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PROPERTIES OF AN L-CARDINAL

By
Yoshihiro ABE

When we study the set theory ZF(aa), (Ref. or [3]) it may be natural
to consider a cardinal x such that for every formula in the language of usual set
theory,

Rk)F aaap<—>VE aaad.

Let £ be measurable, M a transitive isomorph of V*/U where U is a normatl
ultrafilter on &, and ; the canonical elementary embedding of V into M. If “aa”
is interpreted by the closed umbounded filter of £ and j(x) respectively, in M,

R(k) = aaadp<—>R(j(k)) F aaagp.

Therefore measurability is sufficient to show the consistency of the desired
situation. But when we want & to have this property in full ¥V, a new cardinal
axiom is needed.

1. Definitions of an L-cardinal and its basic properties.

DEFINITION. Let ¢ be a formula in set theory whose constants are all in
R(x), and A be an ordinal=«. '
a) A cardinal x is a (¢-A)-cardinal, if there exists an elementary embedding
j:V-M such that ' ' “
' | (i) j(£)>2 and & is the least ordinal moved by J,
v(ii) for every x in R(j(k)¥, Mk ¢(x)— VE ¢(x).
b) £ is a ¢-cardinal if for every A>k, k is a (¢—A)-cardinal.
¢) & is a Xy-cardinal if for every X, formula ¢, £ is a ¢-cardinal.
d) Let A be a set of formulas, « 7s a (A—A)-cardinal if for every formula
in A, r is a (¢—2A)-cardinal.
- ©) & is an L-cardinal if for every formula ¢, £ is a ¢-cardinal.

The axiom of an L-cardinal definitely cannot be formulated in ZFC. How-
ever, all the arguments can be carried out in ZFC within some R(x) where « is
inaccessible.

The first lemma is trivial but basic in the development.
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LEMMA 1.1. Let ¢ be a formula such that {a<r|¢(a)} is unbounded in k and
all constants are in R(x). If x is a (¢—2A)-cardinal, there exists an ordinal B>2
such that ¢(B) holds.

PROOF. Let ; be an elementary embedding from V into M as in the defini-
tion of (¢—A)-cardinal. By assumption,

VEVa<kdB<r{a<BAGB)}

Hence,
MEYa<jx)AB<j&) {a<BAS(B)}

Since 1< j(k), there is a B<j(x) such that MkE=¢(8) and B>A. Also VE&(S)
because S<R(j(x))X.

COROLLARY 1.2. Let k£ be a {p, —¢}-cardinal. If {a<ck|d(a)} is closed
unbounded in k, then {a|d(a)} is closed unbounded in OR.

PROOF. Assume {a<k|@(a)} =C is closed unbounded in £#. By LEMMA 1.1.
{a|d(a)} =C’ is an unbounded class. Let a be a limit point of C’ and ;: VoM
be an elementary embedding that satisfies the definition of ({¢, —¢} —a)-cardinal.

VEV<adr<a{B<rA¢()} implies
MeV<adr<a{B<rAé()}.
As C is closed, M=VYa<jk){VB<adr<a{B<rA¢()}—da)}. Hence Mk ¢(a).
Also VEé(a).

For simplicity we consider a fixed formula @(x)=3a{x=R(a)}. If £ is a
(@o—2A)-cardinal, R(j(x))*=R(j(x)). Of course some results follow by the weaker
assumption that £ is a (¢—A)-cardinal which is reduced from the fact that « is a
(@,—2)-cardinal.

LEMMA 1.3. If x is a @,-cardinal, {a|a is strongly inaccessible} is a proper
class.

PROOF. Since & is measurable, {a <x|a is strongly inaccessible} is unbounded
in £. Since R(j(x))Y=R(j(x)), the strongly inaccessibles in M which are less than
7(x) are also strongly inaccessible in ¥. Now the conclusion is clear by Corol-
lary 1.2.

LEMMA 1.4. If k is a (®,—«k)-cardinal, k is the x-th measurable.

PROOF. Let j: V—M be an associated embedding. ;(«) >« and lim(x) implies
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j(&)>r+w. Hence R(k+2)Y=R(x+2). Let U be a normal ultrafilter on x. Since
U=R(k+2), M=(U is a normal ultrafilter on x). Hence M= (x is measurable).
As usual, define U’

XeU’ iff XCeArej(X)

U’ is a normal ultrafilter on £ and {a<x|a is measurable} =U".
COROLLARY 1.5. If k is a @,-cardinal, {a|a is measurable} is a proper class.

PrROOF. By [Corollary 1.2 and

1.3 and 1.5 follow from the assumption of an extendible cardinal. 1.4 follows
from 2*-supercompactness. As our definition of (¢—2)-cardinal does not assume
AMC M, it is not known whether « carries a normal ultrafilter on P,A. Even it
is not clear whether £ is A-compact (Ref. [2]). The next definition is also due

to [2].

