
TSUKUBA J. MATH.
Vol. 6 No. 1 (1982), 127–150

ON OBSERVABLE AND STRONGLY OBSERVABLE HOPF IDEALS

By

Hiroshi SHIGANO

Let $\mathfrak{G}=\mathfrak{S}\mathfrak{p}_{k}A$ be an affine group scheme over a ground field $k,$ $\mathfrak{H}=\mathfrak{S}\mathfrak{p}_{k}A/I$ a
closed subgroup scheme and $\overline{k}$ denote an algebraic closure of $k$ . When $\mathfrak{G}$ is
algebraic and $\mathfrak{G}(k)$ is dense in $\mathfrak{G}(\overline{k})$ , Bialynichi-Birula, Hochschild and Mostow
defined in their paper [1] that $\mathfrak{H}(k)$ is observable in $\mathfrak{G}(k)$ if every finite dimensional
rational $\mathfrak{H}(k)$ -module can be embedded in a rational $\mathfrak{G}(k)$ -module as a $\mathfrak{H}(k)$ -module,

and showed that one of its necessary and sufficient conditions is $\mathfrak{G}(\overline{k})/\mathfrak{H}(\overline{k})$ being
a quasi-affine variety. When $\mathfrak{G}$ is algebraic and reduced, and $k=\overline{k}$ , Cline, Parshall
and Scott defined in their paper [2] that $\mathfrak{H}(k)$ is strongly observable in $\mathfrak{G}(k)$ if
every rational $\mathfrak{H}(k)$ -module $N$ can be embedded in a rational $\mathfrak{G}(k)$ -module $M$ as a
$\mathfrak{H}(k)$ -module such that $N^{\mathfrak{H}(k)}=M^{\mathfrak{G}(k)}$ , and showed that one of its necessary and
sufficient conditions is $\mathfrak{G}(k)/\mathfrak{H}(k)$ being an affine variety. Since these concepts are
the representation-theoretic ones, we can extend them to a Hopf ideal of an arbitrary
(not necessarily commutative) Hopf algebra. In this paper, we characterize a
strongly observable Hopf ideal of an arbitrary Hopf algebra; a Hopf ideal $I$ of a
Hopf algebra $A$ is strongly observable if and only if $A$ is an injective $A/I$-comodule.
This result and the one of M. Takeuchi [10] give the following equivalent charac-
terizations of a strongly observable k-subgroup $\mathfrak{H}$ of an affine k-group $\mathfrak{G};(1)\mathcal{O}(\mathfrak{G})$

is an injective $k- \mathfrak{H}$-module, (2) $\mathfrak{H}$ is exact in $\mathfrak{G}$ and (3) $\mathfrak{G}/\mathfrak{H}\approx$ is affine. This is a
generalization of a main theorem in [2]. In case of observable Hopf ideals, we do
not have such a general characterization except the case when Hopf algebras are
commutative. So we can extend some results in [1] to affine k-groups. One of

them is that $\mathfrak{G}/\mathfrak{H}\approx$ is quasi-affine if and only if $I$ is observable in $A$ and $R=A\coprod_{A/I}k$

contains a simple left coideal $M$ such that $M\subset\sqrt{\mathfrak{A}}$ for any left coideal-ideal $\mathfrak{A}$ in
$R$ , where $\square $ denotes the cotensor product (see the first section).

Section 1 contains some preliminary results on cotensor products of comodules
and injective comodules. It also contains one main result; for a Hopf ideal $I$ of
an arbitrary Hopf algebra $A,$ $A$ is an injective $A/I$-comodule if and only if $A$ is an
injective cogenerator for the category of $A/I$-comodules (1.6). Section 2 gives a
characterization of a strongly observable Hopf ideal. Section 3 gives some results
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of observability, which are generalizations of those in [1] with Hopf algebraic proofs,
and a characterization of an observable Hopf ideal by a left coideal subalgebra.
Section 4 gives a geometric characterization of an observable k-subgroup of an
affine k-group.

In this paper, $\otimes means$ the tensor product over $k$ and we shall use the symbols
and the notations in [9] if there is no specification. For a k-coalgebra $C,$ $\Delta_{C}$ and
$\epsilon_{C}$ (simply, $\Delta$ and $\epsilon$ ) are the comultiplication and the counit of $C$ respectively. The
sigma notation, $\Delta(c)=\sum_{(c)}c_{(1)}\otimes c_{(2)}(c\in C)$ is as usual. For a k-Hopf algebra $A,$ $m_{A},$ $u_{A}$ ,
$\Delta_{A},$

$\epsilon_{A}$ and $S_{A}$ (simply, $m,$ $u,$ $\Delta,$
$\epsilon$ and $S$) are the multiplication, the unit, the comul-

tiplication, the counit and the antipode of $A$ respectively. $Mod_{k}$ is the category of
k-vector spaces. $Com_{C}^{r}$ (resp. Com $Cl$) is the category of right (resp. left) C-comodules,
which is simply denoted $Com_{C}$ if there is no confusion.

1. Cotensor products and injective comodules

Let $C$ be a k-coalgebra, $M$ a right C-comodule with the structure map $\rho_{M}$ and
$N$ a left C-comodule with the structure map $\lambda_{N}$ . We shall denote them by $(M, \rho)$

and $(N, \lambda)$ respectively, or simply $M_{C}$ and $cN$ respectively. The cotensor product
of $M$ and $N$ over $C,$ $M\coprod_{C}N$, is defined by

$\rho\otimes 1-1\otimes\lambda$

$M\coprod_{C}N=ker(M\otimes N-\rightarrow M\otimes C\otimes N)$ .

