A,p=0 for all p&I,.
It is easy to verify the following two lemmas.

LEMMA 6.4. The folowing conditions are equivalent:

(1) I(P) is an ideal in P,

(2) I(P) is a left-ideal in P,

(3) I(P) is a right-ideal in P,

(4) ABelI(P) for all A, BEI(P),

(5) AB—BAeI(P) for all A, B€I(P),

(6) AB—BAe<I(P) for all A€I(P), BEP,
(7) The relation p is partial order.

LEMMA 6.5 The following two conditions are equivalent :

(1) AB=0 for all A, BEI(P),
(2) There do not exist three different elements a, b, cel, such that apbpc.

Combining Lemma 6.4 with [Theorem 5.3 and Lemma 3.2(1) we obtain

COROLLARY 6.6. Let d=DR(P). If the relation p is a partial order then
d.(PYSI(P) for all meS\{0}.

We end this section with

COROLLARY 6.7. Assume that there do not exist three different elements
a, b, cel, such that apbpc. Let d=(dn)nes be a sequence of mappings from P to
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P such thot dy=1dp.
Then d is an R-derivation of order s of P if and only if every mapping dn
(for meS\{0}) 7s an usual R-derivation of P.

Proor. If deD®P) then, by and d(A)d,(B)=0
for >0 or ;>0 and any A, BeP. Therefore d,(AB)=Ad(B)+d,(A)B, for
any meS\{0} and A, Be€P. Conversely, if any d,. is an usual R-derivation of
P then, by d(A)SI(P) for any AP, hence, by
d:(A)d;(B)=0 for any A, B€P and i>0 or j>0. Therefore

dn(AB)=Adn(B)+dn(A)B
= X d(A)d«B), ie deD}P).

i+j=m

7. Integrable R-derivations.

Let S’ be a segment of N such that SCS’ and let s’=sup(S’)=co.

In the sequel we shall study s’-integrable R-derivations of order s of P.

In this section, we give some examples of such R-derivations and we show
that in general there are non-integrable R-derivations.

Notice first that, by Corllary 6.1, we may reduce our investigations and to
study only s’-integrable transitive mappings of order s from p to R.

Observe also, that it suffices to consider the case where p is a partial order.
It follows from the following

LEMMA 7.1. The following conditions are equivalent :

(1) Every transitive mapping of order s from p to R is s’-integrable,
(2) Every transitive mapping of order s from p’ to R is s’-integrable.

PROOF. Denote by W some fixed set of representatives of the cosets with
respect to~.

(1)=(2). Let geTMp’, R). Consider the sequence f=(fn)mes of mappings
from p to Z(R) defined by fn(x, ¥)=gn([x], [¥]) for all meS and xpy. If
xpypz then [x]p’[y]p’[z] and we have

fnlx, 2)=gn([x], [2])
=i+§mgi([x], CyDgily], [2])

=, 2, [x 9fiy, 2

for all m=S. Therefore feTM,(p, R), and, by (1), there exists /' TM,(p, R)



Higher R-derivations of special subrings of matrix rings 241

such that f,=f, for all meS.
Put gi([a], [b))=/fila, b) for i€S’ and a, bEW.

Then g’=(gi)ics: is a transitive mapping of order s” from o’ to R. Indeed, if
Lalp’[blp’lc], then apbpc and we have

gi(lal, [cD=fia, ¢)
= > fala, b)fqb, ¢
pHa=1
=p+2q3=ig;([a], (6D gy[b], [c])  for all ieS’.
Moreover, if meS, [alp’[b] then

gm(lal, [b])=fnla, b)="n(a, by=gn(lal, [b]),

i.e. gn=gmn for all meS.
(2)=(1). Let feTMp, R). We define the element geTM(p’, R) by

gn(lal, [b])=/fmnla, b),

where m<S and a, beW.
Let g’ be such an element in TM, (p’, R) that gn=gmn for all meS. We
shall construct (by induction) a sequence f’=TM,(p, R) such that

(i) fon=Fm for all meS,
and
(i1) fila, by=gwlal, [b]) for all a, bW and keS'.

