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PROPERTIES OF AN $L$-CARDINAL

By

Yoshihiro ABE

When we study the set theory $ZF(aa)$ , (Ref. [1] or [3]) it may be natural
to consider a cardinal $\kappa$ such that for every formula in the language of usual set
theory,

$ R(\kappa)Faa\alpha\phi-VFaa\alpha\phi$ .

Let $\kappa$ be measurable, $M$ a transitive isomorph of $V^{\kappa}/U$ where $U$ is a normal
ultrafilter on $\kappa$, and $j$ the canonical elementary embedding of $V$ into $M$. If “

$aa$
’

is interpreted by the closed umbounded filter of $\kappa$ and $j(\kappa)$ respectively, in $M$,

$R(\kappa)Faa\alpha\phi-R(j(\kappa))F$ a $ a\alpha\phi$ .
Therefore measurability is sufficient to show the consistency of the desired

situation. But when we want $\kappa$ to have this property in full $V$, a new cardinal
axiom is needed.

1. Definitions of an L-cardinal and its basic properties.

DEFINITION. Let $\phi$ be a formula in set theory whose constants are all in
$R(\kappa)$ , and $\lambda$ be an $ordinal\geqq\kappa$ .

a) A cardinal $\kappa$ is a $(\phi-\lambda)$-cardinal, if there exists an elementary embedding
$j:V\rightarrow M$ such that

(i) $ j(\kappa)>\lambda$ and $\kappa$ is the least ordinal moved by $j$,

(ii) for every $x$ in $R(j(\kappa))^{M},$ $MF\phi(x)\rightarrow VF\phi(x)$ .
b) $\kappa$ is a $\phi$-cardinal if for every $\lambda>\kappa,$ $\kappa$ is a $(\phi-\lambda)$-cardinal.
c) $\kappa$ is a $\Sigma_{n}$-cardinal if for every $\Sigma_{n}$ formula $\phi,$ $\kappa$ is a $\phi$-cardinal.
d) Let $A$ be a set of formulas, $\kappa$ is a $(A-\lambda)$-cardinal if for every formula

in $A,$ $\kappa$ is a $(\phi-\lambda)$-cardinal.
e) $\kappa$ is an L-cardinal if for every formula $\phi,$ $\kappa$ is a $\phi$-cardinal.

The axiom of an L-cardinal deflnitely cannot be formulated in ZFC. How-
ever, all the arguments can be carried out in ZFC within some $R(\kappa)$ where $\kappa$ is
inaccessible.

The first lemma is trivial but basic in the development.
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LEMMA 1.1. Let $\phi$ be a formula such that $\{\alpha<\kappa|\phi(\alpha)\}$ is unbounded in $\kappa$ and
all constants are in $R(\kappa)$ . If $\kappa$ is a $(\phi-\lambda)$-cardinal, there exists an ordinal $\beta>\lambda$

such that $\phi(\beta)$ holds.

PROOF. Let $j$ be an elementary embedding from $V$ into $M$ as in the defini-
tion of $(\phi-\lambda)$-cardinal. By assumption,

$VF\forall\alpha<\kappa\exists\beta<\kappa\{\alpha<\beta\wedge\phi(\beta)\}$

Hence,
$MF\forall\alpha<j(\kappa)\exists\beta<j(\kappa)\{\alpha<\beta\wedge\phi(\beta)\}$

Since $\lambda<j(\kappa)$ , there is a $\beta<j(\kappa)$ such that $MF\phi(\beta)$ and $\beta>\lambda$ . Also $VF\phi(\beta)$

because $\beta\in R(j(\kappa))^{M}$ .

COROLLARY 1.2. Let $\kappa$ be a $\{\phi, \urcorner\phi\}$ -cardinal. If $\{\alpha<\kappa|\psi(a)\}$ is closed
unbounded in $\kappa$, then $\{\alpha|\phi(\alpha)\}$ is closed unbounded in OR.

PROOF. Assume $\{a<\kappa|\phi(\alpha)\}=C$ is closed unbounded in $\kappa$ . By LEMMA 1.1.
$\{\alpha|\phi(\alpha)\}=C^{\prime}$ is an unbounded class. Let $\alpha$ be a limit point of C’ and $j:V\rightarrow M$

be an elementary embedding that satisfies the definition of $(\{\phi, \urcorner\phi\}-\alpha)$-cardinal.

$VF\forall\beta<\alpha\exists\gamma<a\{\beta<\gamma\wedge\phi(\gamma)\}$ implies

$MF\forall\beta<\alpha\exists\gamma<\alpha\{\beta<\gamma\wedge\phi(\gamma)\}$ .
As $C$ is closed, $MF\forall\alpha<j(\kappa)\{\forall\beta<\alpha\exists\gamma<\alpha\{\beta<\gamma\wedge\phi(\gamma)\}\rightarrow\phi(\alpha)\}$ . Hence $MF\phi(\alpha)$ .
Also $VF\phi(a)$ .