Let $D$ be another k-coalgebra and $N$ both left C-comodule and right D-comodule.
We call $N$ a $(C, D)$ -bicomodule if $(\rho_{N}\otimes 1)\lambda_{N}=(1\otimes\lambda_{N})\rho_{N}$ , which we shall simply denote
by $cN_{D}$ . $C$ is a $(C, C)$ -bicomodule if we take $\rho_{C}=\Delta=\lambda_{C}$ , and is called the regular
$(C, C)$ -bicomodule. We shall call $(C, \rho c=\Delta)$ and $(C, \lambda_{C}=\Delta)$ the left and the right
regular C-comodules respectively.

The following results are fundamental;
(a) for $M_{C}$ (resp. $cN$), $M\coprod_{C}$ ? (resp. $?\coprod_{C}N$) is the left exact functor from

Com $Cl$ (resp. $Com_{C}^{r}$) to $Mod_{k}$ .
(b) $M_{C-}\sim,M\coprod_{C}C,$

$m\sum_{(m)}m_{(0)}\otimes m_{(1)}$ and $cN_{\rightarrow}\sim C\coprod_{C}N,$

$n-\sum_{(n)}n_{(-1)}\otimes n_{(0)}$ .
(c) for $L_{C,C}M_{DD}N$, We have $(L\coprod_{C}M)\coprod_{D}N\simeq L\coprod_{C}(M\coprod_{D}N)$ , where $L\coprod_{C}M$ is a

right D-comodule by $1\coprod_{C}\lambda_{M}$ and $M\coprod_{D}N$ is a left C-comodule by $\rho_{M}\coprod_{C}1$ . (In fact,
they are subcomodules of $(L\otimes M, 1\otimes\lambda)$ and $(M\otimes N, \rho\otimes 1)$ respectively.)

If $I$ (resp. $J$ ) is a left (resp. right) coideal of $C$, then by (a) and (b) we get the
injection $M\coprod_{C}I\rightarrow->M\coprod_{C}C\simeq M$ (resp. $J\coprod_{C}N_{\frac{->}{}}C\coprod_{C}N\simeq N$) by which we shall
identify $M\coprod_{C}I$ (resp. $J\coprod_{C}N$) with the subspace of $M$ (resp. $N$).

As a matter of convienience, we shall only refer to either right comodules or
left comodules. For we shall have the similar definitions and results substituting
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“ right “ comodules for “ left “ comodules and vice versa. Furthermore, if possible,
we shall neither refer to them. (For example, in the definitions below, (1) can be
changed to the assertion that $c^{M}$ is coflat over $C$ if $?\coprod_{C}M$ is exact. In (3), either
$c^{M}$ or $M_{C}$ will do.)

It is well known [12] that there are four definitions;
(1) $M_{C}$ is C-coflat if $M\coprod_{C}^{p}$ in exact.
(2) $M_{C}$ is C-faithfully coflat if $M\coprod_{C}$? is faithfully exact.
(3) $M$ is C-injective if $Com_{C}(?, M)$ is exact.
(4) $M$ is a C-injective cogenerator if $Com_{C}(?, M)$ is faithfully exact.

The following fundamental properties of these comodules are due to M. Takeuchi.
In [12], he called coflat “ flat “. (For a detailed discussion of C-injective comodules,
we refer the reader to Green [5].)

(1.1) THEOREM. ([12], prop. A. 2.1.) The followings are equivalent;
(1) $M$ is C-injective (resp. a C-injective cogenerator),

(2) $M$ is (resp. faithfully) coflat over $C$.

Since $M_{C}\simeq M\coprod_{C}C,$ $C$ is a faithfully coflat C-comodule, and hence it is a C-injec-
tive cogenerator. Moreover, for a k-space $W,$ $W\otimes C$ is a C-injective cogenerator
taking $\rho_{W\otimes C}=1\otimes\Delta$ . That is, the category of C-comodules is enough injective.

Let $C$ and $D$ be k-coalgebras and $\pi:C\rightarrow D$ a coalgebra map. For any $M_{C}$ ,

$(M, (1\otimes\pi)\rho)$ is a right D-comodule, which is denoted by M.. If there is no confu-
sion, we say simply a right D-comodule $M$ the restriction of scalars. $C$ is a $(D, C)-$

bicomodule taking $\rho=\Delta,$ $\lambda=(\pi\otimes 1)\Delta$ . Hence, for any $N_{D},$ $(N\coprod {}_{D}C, 1\coprod_{D}\Delta)$ is a right
C-comodule, which is denoted by $N^{\pi}$ and called the induced comodule. We also
call it the extension of scalars to make an induced comodule. The restriction of
scalars is a left adjoint functor of the extension of scalars, that is, for $M_{C}$ and $c^{N}$,

we have an isomorphism of k-spaces;

$Com_{C}(M, N^{\pi})\simeq$ Com$D(M_{\pi}, N),$ $F-(1\otimes\pi)F$

whose inverse is given by $f-(f\otimes 1)\lambda_{M}$ .
From this adjointness, the induced comodule $N$ with the D-comodule map $ 1\otimes\epsilon$ :

$ 1\coprod_{D}\pi$

$(N^{\pi})_{\pi^{-}}\rightarrow N\coprod_{D}D\rightarrow\sim N$ has the universal mapping property as usual.
Let $C,$ $D$ and $\pi$ be as above in (1.2) and (1.3).

(1.2) LEMMA. The functor $?\coprod {}_{D}C$ is faithful if and only if $1\otimes\epsilon:M\coprod {}_{D}C\rightarrow M$

is surjective for any right D-comodule $M$.

PROOF. Remarking that the mapping
can.

Com$D(M, N)\rightarrow Com_{C}(M^{\pi}, N^{\pi})\overline{\rightarrow}Com_{D}((M^{\pi})_{\pi}, N)$
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$ 1\otimes\epsilon$

sends $f$ to $(id_{N}\otimes\pi)f^{\pi}=f(id_{M}\otimes\epsilon)$ , ” only if “ part is obvious. If $M\coprod {}_{D}C-\rightarrow M$ is
not surjective for some $M$, take $N=M/{\rm Im}(1\otimes\epsilon)$ and $f:M\rightarrow N$ as the canonical
non-zero D-comodule map. Then $f$ is mapped to zero, which contradicts the faith-
fulness of the functor. Q.E.D.

