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$V$-RINGS RELATIVE TO HEREDITARY
TORSION THEORIES

By

Yasuhiko TAKEHANA

A ring $R$ is called a right V-ring in case every simple right R-module is

injective. Villamayor has characterized a right V-ring as one each right ideal

of which is an intersection of maximal right ideals. The main purpose of this
paper is to give torsion theoretical generalizations of right V-rings. Theorem 2
generalizes Theorem 2.1 in [6], stating that any simple module in $\mathcal{F}$ is X-

injective if and only if $J(M)=0$ holds for any $M$ in $\sigma\tau$ , where $\xi\Gamma$ denotes a class

of modules closed under cyclic submodules, homomorphic images and extensions.
Applying Theorem 2 for the Goldie and the Lambek torsion theories, we

obtain Corollaries 5 and 6. We consider in Corollary 5 a ring $R$ (called a right
$V(G)$ -ring) for which every singular simple right R-module is injective, and in
Corollary 6 a right $V(L)$-ring for which every dense right ideal is an inter-
section of maximal right ideals. We characterize V-rings in terms of $V(G)-$

rings or $V(L)$-rings in Proposition 8 which is closely related to Theorem 8 in

[7]. In Theorem 9 it is proved that commutative $V(G)$-rings turn out to be

V-rings. In this connection two examples are given to show that neither com-
mutative $V(L)$-rings nor $V(G)$-rings are V-rings.

Throughout this paper $R$ is a ring with a unit, every right R-module is
unital and Mod-R is the category of right R-modules. For a right R-module
$M,$ $Z(M),$ $E(M)$ and $J(M)$ denote the singular submodule of $M$, the injective

hull of $M$ and the intersection of all maximal submodules of $M$. A right R-

module $M$ is called g-injective for a subclass $9i$ of Mod-R if $Hom_{R}(-, M)$ pre-

serves the exactness for every exact sequence of right R-modules $0\rightarrow A\rightarrow B\rightarrow C$

$\rightarrow 0$ with $ C\in\xi\Gamma$ .

LEMMA 1. A right R-module $M$ is $\mathcal{F}$ -injective if and only if $Hom_{R}(-, M)$

preserves the exactness for every exact sequence $0\rightarrow I\rightarrow R\rightarrow R/I\rightarrow 0$ with $R/I\in\sigma r$ ,

where $\mathcal{F}$ denotes a subclass of Mod-R closed under cyclic submodules and cyclic

homomorphic images.
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PROOF. This is proved similarly as in the well known proof of Baer’s

criterion for injectivity.
The following theorem including its proof is a slight modification of Theorem

2.1 in [6].

THEOREM 2. Let Er denote a subclass of Mod-R closed under cyclic sub-
modules, homomorphic images and extensions. Then the following conditions are
equivalent.

(1) Any simple module in $\xi\Gamma$ is ff-injective.
(2) $J(M)=0$ holds for any $M$ in $g$ .
(3) If I is a right ideal of $R$ with $R/I$ in $\mathcal{F}$ , then I is an intersection of

maximal right ideals of $R$ .

PROOF. (1) $\rightarrow(2)$ : Let $M$ in ff and $0\neq x\in M$. By Zorn’s lemma there is a
submodule $Y$ of $M$ which is maximal among the submodules $X$ of $M$ with $x\not\in X$.
Let $D=Y+xR$ . Then $D/Y$ is a simple submodule of $M/Y$ with $D/Y$ and $M/Y$

in $\mathcal{F}$ . Then by (1) $M/Y=(D/Y)\oplus(K/Y)$ for some submodule $K$ of $M$ containing
$Y$ . Since $0\neq x+Y\in D/Y$ , we have $x\not\in K$, and so $K=Y$ by the maximality of
$Y$ . We conclude that $Y$ is a maximal submodule of $M$ and $x\not\in Y$ .