For simplicity we consider a fixed formula $\Phi_{0}(x)\equiv\exists\alpha\{x=R(a)\}$ . If $\kappa$ is a
$(\Phi_{0}-\lambda)$-cardinal, $R(j(\kappa))^{H}=R(](\kappa))$ . Of course some results follow by the weaker
assumption that $\kappa$ is a $(\psi-\lambda)$-cardinal which is reduced from the fact that $\kappa$ is a
$(\Phi_{0}-\lambda)$-cardinal.

LEMMA 1.3. If rc is a $\Phi_{0}$-cardinal, { $a|$ $a$ is strongly inaccessible} is a proper
class.

PROOF. Since $\kappa$ is measurable, { $\alpha<\kappa|\alpha$ is strongly inaccessible} is unbounded
in $\kappa$ . Since $R(j(\kappa))^{H}=R(j(\kappa))$ , the strongly inaccessibles in $M$ which are less than
$j(\kappa)$ are also strongly inaccessible in $V$. Now the conclusion is clear by Corol-
lary 1.2.

LEMMA 1.4. If $\kappa$ is a $(\Phi_{0}-\kappa)$-cardinal, $\kappa$ is the $\kappa$-th measurable.

PROOF. Let $j:V\rightarrow M$ be an associated embedding. $ j(\kappa)>\kappa$ and $\lim(\kappa)$ implies
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$ j(\kappa)>\kappa+\omega$. Hence $R(\kappa+2)^{M}=R(\kappa+2)$ . Let $U$ be a normal ultrafilter on $\kappa$ . Since
$U\in R(\kappa+2),$ $MF$ ( $U$ is a normal ultrafilter on $\kappa$). Hence $MF$ ( $\kappa$ is measurable).

As usual, define $U^{\prime}$

$X\in U^{\prime}$ iff $X\subset\kappa\wedge\kappa\in j(X)$

$U^{\prime}$ is a normal ultrafilter on $\kappa$ and { $\alpha<\kappa|\alpha$ is $measurable$} $\in U^{\prime}$ .

COROLLARY 1.5. If $\kappa$ is a $\Phi_{0}$-cardinal, { $\alpha|\alpha$ is measurable} is a proper class.

PROOF. By Corollary 1.2 and Lemma 1.4.

1.3 and 1.5 follow from the assumption of an extendible cardinal. 1.4 follows
from $2^{f}$-supercompactness. As our definition of $(\phi-\lambda)$-cardinal does not assume
$2M\subset M$, it is not known whether $\kappa$ carries a normal ultrafilter on $ P_{\kappa}\lambda$ . Even it
is not clear whether $\kappa$ is $\lambda$-compact (Ref. [2]). The next definition is also due
to [2].

DEFINITION. $\Sigma_{n}$ relativizes down to $R(\kappa)$ iff for each formula $\phi\in\Sigma_{n}$ ,

$\forall a\in R(\kappa)\{\phi(a)\rightarrow R(\kappa)\}=\phi(a)\}$ .

LEMMA 1.6. If $\kappa$ is a $\Sigma_{n}$-cardinal, $\Sigma_{n}$ relativizes down to $R(\kappa)$ .

PROOF. By induction on $n$ . $\Pi_{2}$ relativizes down to $R(\kappa)$ since $\kappa$ is strongly
inaccessible (Ref. [4]). Thus $\Sigma_{1}$ relativizes down to $R(\kappa)$ . Assume $\phi\in\Sigma_{n}$ and
$a\in R(\kappa),$ $\phi(a)$ holds. $(n\geqq 2)$ There is a $\Sigma_{n-1}$ formula $\psi$ such that $\phi(a)\equiv\exists x\psi(x, a)$ .
Since $\phi(a)$ , for some $b,$ $VF\psi(b, a)$ . Choose $\lambda$ large enough to $b\in R(\lambda)$ . Let
$j:V\rightarrow M$ be an associated embedding of $(\urcorner\psi-\lambda)$-ness of $\kappa$ . (Note that $\urcorner\psi\in\Sigma_{n}.$ )

Since $b\in R(j(\kappa))^{H}$ and $VF\psi(b, a),$ $MF\psi(b, a)$ . (As $\Phi_{0}$ is a $\Sigma_{2}$ formula, we can
assume $b\in M.$ ) But in $V$, $\Sigma_{n-1}$ relativizes down to $R(\kappa)$ . Hence in $M,$ $\Sigma_{n-1}$

relativizes down to $R(j(\kappa))$ . Therefore $MF(R(J(\kappa))F\psi(b, a))$ . Hence $MF$

$R(j(\kappa))F\phi(a))$ . By elementarity of $j$ and $j(a)=a,$ $R(\kappa)t=\phi(a)$ in $V$.

Now the followings are all clear.

THEOREM 1.7. If $\kappa$ is an L-cardinal, $\Sigma_{\omega}$ relativizes down to $R(\kappa)$ .

COROLLARY 1.8. If $\kappa$ is an L-cardinal, $R(\kappa)$ is an elementary substructure
of $V$.