(1.3) PROPOSITION. Assume that $\pi$ is surjective. Then $C$ is a D-injective
cogenerator if and only if the D-subcomodule $ker\pi$ of $C$ is D-injective.

PROOF. Since $D$ is a D-injective cogenerator, “ if “ part is obvious. Assume
that $C$ is an injective cogenerator for $Com_{D}$ . Let $ J=ker\pi$ . Given any short exact
sequence of right D-comodules;

$0\rightarrow L\rightarrow M\rightarrow N\rightarrow 0$ ,

we get a commutative diagram;

$0$ $0$ $0$

$0\rightarrow L\coprod_{D}J-M\coprod_{D}J-N\coprod_{D}f$

$0$ $-L\coprod\iota$)$C-M\square DC-N\coprod_{D}C-0$

$0$ $-$ $L$ – $M$ – $N$ –0

$0$ $0$ $0$

where all columns and rows are exact. In fact the exactness of the first row
follows from the left exactness of the cotensor functor, that of the second row
does from the injectivity of $C$ and that of columns does from (1.2). The standard
argument (9-1emma) shows that $M\coprod_{D}J\rightarrow N\coprod_{D}J$ is surjective. Therefore $?\coprod_{D}J$

is exact, which means that $J$ is injective as a left D-comodule by (1.1). Q.E.D.

It is easy to make examples such that $C$ is D-injective but not a D-injective
cogenerator. But if $C$ and $D$ are Hopf algebras and $\pi$ is a Hopf algebra map, then
the fact that $C$ is D-injective is equivalent to that $C$ is a D-injective cogenerator.
This is a main result in this section.

First, we shall review comodules over a Hopf algebra. Let $A$ be a Hopf
algebra. Given two right A-comodules $M$ and $N$, we give $M\otimes N$ a structure of a
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right A-comodule taking $\rho_{M\otimes N}=(1\otimes 1\otimes m_{A})(1\otimes T\otimes 1)(\rho_{M}\otimes\rho_{N})$ , where $T$ is the twist-
ing map. We call it the tensor product comodule of $M$ and $N$.

The following is well known (Cf. [4], prop. 9, Cor. 2).

(1.4) THEOREM. Let $M$ and $N$ be right A-comodules. If $N$ is A-injective, then
the tensor product comodule $M\otimes N$ is A-injective.

It is convienient to give a remark here.

(1.5) REMARK. A right (resp. left) comodule over a coalgebra $C$ is a left (resp.
right) comodule over its opposite coalgebra $C^{\circ p}$ . If $\phi:C\rightarrow D$ is an anti-coalgebra
map, then it becomes a coalgebra map $\phi:C^{op}\rightarrow D$ . We have the composite of
functors,

$F_{\phi}$ : $Com_{C}^{r}\simeq Com_{c^{op}}^{l}\rightarrow Com_{D}^{\iota}$ (or $Com_{C}^{l}\simeq Com_{c^{op}}^{r}\rightarrow Com_{D}^{r}$),

where the second one is the restriction of scalars. Since the antipode $S$ of a Hopf
algebra $A$ is an anti-coalgebra map, we have functors,

$F_{S}$

$Com_{A}^{r}\rightarrow\leftarrow Com_{A}^{l}F_{S}$

If $S$ is bijective, then $F_{S}$ is an isomorphism whose inverse is $F_{s-1}$ . In particular,
if $S$ is involutive, $S^{2}=id_{A}$ , then so is $F_{S}$ . If $B$ is another Hopf algebra and $\pi:A\rightarrow B$

a Hopf algebra map, then
$S_{A}$

$F_{S_{B}}(A_{\pi})\rightarrow\pi A$

is a left B-comodule map. Therefore, if $S_{A}$ and $S_{B}$ are bijective, it is an isomorphim
of left B-comodules. It follows from this that $\pi A$ is B-injective if and only if $A_{\pi}$

is B-injective and so forth.

Let $A,$ $B$ and $\pi$ be as above. Let $M$ be a right A-module with the structure
map, $\omega_{M}$ : $M\otimes A\rightarrow M$. $M$ is called a right $(A, B)$-Hopf module if it is also a right
B-comodule and $\omega_{M}$ is a B-comodule map, where $M\otimes A$ is regarded as the tensor
product comodule. We can similarly define a left $(A, B)$-Hopf module. Note that
the right regular A-module $A$ is a right $(A, B)$-Hopf module regarding it as a right
B-comodules by $A_{\pi}$ , and $ J=ker\pi$ is a $(A, B)$-sub-Hopf module of $A$ .

(1.6) THEOREN. Let $A,$ $B$ and $\pi$ be as above. Assume that $\pi$ is surjective.
The following conditions are equivalent:

(1) A. is B-injective.
(2) There is a B-comodule map $\phi:B\rightarrow A$ with $\phi(1)=1$ .
(3) Every right $(A, B)$-Hopf module is B-injective.
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From (1.3), we get,

COROLLARY. $A$ is B-injective if and only if $A$ is a B-injective cogenerator.

PROOF OF THEOREM. It is obvious that (3) $\Rightarrow(1)$ .
$u_{B}$

(1) $\subset>(2)$ . For the exact sequence of B-comodules, $0\rightarrow k\rightarrow B$, we get the exact
$Com_{B}(u_{B}, 1)$

sequence of k-spaces, $Com_{B}(B, A)-\rightarrow Com_{B}(k, A)\rightarrow 0$ . One of the pre-
images of $u_{A}$ is the required one.