If t<s then we put fi;=/f..
Now let s<t<s’ and assuume that (fs, /1, -, fo€TM,(p, R) and the map-
pings f4, f1, -+, f+ satisfy the condition (ii). If xpy then we put

fintx, y)=ginlal, [6])
= R filx, Oftn-ile, ¥)

— A, D) taeilb, 3

+ B File, Db, 3),

where a, b are elements of W such that x~a, y~b. implies that
fisla, b)=giw([a], [b]) for a, bEW.
It remains to show that
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fha(z, D= flaalx, Y= Finly, D= BFUE Dby, 2)
for xpypz. |

For this purpose we introduce the following notices :
t
(x1, xs, xs):ig.‘{f;(xl, Xo) fra1-1(Xa. Xg) for X10X20X3 ,
A(xy, x2, X3, X9)=(Xs, X5, Xa)— (X1, X3, X4)

+(x1, X2, x)—(x1, X2, x3)  fOr x,px30x50x4.
Observe that

(iii) A(xy, x4 x5, x9)=0.

In fact,

A(xy, %, X3, x4):—“i=él(f«/;(x1; x9)— fi(x2, %)) fi41-i(X3, X0
+i=ﬁ1f§(xl’ x2)(fia1-1(X2, X)— fir1-i(X2, Xg))

:_—iéf;(xl, Xo) fra1-1(Xs, X4)
— 3 fp(xs, x2)folxe, x5)fr(xs, x4)
+i§t£f§(x1, Xo) fir1-i(Xxs, X4)

+2fp(x1, x9) fo(xe, x3)fr(xs, x4)
=0.

Observe also that if a, b, ¢ are such elements of W that apbpc then, by (ii),
we have

(iv) giri([al, [e)—gin(lal, [b])—gin([b], [cD)=(a, b, c).

In fact, since g’eTM,(p’, R) we have
gini([al, [cD)—gi+i(lal, [b])—gi+:([b], [c])
= 2 2ial, [bDgh-o[b], D)

= 3 ila, 0)ftrr-ilb, ©)

=(a, b, ¢).

Now, let xpypz and let a, b, ¢ be such elements of W that a~x, b~y, c~z.
Then, by (iii), (iv) and by the fact thet (y, y, 2)=0 we obtain



Higher R-derivations of special subrings of matrix rings 243

fiea(x, 20— fialx, y)— iy, 2)

=(a, b, ¢)
+(x, a, z2)—(z, ¢, 2)+(a, ¢, 2)
—(x, a, )+(y, b, y)—(a, b, ¥)
—(y, b, 2)+(z, ¢, 2)—(b, ¢, 2)

=((a, y, 2)—(x, ¥, 2)+(x, a, 2)—(x, a, ¥))
—((b, ¢, 2)—(a, ¢, 2)+(a, b, 2)—(a, b, ¢))
+((b, y, 2)—(a, y, 2)+(a, b, 2)—(a, b, ¥))
—((b, ¥, 2)—(y, ¥, )+, b, 2)—(y, b, ¥))
+(x, ¥, 2)—(3, ¥, 2)

=A(x, a, y, 2)—A(a, b, ¢, 2)+A(a, b, y, 2)—A(y, b, ¥, 2)
+(x, 3, 2)—(, ¥, 2)

=(x, ¥, 2)—(y, ¥, 2)

=(x, ¥, 2).

This completes the proof.

EXAMPLE 7.2. Let P be such as in Example 4.3. Since DE(P)=IDZZ(P) then
every R-derivation of order s of P is s’-integrable (for any s’).

ExaMmpPLE 7.3. Let P=M,R), where

e R

3 RO R
T ie. p=|0 R R

0 0 R
2 00 0

There exist R-derivations of order s of P which are not inner ([7]). But, by
and Example 3.5, every R-derivation of order s of P is s’-integrable,
for any s’=<oo (see also [Corollary 6.7).