(2) $\rightarrow(3)$ : Obvious.
(3) $\rightarrow(1)$ : Let $I$ be a right ideal of $R$ with $R/I$ in $q,$ $S$ a simple module

in $\sigma r$ and $f\in Hom_{R}(I, S)$ . In view of Lemma 1, it suffices to show that $f$ has
an extension $R\rightarrow S$ . We may assume $f$ is an epimorphism. Putting $K=Ker(f)$ ,

we have $ R/K\in\xi\Gamma$ , for $I/K$ and $R/I$ are in $\mathcal{F}$ and fr is closed under extensions.
Thus by the assumption there exists a maximal right ideal $L$ of $R$ with $L\supset K$

and $L$ ]) $I$ . Then $L+I=R$ and $L\cap I=K$, and so $R/K=(L/K)\oplus(I/K)$ . It now
easily follows that $f$ has an extension $R\rightarrow S$ .

We call a ring satisfying the equivalent conditions of the preceding theorem
a right V(S)-ring.

COROLLARY 3. Let $R$ be a right $V(f)$-ring and Er a hereditary torsion class

of Mod-R. Then $L^{2}=L$ holds for any right ideal $L$ of $R$ with $R/L$ in $\xi\Gamma$ .

PROOF. Since $L/(L^{2})$ is a homomorphic image of a direct sum of copies of
$R/L,$ $L/(L^{2})\in \mathcal{F}$ . As $\mathcal{F}$ is a closed under extensions, $R/(L^{2})$ is in $\sigma\tau$ , and so $L^{2}$

is an intersection of maximal right ideals of $R$ by the preceding theorem. It
now follows from the same argument as in the proof of Corollary 2.2 in [6]

that $L^{2}=L$ holds.
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As is easily seen from Theorem 2.4 in [4], a ring $R$ is a right noetherian
V-ring if and only if every semisimple right R-module is injective. This result
can be generalized as follows (The proof of (2) $\rightarrow(1)$ of the following proposition
is a modification of the proof of (4) $\rightarrow(2)$ in [4, Theorem 2.4]).

PROPOSITION 4. Let $\mathcal{F}$ denote a hereditary torsion class of Mod-R and $\mathcal{L}=$

$=\{I\subset R;R/I\in \mathcal{F}\}$ . Then the following conditions are equivalent.
(1) $R$ is a right $V(\mathcal{F})$-ring and $\mathcal{L}$ satisfies the ascending chain conditions.
(2) Every semisimple module in $\sigma r$ is ’l-injective.

PROOF. (1) $\rightarrow(2)$ : This follows from Theorem 2 together with Proposition
14.2 of [3].

(2) $\rightarrow(1)$ : In view of Theorem 2 it suffices to prove that $\mathcal{L}$ satisfies the
ascending chain conditions. Suppose that

$ I_{1}\subsetneqq I_{2}\subsetneqq I_{3}\cdots\cdots\subsetneqq I_{j}\subsetneqq\cdots\cdots$

is a strictly ascending chain in $\mathcal{L}$ and $I=\cup I_{j}$ . Since $R$ is a V(g)-ring, for each
$j$, there exists a maximal right ideal $L_{j}$ of $R$ with $L_{j}\supseteqq I_{j-1}$ and $L_{j}\not\geqq I_{j}$ . Putting
$H_{J}=L_{j}\cap I_{j}$, we have $I_{j}\supsetneqq H_{j}\supseteqq I_{j-1}$ and $I_{j}/H_{j}$ is a simple module in $q$ , for $I_{j}/H_{j}$

is a homomorphic image of $R/I_{j-1}$ . Thus the sequence $0\rightarrow I_{j}/H_{j}\rightarrow I/H_{j}\rightarrow I/I_{j}\rightarrow 0$

splits by the assumption, and so there exists a canonical projection $h_{j}$ : $I\rightarrow I/H_{j}$

$\rightarrow I_{j}/H_{j}$ for each $j$ . Let $f$ denote a mapping from $I$ to $\oplus(I_{j}/H_{j})$ defined by
$f(x)=(h_{j}(x))$ for $x\in I$ . Since $h_{i}(x)=0$ for $x\in H_{j}$ and $i>j,$ $f$ is of course well
defined. By the assumption, $\oplus(I_{j}/H_{j})$ is $9i$ -injective, and so $f$ is extended to a
mapping from $R$ to $\oplus(I_{j}/H_{j})$ since $R/I$ is in $q$ . But $ g(1)\in(I_{1}/H_{1})\oplus(I_{2}/H_{2})\oplus$

$\oplus(I_{j}/H_{j})$ for some $j$ . This contradicts to the fact that $h_{i}(x)\neq 0$ for each $i$

and $x\in I_{i}-H_{i}$ .
Recall a fundamental property of the Goldie or the Lambek torsion theory.