(2) $\mapsto(3)$ . Let $M$ be a right $(A, B)$-Hopf module and $c;M\rightarrow M\otimes B$ a k-linear
map such that $\iota(x)=x\otimes 1$ for any $x\in M$. Regarding $M\otimes A$ and $M\otimes B$ as tensor
product comodules, $\iota,$

$ 1\otimes\phi$ and $\omega_{M}$ are B-comodule maps. Since $\omega_{M}(\phi\otimes 1)\iota=id_{M},$ $M$

is a direct summand of $M\otimes B$ as a B-comodule. By (1.4), $M\otimes B$ is B-injective,
and so is $M$. Q.E.D.

(1.7) DEFINITIONS. Let $A,$ $B$ and and $\pi$ be as above, and $ I=ker\pi$ . If the con-
dition (1) (resp. (2)) below holds, we shall say that $I$ is (resp. strongly) observable
in $A$ , or that $B$ is A-(resp. strongly) observable with respect to right comodules;

(1) for any right B-comodule $N$ of finite dimension, there exists a right A-
comodule $M$ such that $N$ is a B-subcomodule of M.,

(2) for any right B-comodule $N$, there exists a right A-comodule $M$ such that
$N$ is a B-subcomodule of $M_{\pi}$ and $N\coprod_{B}k=M\coprod_{A}k$ .

It is obvious that (2) implies (1). We remark that (1) is equivalent to the
following each condition:

(3) for any left B-comodule $W$ of finite dimension, $\epsilon\otimes 1:A\coprod_{B}W\rightarrow W$ is sur-
jective.

(4) for any left B-comodule $W,$ $\epsilon\otimes 1:A\coprod_{B}W\rightarrow W$ is surjective.
(5) the functor $A\coprod_{B}$? is faithful.

In fact, the linear dual of a finite dimensional right B-comodule has the left B-
comodule structure which is called the transpose structure. (cf. [9] p. 99). Taking
the dual, (1) $\Leftrightarrow(3)$ follows from the univesal mapping property of induced co-
modules. Since a comodule is locally finite, that is, a union of the subcomodules
of finite dimension, we get (3) $\Leftrightarrow(4)$ . It follows from (1.2) that (4) $\Leftrightarrow(5)$ .

If the antipodes are bijective, (strong) observability with respect to right co-
modules is equivalent to that with respect to left comodules by (1.5). Recall that
the antipode of a commutative Hopf algebra is involutive. So we shall simply say
(strongly) observable in that case.

For later use, we shall review some notions. For detailed discussions of
these notions, we refer the reader to Green [51, where he called a comodule “ a
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module “.

(1.8) (1) Invariant matrices. Let $(M, \rho)$ be a right C-comodule and $\{x_{i}\}_{i\in 1}$ be
a k-basis of $M$. For any $j\in J$, we have an equation

$\rho(x_{j})=\sum_{i\in I}x_{i}\otimes c_{ij}$

in which the $c_{ij}$ are well-defined elements of $C$. The $I\times I$ matrix $(c_{tj})$ is called
the invariant matrix for $C$ afforded by the k-basis $\{x_{i}\}_{i\in 1}$ of $M$. Note that the
entries $c_{ij}$ of column $j$ are determined by the above equation. From the coassoci-
ativity and the counit law of a coalgebra, we have

$\Delta(c_{ij})=\sum_{h\in I}c_{ih}\otimes c_{hj}$ and $\epsilon(c_{ij})=\delta_{ij}$ $(i,j\in I)$

where $\delta_{ij}$ is the Kronecker symbol.
Similarly, for a left C-comodule $(N, \lambda)$ with a k-basis $\{y_{i}\}_{i\in I}$ , we can define the

invariant matrix afforded by the basis. Note that its entries $d_{ij}$ of row $j$ are
determined by the equation

$\lambda(y_{j})=\sum_{i\in I}d_{ji}\otimes\tau/\iota$ .

We also have

$\Delta(d_{ji})=\sum_{h\in I}d_{jh}\otimes d_{hi}$ and $\epsilon(d_{ji})=\delta_{ji}$ $(i,j\in I)$ .

(2) Coefficient spaces. The coefficient space $cf(M)$ of $M$ is defined to be the
k-subspace of $C$ generated by the $c_{ij}(i,j\in I)$ in (1). It does not depend on the choice
of a k-basis of $M$, and is a subcoalgebra of $C$ . Remark that, if $D$ is any subcoal-
gebra of $C$ containing $cf(M)$ , then $M$ is a D-comodule and $M=M\coprod_{C}D$ by the
definition of a cotensor product.

(3) Socles. A non-zero comodule $M$ is called to be simple if it has no sub-
comodule except $M$ and (0). $M$ is simple if and only if $cf(M)$ is a simple sub-
coalgebra. For an arbitrary $M$, the socle Soc $(M)$ of $M$ is defined to be the sum
of all simple subcomodules of M. $M$ is said to be completely reducible if every
subcomodule is a direct summand. $M$ is completely reducible if and only if $M=$

Soc $(M)$ . The coradical $R(C)$ of $C$ is the socle of the right and the left regular
C-comodule $C$ . We have the following fundamental properties;

(a) Soc $(M)=M\coprod_{C}R(C)$ .
(b) If $D$ is a simple subcoalgebra of $C$ and $M\coprod_{C}D\neq(0)$ , then $M\coprod_{C}D$ is com-

pletely reducible and $cf(M\coprod_{C}D)=D$ . Remark that Soc $(M)\coprod_{C}D=M\coprod_{C}R(C)\coprod_{C}D=$

$M\coprod_{C}D$ .
(c) Let $f$ : $M\rightarrow N$ be a comodule map. If $f$ is injective on Soc $(M)$ . then $f$

is injective.
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(d) Let $M$ and $N$ be C-injective. $M\simeq N$ if and only if Soc $(M)\simeq Soc(N)$ . Note
that $M$ is an injective envelope of Soc $(M)$ .