ExAMPLE 7.4. Consider the following relation p on the set I,
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0
4 3 2 1
0 0 ~
0\7 o\a 0/1
5V° Os‘yowo L g
o&nyﬂow yl\lﬁsyo
EO Or\ouo/il\l"s‘o/ov\os
EANTZNE
1 1 Ll‘V \00/‘17\2]0
1 0 2« 3 0 4 (see Section 5).

Let R=Z, and let f,:p—Z. be the usual transitive mapping from p to Z,
defined by the numbers at the arrows (for example f,(14,1)=1, £,(10,2)=0).

Let fo(a, b)=1 for all apb. Then f=(f,, f,) is a transitive mapping of order
1 from p to Z,. We show that f is not 2-integrable. Suppose that there exists
fe2:p—Z, such that

fala, ©)=fs(a, b)+ f(b, o)+ fila, b)fi(b, ¢),
for any apbpc.
Denote f.(a, b) by (a, b). Then we have

1=/,(14,1)f,(1,6)
=(14, 6)-+(14, 1)+(1, 6)
=[(14, 12)+(10, 12)+4(10, 1)+(1, 2)4-(3, 2)+(3, 4)+(5, 4)+(5, 6)]
+[(1,2)+@G, 2)+@3, ) +(5, )+, 6)+(1, 6)+(10, 1)+(10, 12)+-(14, 12)]14 "1, 6)
=0

The above example and [Corollary 6.1] show that there exist non-integ.able R-
derivations of P.

8. A necessary condition for s’-integrability.

Let I'=I"(p)=(I7, p’) be the graph of the relation p (see Section 2), and
feTM (o', R).

If a, b, ¢ are such elements in I; that ap’bp’c then by t(a, b, ¢) we denote

the element (a, ¢)—(a, b)—(b, ¢) of C,(I"), and by fnr.(a, b, ¢), for meS, we
denote the element

z’": Fi@, B)f mer-ilb, ©)
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of Z(R).
For example:

fl(a: b: C)ZO ’
f2(a’ b: C):—_—fl(a) b)fl(b’ c) ’
fila, b, ©)=fi(a, b)fs(b, ©)+fala, b)fi(b, ¢).

Consider the following equality (in the group C,(I")):

(*) Zit(ai: bi; ci):O:

i=1
where k€N, z,, ---, zyZ and a;p’b;p’c; for i=1, 2, ---, k.
DEFINITION 8.1. Let s<co. We say that I" is an s-graph over R if for any

transitive mapping f of order s from p’ to R and for any equality of the form
(*) holds

k —
g:.l‘lzifs+l(ai, bi, ¢)=0.

For example, I" is a l-graph over R if for every usual transitive mapping

¢:p’—Z(R) and for every equality (*) holds

Z zi@(ai: bi)SD(bu C»,;)———_O,

1=1

and I' is a 2-graph over R if for every f=(fo, f1, f20ETMy(p’, R) and for every
equality (*) holds

éozi<fl<ai: bi) folbiy €i)+ folas, bo)falbi, €))=0.

In Section 9 we prove that every graph I is a 1-graph and is a 2-graph over
an arbitrary ring R.

ExaMPLE 8.2. Let
4
o= 2 .

7

We show that I'=(J,, p) is an s-graph over an arbitrary ring R, for any s N.
Observe, that for I" we have only one equality of the form (*). Namely,

[1,49H—@1,2)—@2,49H]1-1d,3)—1,2)—(2,3)]

3
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+L@ H—(2,3— 6, 91—, H—(L, 3G 91=0,
ie. t(1,2,4)—t(1,2,3)+1(2,3,4)—1(1,3,4)=0.
If seN, feTMyp, R), then we have
Forill, 2, 9= FonnlL, 2, 94 Fons(2,3, —Fonn(L,3,4)
= 2[4 Dfon1-4@ D= F o1, D f o142, 3)
42,3 for1-53, D= 1(L, 3 11103, 4)]

=3 AL(FenaB O+ T [23,9/42,3)
k=1 pHg=8—k+1

pz1,921

=3 (fL2+ B fo1,2)£,23)fen-4E,H=0.
k=1 r+q=k

p2ilgz1

Now we prove a necessary condition for any R-derivation of order s of P to
be (s-+1)-integrable.