For their definitions see [3]. Letting $G(M)(L(M))$ denote the Goldie (the Lam-
bek) torsion submodule of a right R-module $M$, respectively, there hold for a
module $M(1)G$ and $L$ are left exact radicals, (2) $G(M)/Z(M)=Z(M/Z(M))$ ,

(3) $G(M)=M(L(M)=M)$ if and only if $Z(M)$ is large in $M(Hom_{R}(M, E(R))=0)$ ,

(4) $Z(M)\supset L(M),$ (5) if $Z(R)=0$ then $G(M)=Z(M)=L(M)$ and (6) if $M$ is X-
injective then $M$ is injective, where $\sigma=\{M\in Mod- R;G(M)=M\}$ .

Now we apply Theorem 2 for the Goldie or the Lambek torsion class.

COROLLARY 5. The following conditions are equivalent.
(1) Any singular simple right R-module is injective.
(2) $J(M)=0$ holds for each right R-module $M$ with $Z(M)$ large in $M$.
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(3) If I is a right ideal of $R$ with $Z(R/I)$ large in $R/I$ , then I is an inter-
section of maximal right ideals of $R$ .

A right ideal $I$ of $R$ is called dense if $Hom_{R}(R/I, E(R))=0$ .

COROLLARY 6. The following conditions are equivalent.
(1) If $S$ is a simple right R-module with $Hom_{R}(S, R)=0$ and I a dense right

ideal of $R$, then for any $f\in Hom_{R}(I, S),$ $f$ is extended to a mapping from $R$ into $S$ .
(2) $J(M)=0$ holds for any right R-module $M$ with $Hom_{R}(M, E(R))=0$ .
(3) Any dense right ideal of $R$ is an intersection of maximal right ideals

of $R$ .

COROLLARY 7. Suppose that $Z(R_{R})=0$, then the following conditions are
equivalent.

(1) If $S$ is a simple right R-module with $Hom_{R}(S, R)=0$ , then $S$ is injective.
(2) $J(M)=0$ holds for any singular right R-module $M$.
(3) Any large right ideal of $R$ is an intersection of maximal right ideals

of $R$ .

PROOF. This follows from Corollaries 5 and 6 together with the fact that
if $Z(R_{R})=0$ , then the Lambek torsion theory coincides with the Goldie torsion
theory.

We call a ring satisfying the equivalent conditions of Corollary 5 (Corollary

6) a right $V(G)$-ring (a right $V(L)$-ring) respectively. It is clear that right $V(G)-$

rings are right $V(L)$-rings.

PROPOSITION 8. The following assertions hold.
(1) $R$ is a right V-ring if and only if $R$ is a right $V(G)$-ring and every

minimal right ideal of $R$ is injective.
(2) $R$ is a right and left V-ring if and only if $R$ is a right and left $V(L)-$

ring with $Z(R_{R})=Z(RR)=0$ and every minimal one-sided ideal of $R$ is injective.

PROOF. (1) The “only if” part is clear. For the “if” part it is sufficient
to observe that $J(M)=0$ holds for each cyclic singular right R-module $M$ in
view of Theorem 8 in [1]. But this is a direct consequence of Corollary 5.

(2) It is well known that the left Goldie torsion theory coincides with the
left Lambek torsion theory in case $R$ is left nonsingular. On the other hand,

each right V-ring is left nonsingular by Lemma 2.3 in [6]. Thus (2) follows
from (1).
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Next we consider commutative $V(G)$ -rings.

THEOREM 9. Each commutative $V(G)$-ring is a V-ring.