(4) Transpose comodules and Dual comodules. Let $(M, \rho)$ be a right C-comodule
of finite dimension, $\{x_{i} : 1\leq i\leq n\}$ a k-basis of $M$ and $(c_{ij})$ is the invariant matrix
afforded by the basis. We define its transpose ${}^{t}M$ to be the left C-comodule whose
underlying k-space is the dual k-space of $M$ and whose structure map is

$\lambda(x_{j}^{*})=\sum_{i=1}^{n}c_{ji}\otimes x_{i}^{*}$ $(1\leq j\leq n)$

where $\{x_{i}^{*}\}$ is the dual k-basis of $\{x_{i}\}$ (Cf. [9], 5.1.4). $(c_{ij})$ is also the invariant matrix
afforded by the dual k-basis of ${}^{t}M$ .

If $C$ is a Hopf algebra, then we can define the dual comodule of $M$. It is the
right C-comodule $dM$ whose underlying k-space is also the dual k-space of $M$ and
whose structure map is

$\rho(x_{j}^{*})=\sum_{i=1}^{n}x_{i}^{*}\otimes S(c_{ji})$ $(1\leq j\leq n)$

where $S$ is the antipode of $C$. That is, $dM=F_{S}({}^{t}M)$ where $F_{S}$ is in (1.5).

2. Strong observability.

(2.1) THEOREM. Let $A$ and $B$ be Hopf algebras, and $\pi;A\rightarrow B$ a surjective
Hopf algebra map. The followings are equivalent:

(1) $B$ is A-strongly observable with respect to right comodules.
(2) A. is B-injective.
(3) A. is a B-injective cogenerator.
(4) A. is B-coflat.
(5) A. is B-faithfully coflat.

REMARK. Cline-Parshall-Scott [2] showed that, if $A$ is a reduced, finitely
generated and commutative algebra over an algebraically closed field $k$ , then (1),

(2) and (4) are equivalent.

PROOF. From (1.1) and (1.6), (2), (3), (4) and (5) are equivalent. The idea of
proof is similar to that in [21. (1) $\Rightarrow(2)$ . For the right regular B-comodule $B$,

there exists a right A-comodule $M$ such that $B$ is a B-subcomodule of $M$ and
$M\coprod_{A}k=B\coprod_{B}k=k$ . Since $A$ is A-injective the A-comodule map $k\rightarrow A$ can be
extended to an A-comodule map $M\rightarrow A$ . Then the composite $B\rightarrow M\rightarrow A$ is a B-
comodule map sending 1 to 1. Hence by (1.6), $A$ is B-injective.

(2) $\sim(5)\Rightarrow(1)$ . First, we shall show that a simple right B-comodule $N$ can
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be embedded in a simple right A-comodule $M$ such that $N\coprod_{B}k=M\coprod_{A}k$ . Recall
that, since $k$ is a trivial $(B, B)$ -sub-bicomodule of $B,$ $N\coprod_{B}k$ is a right B-subcomodule
of $N\coprod_{B}B=N$. Since $N$ is simple, we have either $N\coprod_{B}k=0$ or $N=N\coprod_{B}k\simeq k$ . If
$N\simeq k$ , take $M=N$ which is considered as a trivial A-comodule. Hence $N\coprod_{B}k=N=$

$M=M\coprod_{A}k$ . Suppose that $N\coprod_{B}k=0$ . Since $A\coprod_{B}$ ? is faithful, $B$ is observable with

respect to right comodules by (1.7). Hence there exists a right A-comodule which
contains $N$ as a B-subcomodule and is of finite dimension. Among such A-comodules,

take $M$ of the smallest dimension. Let $M^{\prime}$ be a simple A-subcomodule of $M$. If
$M^{\prime}\cap N=0$ , then the composite $N\rightarrow M\rightarrow M/M^{\prime}$ is an injective B-comodule map.

This contradicts to the choice of $M$. Hence $M^{\prime}\cap N=N$ by the simplicity of $N$.
By the choice of $M$, we have $M=M^{\prime}$ . Since $M$ is simple, we have $M\coprod_{A}k=0$ or
$M\coprod_{A}k=M\simeq k$ . If $M\simeq k$ , then $N=M$. Therefore, if $N\coprod_{B}k=0$ , then $M\coprod_{A}k=0$ .

Let $N_{B}$ be given arbitrarily. From the above, we have a completely reducible
right A-comodule $M$ which contains the socle of $N$, Soc $(N)$ , as a B-subcomodule
and Soc $(N)\coprod_{B}k=M\coprod_{A}k$ . Let $E(M)$ be an injective envelope of $M$, then it is also

B-injective by Prop. 5 in [4]. Hence a B-comodule map Soc $(N)\rightarrow M\rightarrow E(M)$ can
be extended to a B-comodule map $\phi:N\rightarrow E(M)$ . Since the restriction of $\phi$ on
Soc $(N)$ is injective, $\phi$ is injective. By (1.8), we get $N\coprod_{B}k=Soc(N)\coprod_{B}k=M\coprod_{A}k=$

$E(M)\coprod_{A}k$ . Q.E.D.

In the rest of this section, we assume that $A$ is a commutative Hopf algebra.

A subalgebra $R$ of $A$ is called a left coideal subalgebra if it is also a left coideal.
The following theorem is due to M. Takeuchi.

(2.2) THEOREM ([10] &[11])
(1) Consider the following sets:
$\Re=$ {$R;R$ is a left coideal subagebra of $A$ and $A$ is faithfully flat over $R$}

$J=$ { $I;$ $I$ is a Hopf ideal of $A$ and $A$ is $A/I$-faithfully coflat}
$\mathcal{H}=$ { $R;R$ is a sub-Hopf algebra of $A$}
$j_{n}=$ {$I;$ $I$ is a normal Hopf ideal of $A$}

The correspondence $R-R^{+}A=the$ ideal of $A$ generated by $ker\epsilon\cap R=R^{+}$ and

the correspondence $I-A\coprod_{A/I}k$ are mutually inverse correspodences between $\mathscr{L}R$

and $J$ Under these, the subset $\mathcal{H}$ of $\mathscr{L}R$ correspnds to the subset $\beta_{n}$ of 3.
(2) If $A$ is pointed, then $A$ is faithfully coflat over $A/I$ for any Hopf ideal $I$.
(3) Let $\mathfrak{G}=\mathfrak{S}\mathfrak{p}_{k}A,$ $\mathfrak{H}=\mathfrak{S}\mathfrak{p}_{k}A/I$ and $\mathfrak{G}/\mathfrak{H}\approx$ a dur k-sheaf of right cosets ([3] p. 353).