PROPOSITION 8.3. Let P=M,(R),. If every R-derivation of order s of Pis
(s+-1)-integrable then I'=1"(p) is an s-graph.

ProoF. Consider in C,(I") the equality of the form () and let f € TM,(p’, R).
There exists, by and Cemma 7.1, a transitive mapping f'€TM,..(p’,
R) such that fi,=f, for all m=0,1, ---, s. Observe that, for =1, 2, -, &,
we have

fi+1(@s, ¢)— fea1(as, b)— fs41(bs, ci):fs+1(ai, b, €4) .

Let ¢:C,(I")—Z(R) be the group homomorphism defined (for free generators) by

SD(a: b):f§+1(a, b)'
Then we have

3 - 3
. zifs+1(as, by, ci):iglzi(f;+l(ai; c)— fsilay, bi)— fs+1(bs, )

=1

Zi(SD(ai, bi)_SD(ai, bi)—SD(bi, c1))

1

it

:So(izilzit<ai’ b, C,;))

=¢(0)

=0. This completes the proof.

We obtain some examples of s-graphs by the following
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LEMMA 8.4. If H,(I')=0 then I' is an s-graph over R for any natural s.

PrOOF. Suppose that in C,(I") the equality (x) holds, and let f € TM(p’, R).
We must to show that iZi}lzisz(ai, b, ¢;)=0.

Consider the group homomorphism ¢ :C.,(I")—»R defined for free-generators
by ola, b, ¢, )=Fs(a, b, ¢). Since izilzi(ai’ b;, ¢;)=Ker 9, and Ker 0,=Im 0, (see

Section 2) then

Y

l
, lzi(ai, b, ci)=j§1uj[(x;, V5, w)— (x5 v t)+H(x5 wy t)—(; wy t)]

T

Il

for some u,, -+, u;=Z and xjp’yjp’wjp’tj’ 7=1,2, -, L
Therefore, by Example 8.2, we have

k 7 k
EIZifsﬂ(ai, b, Ci):gp(iglzi(ai, bi, ci)>

1 - -
:Jéuj[fs+l(xjy Vi, W)= fsr(Xj ¥js 15)

_l_ s+1(xj: wj, tj)—fs+l(yj) wj; t])]

~

Il

J

I

u;0=0. This completes the proof.
1

REMARK 8.5. The necessary condition for any R-derivation of order s of P
to be (s-+1)-integrable given in [Proposition 8.3 is not sufficient. For example.
let I" be such as in Example 7.4. Then I is one-dimensional triangulation of
the projective plane, and therefore H,(I")=0 (see [3]). So, by Iis
a l-graph over Z,. But, by Example 7.4, there exists an R-derivation d of
order 1 of P=M,(R), (where R=Z,) such that d is not 2-integrable.

THEOREM 8.6. Let P be a special subring of M,(R) with the relation p, and
let I'=I"(p) and s<s’=Zco. If Hy(I")=0 and H,(I') is a free abelian group then

every R-derivation of order s of P is s’-integrable.

ProOOF. It follows from and that it is sufficient to
prove that every transitive mapping of order s from p’ to R is (s-+1)-integrable.

Let f=TMyp’, R) and consider a group homomorphism ¢ :Im d,—Z(R)
defined (for generators) by ¢(9s(a, b, ¢))=— fs+i(a, b, ¢). Observe that, by
8.4, ¢ is a well defined mapping. Since H,(I") is free then ¢ we can extend to
a group homomorphism ¢’ :Ker d,—»Z(R). Further, by Lemma 5.5, we can
extend ¢’ to a group homomorphism ¢”:C,(I")—Z(R). Put f,u(a, b)=¢"(a, b)
for all ap’b. We show that, for any ap’bp’c, holds
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fsaila, C>=i+]§+1fi(a, b)f b, ¢

=furi(@y D)+ forslb, O+ 33:(a, ) ani-ilb, ©).
In fact
fors(a, )= fon(a, = Fonlb, ©)
=¢"(a, c)—¢"(a, b)—p”(b, c;
=—"(0:(a, b, ¢))
=—¢(04(a, b, ¢))
=Fon(a, b, ©)

= 3 /da, B)f sui-ilb, ©).