COROLLARY 1.9. If $\kappa$ is an L-cardinal and $\alpha$ is a definable cardinal, then
$\alpha<\kappa$.
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Note that: If $\kappa$ is supercompact, $\Sigma_{2}$ relativizes down to $R(\kappa)$ . If $\kappa$ is
extendible, $\Sigma_{3}$ relativizes down to $R(\kappa)$ . (Ref. [2])

Also recall the notion of “ ghost cardinal” of M. Takahashi. It is the least
cardinal not definable by $\tilde{\Delta}_{1}^{2}$-formula. Of course an L-cardinal is not definable in
set theory, ZFC.

COROLLARY 1.10. Let $\kappa$ be an L-cardinal and $\phi$ be a formula whose constants
are all in $R(\kappa)$ . If there exists an ordinal $\gamma\geqq\kappa$ , such that $\phi(\gamma)$ holds, then $\{\alpha|\phi(\alpha)\}$

is a proper class and $\{a<\kappa|\phi(\alpha)\}$ is unbounded in $\kappa$ .

PROOF. By Corollary 1.2, it suffices to show $\{\alpha<\kappa|\phi(\alpha)\}$ is unbounded in $\kappa$ .
If not, there is an $ a<\kappa$ such that $\forall\beta<\kappa(a<\beta\rightarrow\urcorner\phi(\beta))$ . By the above Theorem,
$\forall\beta<\kappa(\alpha<\beta\rightarrow R(\kappa)F\urcorner\phi(\beta))$ . Then $R(\kappa)F\forall\beta(\alpha<\beta\rightarrow\urcorner\phi(\beta))$ . Using Corollary 1.9,
we have $\forall\beta(\alpha<\beta\rightarrow\urcorner\phi(\beta))$ . Contradicting $\phi(\gamma)$ .

1.7-1.10 are too strong and give us suspicion about consistency.

2. Cohen extension and an L-cardinal.

Once L-cardinal is defined, many problems are raised. If $V$ is a model of
$ZFC+\exists\kappa$ ; L-cardinal, is there a Cohen extension of $V$ where $ZFC+\exists\kappa$ : L-cardinal
$+G.C.H$ . hold ? Is not $j(\kappa)$ necessarily measurable ? (When $\kappa$ is extendible, $j(\kappa)$

is always measurable.) Can an L-cardinal be strongly compact ?
All these questions are unclear now. We need some technics to preserve an

L-cardinal. We only get a quite easy fact that is not useful to solve the above
problems.

LEMMA 2.1. If $|P|<\kappa$ and $\kappa$ is a $((|\vdash\phi)-\lambda)$ -cardinal, then $\kappa$ is a $(\phi-\lambda)-$

cardinal in $V[G]$ .

PROOF. We can assume $P\in R(\kappa)$ . Let $j:V\rightarrow M$ be an elementary embedding
that witnesses $\kappa$ is a $((|\vdash\phi)-\lambda)$-cardinal. We extend $j$ to $f$ as usual.

$\tilde{j}(K_{G}(\underline{x}))=K_{G}(](\underline{x}))$

(We use the notations of [7].) $f$ is an elementary embedding of $V[G]$ into
$M[G]$ . (Ref. [5]) If $x\in R(j(\kappa))^{M[G]}$ , there is a name $\underline{\chi}\in R(j(\kappa))^{M}$ such that
$K_{G}(\underline{x})=x$ . $M[G]f=\phi(x)$ iff $MF(p|\vdash\phi(\underline{x}))$ for some $p\in G$. The latter implies
$\exists p\in G(p|\vdash\phi(\underline{x}))$ in $V$. Therefore $V[G]1=\phi(x)$ .

THEOREM 2.2. If $\kappa$ is an L-cardinal in $V$ and $|P|<\kappa,$ $\kappa$ is an L-cardinal
in $V[G]$ .
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Using Theorem 2.2, we consider the relation between an L-cardinal and
strongly compact cardinals.

THEOREM 2.3. Let $\kappa$ be an L-cardinal.
(i) If $\kappa$ is strongly compact, $\kappa$ is the $\kappa$-th strongly compact.
(ii) If $\kappa$ is not strongly compact, there is no strongly compact cardinal greater

tnan $\kappa$, and it is consistent that there is an L-cardinal and there is no strongly

compact cardinal.

PROOF. (i) By Corollary 1.10.
(ii) At first we assert that $\kappa$ is not a limit of strongly compacts. For a meas-
urable cardinal that is a limit of strongly compacts is strongly compact and $\kappa$ is
clearly measurable. (Ref. [6])

Thus there is no strongly compact above $\kappa$ by Corollary 1.10. And there
exists a regular cardinal $ a<\kappa$ such that there is no strongly compact cardinal
between $a$ and $\kappa$ . We use the forcing condition that collapses $\alpha$ to $\omega_{1}$ . In the

extended universe there is no strongly compact cardinal and $\kappa$ remains an
L-cardinal by Theorem 2.2.
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