The followings are equivalent:
(a) $\mathfrak{G}/\mathfrak{H}\approx$ is an affine scheme.
(b) $A$ is faithfully coflat over $A/I$.

Combining (2.1) and (2.2), we get:
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(2.3) THEOREM. Let $\mathfrak{G}$ be an affine k-group scheme and $\mathfrak{H}$ a closed k-subgroup
scheme. Then the followings are equivalent:

(1) $\mathfrak{H}$ is strongly observable in $\mathfrak{G}$ .
(2) $\mathcal{O}(\mathfrak{G})$ is an injective $k- \mathfrak{H}$-module.
(3) $\mathfrak{H}$ is an exact subgroup of $\mathfrak{G}$ , which means that $\mathcal{O}(\mathfrak{G})\prod_{o(\mathfrak{H})}$ ? is exact.
(4) $\mathfrak{G}/\mathfrak{H}\approx$ is an affine k-scheme.

REMARK. If $\mathfrak{G}$ is reduced and algebraic over an algebraically closed field $k$ ,
then this is a main theorem for a strongly observable subgroup in [2].

Finally, we shall give one criterion for strong observability. An ideal $\mathfrak{a}$ of a
left coideal subalgebra $R$ is called a left coideal-ideal if $\mathfrak{a}$ is also a left coideal of $A$ .

(2.4) PROPOSITION. Let $R$ be a left coideal subalgebra of a Hopf algebra $A$ .
The followings are equivalent:

(1) $R$ has no non-trivial left coideal-ideals.
(2) $A$ is faithfully flat over $R$.

PROOF. (2) $\Rightarrow(1)$ . Let $\mathfrak{a}$ be a left coideal-ideal in $R$ . If $\mathfrak{a}\neq 0$ , then $\epsilon(\mathfrak{a})\neq 0$ .
In fact, if $\in(\mathfrak{a})=0,$ $(1\otimes\epsilon)\Delta(\mathfrak{a})=0$ , for $\Delta(\mathfrak{a})\subset A\otimes \mathfrak{a}$ . But $(1\otimes\epsilon)\Delta=id$. Take $a\in \mathfrak{a}$ satisfying
with $\epsilon(a)=1$ . Then $1=\epsilon(a)=\sum_{(a)}S(a_{(1)})a_{(2)}\in \mathfrak{a}A$ . This contradicts the fact that $A$ is
faithfully flat over $R$.

(1) $\Rightarrow(2)$ . We may assume that $k$ is algebraically closed and both $A$ and $R$

are finitely generated.
(a) Suppose $A$ is reduced. Let $i:R\rightarrow A$ be the inclusion map, then

$f=\mathfrak{S}\mathfrak{p}_{k}i(k):\mathfrak{S}\mathfrak{p}_{k}A(k)\rightarrow \mathfrak{S}\mathfrak{p}_{k}R(k)$

is a $\mathfrak{S}\mathfrak{p}_{k}A(k)$-equivariant morphism. From the generic flatness and homogeneity of
$\mathfrak{S}\mathfrak{p}_{k}A(k),$ $A$ is flat over $R$ . Therefore $f$ is an open map. If $\mathfrak{a}$ is the definition ideal
of the closed set $\mathfrak{S}\mathfrak{p}_{k}R(k)-f(\mathfrak{S}\mathfrak{p}_{k}A(k)),$ $\mathfrak{a}$ is $\mathfrak{S}\mathfrak{p}_{k}A(k)$-stable, and hence it is a left
coideal-ideal. By the assumption, $\mathfrak{a}=0$ . This means $f$ is surjective, and hence $A$

is faithfully flat over $R$.
(b) Suppose $A$ is not reduced. Since a Hopf algebra over a field of charac-

teristic zero is reduced, $k$ has positive characteristic $p$ . Then $A^{(p^{n})}=\{a^{P^{n}} ; a\in A\}$

and $T=R^{(p^{n})}$ are reduced for a natural number $n$ being large enough. $T$ is also
a left coideal subalgebra of $A^{(p^{n})}$ and has no non-trivial left coideal-ideals. Since
$A^{(p^{n})}$ is faithfully flat over $T$ by (a) and $A$ is faithfully flat over $A^{(p^{n})}$ by (2.2), $A$

if faithfully flat over $T$. Since $R$ and $A$ are $(T, A)$-Hopf module, we have A-module
isomorphisms,

$A\otimes_{T}R\simeq A\otimes R/T^{+}R,$
$a\otimes r-\sum_{(r)}ar_{(1)}\otimes(r_{(2)}mod T^{+}R)$ ,
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and
$A\otimes_{T}A\simeq A\otimes A/T^{+}A,$ $a\otimes b-\sum_{(b)}ab_{(1)}\otimes(b_{(2)}mod T^{\vdash}A)$

by the structure theorem of $(T, A)$-Hopf modules ([7], th. 1). Since $A\otimes_{T}R\rightarrow A\otimes_{T}A$

is injective, $R/T^{+}R\rightarrow A/T^{+}A$ is injective and it is easy to see that $R/T^{+}R$ is a left
coideal subalgebra of a Hopf algebra $A/T^{+}A$ and $(R/T^{+}R)^{+}$ is nilpotent. Hence the
lemma below shows that $A/T^{+}A$ is a free $R/T^{+}R$-module. In particular, $A\otimes_{T}A$ is
faithfully flat over $A\otimes_{T}R$ . Therefore $A$ is faithfully flat over $R$ . Q.E.D.