Therefore (1, f1, -+, fs fs+1) IS a transitive mapping of order (s+41) from p’ to
R, i.e. f is (s+1)-integrable. This completes the proof.

9. s-graphs.

In this section, using some additional properties of s-graphs, we describe
(for fixed s<s’) a new class of special subrings of M,(R) in which every R-
derivation of order s is s’-integrable.

Let I'=(I;, p’) be the graph of the relation p and let W(I")=Z[X (4,5 ; ap’b]
be the ring of polynomials over Z in commuting indeterminates, one for each
pair (a, b), where ap’b. Denote by T(I') the ring W(I")/I(I"), where I(I') is
the ideal in W(I') generated by all elements of the form

X(a.c)_X(a,b)—X(b,c)
for ap’bp’c.
Moreover, denote by <a, b) the coset of the element X 5 in T().
The following lemma plays a basic role in our further considerations.

LEMMA 9.1. Let n be a power of a prime number p. If in the proup C(I")
holds the equalitv of lhe form (x), then in the ring T(I") the following equality
holds

n-1

222 W/ )an by comI=0.

=1
PrROOF. Observe that the equality () is equivalent to an equality of the form

(+4) 3 (ah, ¢+ 3 ((af, b)+65, )
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= 33(af, eh)+ B, b+0h ¢,

where ajp’bip’ci, a’jp’bjp’c’ for some integers w, v and ;=1, -, u, j=1, -
Hence it suffices to prove that, in the ring 7(I"), we have

n-1

(1) > S WD), ), bRbE, et

n-1

A n ” n\n—k
:j§é1<l/p)(k> » D05, ¢ :

Let a, 8:C.,(I"—W(I’) be the group homomorphisms defined, for free generators,
as follows:

a(a, b):X(a,b)
and

,3((1, b):X?a.w .
Further we denote X, 5 by (a, b) (for all ap’b).
Applying a to the equality (xx) we obtain the equality (xx) in the ring W(I").
Applying B to the equality (+*) we obtain the following equality in W) :

(1) 3(al, ed™+ 3((af, bHmHeY, )
= 3(al, et 3l b (b, ).
Let
Ai=(ai, ci),
—(at; bi)+(bu cl) for l:1: 2’ T, U,
and

Cj:(ag: C’]/) ’
-_<a b”)‘!‘(b;, C”) for ]:1: 2} L, U

Rise both sides of the equality (%) in W([") to the n-th power and apply (1).
Then we have

n

@) 55 (5 @i, b0 cor-r— 25 (% ag, pHs, ey

'L:l k=1

= B Gy, i) {AB - Afu—Bi - Biv]

1. + +1,u=‘n
ylysn

+ X (e, JLD{ s Dip—Cir - G
j + +JD n
Jl 2 JOFR

EOIEA) G- 2) Gy,
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where @iy, -+, 7,), (J1, - J») are Newton symbols, i.e.

(ny+ - +np)!

e for integers ny, -+, n,=0.

(nl: ) nk):

Since n is a power of a prime number p then every Newton symbol in the
equality (2) is divisible by p, and therefore, since W(I") is a ring with no Z-
torsion, we can divide both sides of the equality (2) by p. We obtain the new
equality in W(I"), we denote it by (3).

Observe, that the right side of the equality (3) is an element of the ideal
I(I"). Therefore, in the ring T(I'), we have the equality (*xx). This completes
the proof.

As a consequence of we obtain
THEOREM 9.2. Every graph I'is a 1-graph over an arbitrary ring R.