DEFINITION. &%, relativizes down to R(k) iff for each formula ¢,

Vas R(x){¢(a)—R(x)=¢(a)}.
LEMMA 1.6. If k is a Y,-cardinal, %, relativizes down to R(k).

PrROOF. By induction on n. I, relativizes down to R(x) since x is strongly
inaccessible (Ref. [4]). Thus X, relativizes down to R(x). Assume g2, and
asR(x), ¢(a) holds. (n=2) There is a X,-, formula ¢ such that ¢(a)=Ix¢(x, a).
Since ¢(a), for some b, ViE¢(b, a). Choose A large enough to beR(4). Let
j: V—M be an associated embedding of (—¢—2)-ness of . (Note that ~¢p=Z;.)
Since be R(j(x)) and VE¢b, a), M=, a). (As @, is a ¥, formula, we can
assume beM.) But in V, X,_, relativizes down to R(x). Hence in M, ¥,_,
relativizes down to R(j(x)). Therefore ME(R((k))E=¢(b, a)). Hence ME
R(j(k))=¢(a)). By elementarity of ;j and j(a)=a, R(k)E¢(a) in V.

Now the followings are all clear.
THEOREM 1.7. If k is an L-cardinal, ¥, relativizes down to R(k).

COROLLARY 1.8. If £ is an L-cardinal, R(x) is an elementary substructure
of V.

COROLLARY 1.9. If r is an L-cardinal and « is a definable cardinal, then
a<k.
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Note that: If & is supercompact, 2, relativizes down to R(x). If & is
extendible, X; relativizes down to R(x). (Ref.

Also recall the notion of “ ghost cardinal” of M. Takahashi. It is the least
cardinal not definable by Z%-formula. Of course an L-cardinal is not definable in
set theory, ZFC.

COROLLARY 1.10. Let & be an L-cardinal and ¢ be a formula whose constants
are all in R(k). If there exists an ordinal y=«, such that ¢(y) holds, then {a|@(a)}

is a proper class and {a<k|@(a)} is unbounded in «.

PROOF. By it suffices to show {a<#|@(a)} is unbounded in .
If not, there is an w<x such that V8<s(a<pB——¢(B)). By the above Theorem,
VB<r(a< B—R(x)E—¢(B)). Then R(k)E=VpBa<B——¢(B). Using
we have VB(a<p—¢(B)). Contradicting ¢(7).

1.7-1.10 are too strong and give us suspicion about consistency.

2. Cohen extension and an L-cardinal.

Once L-cardinal is defined, many problems are raised. If ¥V is a model of
ZFC+3k : L-cardinal, is there a Cohen extension of ¥V where ZFC+3«k: L-cardinal
+G.C.H. hold ? Is not j(x) necessarily measurable ? (When & is extendible, j(x)
is always measurable.) Can an L-cardinal be strongly compact ?

All these questions are unclear now. We need some technics to preserve an
L-cardinal. We only get a quite easy fact that is not useful to solve the above
problems. '

LemMmA 2.1. If |P|<k and k is a ((—@)—A)-cardinal, then k is a (p—A)-
cardinal in VLG].

PROOF. We can assume PER(x). Let j: V—M be an elementary embedding
that witnesses £ is a ((I-¢)—A)-cardinal. We extend ; to 7 as usual.

J(Ka(x)=Ks(j(x))
(We use the notations of [7]) 7 is an elementary embedding of V[G] into
M[G]. (Ref. [B] If x=R(j(x))¥, there is a name x<R(j(k))” such that

Ke(x)y=x. M[Gle=¢(x) iff ME=(pl—¢(x)) for some p=G. The latter implies
dpeG(pI-¢d(x)) in V. Therefore VLG @(x).

THEOREM 2.2. If k is an L-cardinal in V and |P|<k, £ is an L-card:inal
n VLG].
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Using we consider the relation between an L-cardinal and
strongly compact cardinals.

THEOREM 2.3. Let & be an L-cardinal.
(i) If & is strongly compact, k is the k-th strongly compact.
(i) If &k is not strongly compact, there is no strongly compact cardinal greater
tnan k, and it is consistent that there is an L-cardinal and there is no strongly

compact cardinal.

PrROOF. (i) By [Corollary 1.10
(ii) At first we assert that x is not a limit of strongly compacts. For a meas-
urable cardinal that is a limit of strongly compacts is strongly compact and « is
clearly measurable. (Ref.

Thus there is no strongly compact above & by [Corollary 1.I0L And there
exists a regular cardinal @<s such that there is no strongly compact cardinal
between « and x. We use the forcing condition that collapses « to w,. In the
extended universe there is no strongly compact cardinal and « remains an
L-cardinal by
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