LEMMA. Let $R$ be a left coideal subalgebra of $A$ . If $R^{\vdash}$ is nilpotent, then $A$

is a free R-module.

PROOF. Choose $a_{j}\in A(j\in J)$ such that $a_{j}mod R^{+}A$ is a k-basis of $A/R^{+}A$ . Since
$R^{+}$ is nilpotent, $A$ is spanned by the $a_{j}$ as an R-module by Nakayama’s lemma.
Hence the R-module map, $\otimes_{\Gamma}R\rightarrow A$ sending the j-th basis element to $a_{j}$ , is surjec-

tive. Tensoring with $A$ on the left, we get

$\oplus_{J}R$ $A$

$\ulcorner)$

$A\otimes_{R}(\oplus_{J}R)=\oplus_{J}A$ $A\otimes_{R}A$ .

The map $\oplus_{J}R\rightarrow\oplus_{J}A$ is injective; hence the top row must be injective if the

bottom one is. Note that the map sends the i-th basis element of $\oplus_{J}A$ to $1\otimes a_{i}$ .
Let $M$ be the kernel of the bottom map. Since $A\otimes_{R}A\simeq A\otimes A/R^{+}A$ ,

$0\rightarrow M\rightarrow\oplus_{J}A\rightarrow A\otimes A/R^{+}A\rightarrow 0$

is a split exact sequence of A-modules; hence R-modules. Apply $R/R^{+}\otimes_{R}?$ , and

we get an exact sequence

$0\rightarrow M/R^{+}M\rightarrow\oplus_{J}A/R^{+}A\rightarrow A/R^{+}A\otimes A/R^{\dashv}A\rightarrow 0$ .

Since $\oplus_{J}A/R^{+}A\rightarrow A/R^{+}A\otimes A/R^{+}A$ is $A/R^{+}A$-linear and sends the i-th basis element
to $1\otimes(a_{i}mod R^{+}A)$ , it is an isomorphism. Hence $M/R^{+}M=0$ , which means $M=0$

by Nakayama’s lemma. Q.E.D.

3. 0bservability.

In this section we assume that all Hopf algebras are commutative. Given any
Hopf algebra $A$ , we denote the set of all group-like elements in $A$ by $G(A)$ and
the coradical of $A$ by $R(A)$ as usual.

First, we shall give some results which are easily deduced from the definition.
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(3.1) Given the following commutative diagram of Hopf algebras,

$A_{1}$ $B_{1}$

$\ulcorner)$

$A_{2}$ $B_{2}$

where all the maps are Hopf algebra maps and surjective. We get,
(a) (transitivity of observability) if $B_{1}$ is $A_{1}$ -observable and $B_{2}$ is $B_{1}$ -observable,

then $B_{2}$ is $A_{1}$ -observable, and
(b) if $B_{2}$ is $A_{1}$ -observable, then $B_{2}$ is $A_{2}$ -observable.

A fundamental theorem of observability is due to [1].

(3.2) THEOREM. ([1], th. 1) Let $A$ and $B$ be Hopf algebras, and $\pi;A\rightarrow B$ a
surjective Hopf algebra map. Assume that, for any $g\in G(B)$ such that $A\coprod_{B}kg\neq 0$ ,
we have $A\coprod_{B}kg^{-1}\neq 0$ , where $kg$ and $kg^{-1}$ are one dimensional subcoalgebra of $B$

spanned by $g$ and $g^{-1}$ respectively. Then $B$ is A-observable. In particular, if
$A\coprod_{B}kg\neq 0$ for any $g\in G(B)$ then $B$ is A-observable.

REMARKS. (1) Since $A\coprod_{B}kg$ is a left coideal of $A,$ $\epsilon(A\coprod_{B}kg)\neq 0$ if it is not
zero. Hence the canoncal map $A\coprod_{B}kg\rightarrow kg$ is surjective. For $a\in A,$ $a\in A\coprod_{B}kg$ iff
$(1\otimes\pi)\Delta(a)=a\otimes g$ . Hence $\pi(a)=\epsilon(a)g$ for any $a\in A\coprod_{B}kg$ .

(2) If $N$ is a B-comodule of dimension one, then $cf(N)=kg$ for some $g\in G(B)$

and $N\simeq kg$ as a B-comodue. We call $g$ the weight of $N$.
It is easy to see that, for $g\in G(B)$ , the following conditions are equivalent; (a)

$A\coprod_{B}kg\neq 0,$ $(b)kg^{-1}\coprod_{B}A\neq 0$ , and (c) any right (resp. left) B-comodule $N$ of dimen-
sion one whose weight is $g$ (resp. $g^{-1}$ ) can be embedded in a right (resp. left) A-
comodule as a B-subcomodule.

By (c), we see that this theorem is a Hopf algebraic version of the theorem
1 in [1].

COROLLARY. Let $A,$ $B$ and $\pi$ be as above.
(1) For any field extension $K$ of $k$ , the A-observability of $B$ is equivalent to

the $A\otimes K$-observability of $B\otimes K$.
(2) $B$ is A-observable if either of the following condition holds;

(a) $\pi(G(A))=G(B)$ or (b) $\pi(R(A))=R(B)$ .
In particular, we get

(i) if $A\otimes K$ is pointed for some extension field $K$ of $k$ , then every Hopf ideal
of $A$ is observable, and

(ii) if $G(B)=\{1\}$ , then $B$ is A-observable.
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$PROO1\wedge^{\backslash }$ (i) Suppose that $B\otimes K$ is $A\otimes K$-observable. For any $g\in G(B)$ , we have
$(A\coprod_{B}kg)\otimes K\simeq(A\otimes K)\coprod_{B\otimes K}(kg\otimes K)$ , which is easily deduced from the definition of
cotensor products. Hence $A\coprod_{B}kg\neq 0$ . Suppose the contrary. For any $g\in G(B\otimes K)$ ,

we have only to show that a right $B\otimes K$-comodule $Kg$ can be embedded in a
right $A\otimes K$-comodule as a $B\otimes K$-subcomodule by the remark (2) above. Express
$g=\sum b_{i}\otimes\alpha_{i},$ $b_{i},$ $\in B,$ $\alpha_{i}\in K$ Let $N$ be a right coideal of $B$ generated by the $b_{i}$ . Since
$B$ is A-observable, $N$ can be embedded in a right A-comodule $M$ as a B-subcomodule.
The composite $Kg\rightarrow N\otimes K\rightarrow M\otimes K$ is the required embedding, where the first map
is defined to send $g$ to $\sum b_{i}\otimes\alpha_{i}$ .