Observe, that this theorem is obvious if R is a 2-torsion-free ring. In fact.
Let f,:p’—Z(R) be an usual transitive mapping and suppose that in C,(I") the
equality of the form (x) holds. Consider the group homomorphism 0:C(IN—
Z(R) such that ¢(a, b)=f,(a, b)*, for all ap’b. Then we have

2i2:12if1(ai, bi) f1(bs, €i)

i

S2d(fias, b)+Flbs, = fias, b)—fibs, )]

a

= 1Zi[S0(ai, Ci)_sﬁ(ai, bi)— (b, i)

i

I

k
=@ Elzit(ai; bi, Ci))
=

=(0)
=0.

PrOOF OF THEOREM 9.2. Let f=TM(p’, R) and suppose that in C,(I') the
equality of the form (x) holds. Let A:W([")—Z(R) be the ring homomorphism
such that h(Xa.»)=7F1(a, b) for all ap’b. Since f, is an usual transitive mapping
then % induces a ring homomorphism 7 : T(I")—Z(R) such that i(<a, b>)=/f.(a, b).
From Lemma 9.1, for n=2, we have

k -~/ k
2 zif @, b2y, cd=R(E zi<as, b<by, )

=h(0)=0. This completes the proof.
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LEMMA 9.3. If in C,(I") the equality (x) holds then in the ring T(I") we have

élzi<ai, b1,><b1,, C,L-><ai, ci>:0.

PrOOF. From [Lemma 9.1, for n=3, we get

Oziézi«ai, by bi, ¢i>+<as, bi<bsi, ¢:>?)

ziaq, bid<bi, ciy(Kas, bip+<bs, i)

Mar

1

I
-

k

= >1zi{ay, bi)<b;, ci)ai, ¢ .

i=1
THEOREM 9.4. Every graph I is a 2-graph over an arbitrary ring R.

PrROOF. Let feTM,(p’, R) and suppose that in C,(I") holds (). Consider
the group homomorphism ¢ : C;(I")—Z(R) such that

QD(a; b):fl(a) b)fZ(a; b)
for all ap’b.

Then we have
0=¢(0)

=é‘{zi(go(ai, co)—olag, b)—(bs, i)

Sal(fias b+ filb, cXfuas b+ Flbe €
+ 1@, b)f1(bs, €))— Flai, bo)fo(bi, ci)]

J

= IZi[fz(ai, bi) f1(bs, co)+filas, by)fabs, ¢i)]

i

I

Ma-

4+ 2zif1(ai, b)) filbs, ci)filas, o).

1

I
-

Since, by

izilzifl(ai; by) f1(bs, ¢i)filas, ¢)=0

then
" 2L fo(@s, b fslbiy € Fi(as, b falbi c)1=0.

1

.

This completes the proof.

Using a similar method we can prove the following
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THEOREM 9.5. Let I' be a graph and R be a ring.

a) If R is 2-torsion-free then I’ is a 3-graph over R,
b) I'is a 4-graph over R,

c) If R is 6-torsion-free then I is a 5-graph over R,
d) I'is a 6-graph.

Using the above theorems and arguments from the proof of [Theorem 8.6 we

obtain

THEORREM 9.6. Let P be a special subring of M(R) with the relation p.
Assume that the homology group H(I'(p)) is free abelian. Then

(1) Every R-derivation of order s<3 of P is 3-integrable.

(2) If R is 2-torsion-free then every R-derivation of order s<5 of P is 5-

integrable.
(38) If R is 3!-torsion-free then every R-derivation of order s<7 of P is 7-

integrable.

We end this paper with the following open problems :

1). Let I'=(l,, p) be a fixed graph (i.e. p is a partial ordering relation on
I,) and let s<s’. Suppose that for every R any R-derivation of order s of
M,(R), is s’-integrable. Is H,(I") a free group?

2). Find numbers n, s, a ring R, and a partial order p on I, such that the
graph I'=(I,, p) is not s-graph over R.

3). Is every graph a 3-graph over an arbitrary ring?
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