PROOF. It is well known that if $R$ is commutative, then $R$ is a V-ring if

and only if $R$ is a Von-Neumann regular ring. It is sufficient to prove that
$I^{2}=I$ holds for every right ideal $I$ of $R$ . If $I$ is a large right ideal of $R$ , then
$I^{2}=I$ holds by an application of Corollary 3 for the Goldie torsion theory. Now

let $L$ be a right ideal of $R$ and $J$ a complement of $L$ in $R(i$ . $e$ . $J$ is maximal

in $\{J\subset R;J\cap L=0\}$ ). Then it is well known that $L+J$ is large in $R$ . Thus
$L+J=(L+J)^{2}=L^{2}+J\cdot L+L\cdot J+J^{2}=L^{2}+J^{2}$ , and so $L^{2}=L$ as desired.

The following example is given to show that $V(G)$-rings are not necessarily

V-rings.

EXAMPLE I. Let $k$ be a field, $R=\left(\begin{array}{ll}k & 0\\k & k\end{array}\right),$ $M=\left(\begin{array}{ll}k & 0\\k & 0\end{array}\right)$ and $K=\left(\begin{array}{ll}0 & 0\\k & k\end{array}\right)$ .
Then it is easily verified that $M$ is a unique proper large right ideal of the ring
$R$ and $Z(R)=0$ . Since $M$ is a maximal right ideal of $R,$ $R$ is a $V(G)$-ring by

Corollary 7. But $J(R)=M\cap K\neq 0$ , and so $R$ is not a V-ring.

In Theorem 8 in [7], R. Yue Chi Ming showed that $R$ is a V-ring if and

only if $R$ satisfies the following conditions (1) $J(M)=0$ holds for any cyclic

singular right R-module $M$ and (2) every minimal right ideal is injective. It is
easily verified that the above condition (1) is equivalent to the condition (3) of
Corollary 7.

The following example shows that a ring satisfying the condition (1) above

is not always a $V(G)$-ring and a commutative $V(L)$-ring is not always a V-ring.

EXAMPLE 2. Let $k$ be a field, $R=\{\left(\begin{array}{ll}a & b\\0 & a\end{array}\right);a,$ $b\in k\}$ and $M=\left(\begin{array}{ll}0 & k\\0 & 0\end{array}\right)$ . Then

$R$ is a commutative ring and has only one non-trivial right ideal $M$. Since $J(R)$

$=Z(R)=M\neq 0,$ $R$ is not a V-ring. It is clear that $R$ is a $V(L)$-ring and satisfies

the condition (3) of Corollary 7.

Finally we consider another generalization of V-rings which is suggested

by Theorem 6 in [7].

THEOREM 10. Let Er denote a subclass of Mod-R closed under cyclic sub-

modules and homomorphic images. Then the following conditions are equivalent.

(1) Any simple right R-module is $\mathcal{F}$ -injective.
(2) $J(N)=0$ holds for any right R-module $N$ such that there exists a simple

submodule $S$ of $N$ with $N/S$ in $q$ .
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(3) If $K$ is a maximal right subideal of a right ideal $P$ of $R$ with $R/P$ in
$q$ then $K$ is an intersection of maximal right ideals of $R$ .

PROOF. (1) $\rightarrow(2)$ : Let $N$ be a module and $S$ a simple submodule of $N$ with
$N/S$ in S. Then it is similarly proved as in the proof of Theorem 2 that
$J(N/S)=0$ . By the assumption, $N=S\oplus H$ holds for some submodule $H(\cong N/S)$

of $N$. Thus $J(N)\subseteqq J(S)\oplus J(H)=0$, as desired.
(2) $\rightarrow(3)$ : Obvious.
(3) $\rightarrow(1)$ ; It is similarly proved as in the proof of (3) $\rightarrow(1)$ of Theorem 2.

COROLLARY 11. The following conditions are equivalent.
(1) Any simple right R-module is injective.
(2) $J(N)=0$ holds for any right R-module $N$ such that there exists a simple

submodule $S$ with $Z(N/S)=N/S$ .
(3) If $K$ is a maximal right subideal of a large right ideal $P$ of $R$ , then $K$

is an intersection of maximal right ideals of $R$ .

PROOF. Put $\sigma\tau=\{M\in Mod- R;Z(M)=M\}$ in Theorem 10.
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