(2) In case of (a), there is nothing to prove. Suppose (b) holds. For any
$g\in G(B)$ , we get $R(B)=kg\oplus C$ as a coalgebra and

$R(A)=R(A)\coprod_{R(B)}R(B)=(R(A)\coprod_{R(B)}kg)\oplus(R(A)\coprod_{R(B)}C)$

as a left A-comodule. If $R(A)\coprod_{R(B)}kg=0$ , then there is no element $a$ in $R(A)$ with
$\pi(a)=g$ , which contradicts to (b). Since $R(A)\coprod_{R(B)}kg=R(A)\coprod_{B}kg\subset A\coprod_{B}kq$ , we have
$A\coprod_{B}kg\neq 0$ .

The homomorphic image of a pointed Hopf algebra is pointed. Hence (i) follows
from (1) and (a). (ii) follows from $k\subset A\coprod_{B}k$ . Q.E.D.

(3.3) PROPOSITION. Suppose that $k$ is perfect.

(1) $I$ is an observable Hopf ideal in $A$ if and only if $\sqrt{I}$ is observable in $\Lambda$ .
(2) $B$ is A-observable if and only if $B_{red}$ is $A_{rcd}$ -observable, where $B_{red}=B/\sqrt{(0)}$

and $A_{red}=A/\sqrt{(0)}$ .

PROOF. Recall that, if $I$ is a Hopf ideal, so is $\sqrt{I}$, for $k$ is perfect. If $k$ has
characteristic zero, every Hopf algebra is reduced, hence there is nothing to prove.
Suppose $k$ has positive characteristic $p$ .

(1) Let $B=A/I$ ; then $B_{red}=A/\sqrt{I}$. Suppose $B$ is A-observable. From (3.1)

(b), it suffices to show that $B_{red}$ is B-observable. Let $g\in G(B_{red})$ with $B\coprod_{B_{red}}kg\neq 0$

and choose $b\in B\coprod_{B_{red}}kg$ with $\epsilon(b)=1$ . Take $f\in B$ such that $f$ mod $\sqrt{0}=g^{-1}$ ; then
$f^{P^{n}}\in G(B)$ for some positive integer $n$ . We get an element $b^{p^{n-1}}f^{p^{n}}$ of $B\coprod_{B_{red}}kq^{-1}$

which is not zero, for $\epsilon(b^{P^{n-1}}f^{P^{n}})=1$ . Suppose the contrary. Let $g\in G(B)$ with
$A\coprod_{B}kg\neq 0$ and choose $a\in A\coprod_{B}k$ with $\epsilon(a)=1$ . Since $\overline{g}=g$ mod $\sqrt{0}$ is in $G(B_{rcd})$ and
$\sqrt{}\overline{I}$ observable in $A,$ $A\coprod_{B_{red}}kg^{-1}\neq 0$ . Take its element $f$ with $\epsilon(f)=1$ ; then

$f\otimes g^{-1}=\sum_{(f)}f_{(1)}\otimes(f_{(2)}mod I)$ modulo $A\otimes\sqrt{O}$ . Hence

$f^{p^{n}}\otimes(g^{-1})^{p^{n}}=\sum_{(f)}f_{(1)}^{p^{n}}\otimes(f_{(2)}mod I)^{p^{n}}$

for some positive integer $n$ . We get a non-zero element $a^{p^{n-1}}f^{p^{n}}$ of $A\coprod_{B}kg^{-1}$ .
(2) It is obvious from (1) and (3.1). Q.E.D.
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Let $\pi:A\rightarrow B$ be a surjective Hopf algebra map, $\Lambda_{1}$ a sub-Hopf algebra of $A,$ $B_{1}=$

$\pi(A_{1}),$ $A_{0}=A/I(A_{1})$ and $B_{0}=B/I(B_{1})$ , where $I(A_{1})=A_{1}^{+}A$ and $I(B_{1})=B_{1}^{+}B$. From (2.1)

and (2.2), $A_{0}$ is A-strongly observable and $B_{0}$ is B-strongly observable. Hence if
$B$ is A-observable, $B_{0}$ is A-observable by (3.1). Note that $A_{1}=A\coprod_{A_{0}}k=k\coprod_{\Lambda_{0}}A$ and
$B_{1}=B\coprod_{B_{0}}k=k\coprod_{B_{0}}B$ ([10]).

(3.4) PROPOSITION. Under the situation as above, if $B_{1}$ has a non-zero left
integral $\tau$ , we get that $B$ is A-observable if and only if $B_{0}$ is $A_{0}$ -observable.

REMARKS. (1) From the definition of a left integral ([9], p. 91), it is easy to see
that $\tau$ is a left $B_{1}$ -comodule map from $B_{1}$ to $k$ , where $k$ is regarded as a trivial
comodule.

(2) A finite dimensional Hopf algebra always has a non-zero left integral
([9], ch. 5, 5.1.6.). Let $A$ be finitely generated as a k-algebra and take $A_{1}=\pi_{0}(A)=$

{$a\in A;k[a]$ is a separable k-algebra.} in the above situation; then $A_{1}$ is of finite
dimension and so is $B_{1}$ . Therefore the result of the proposition holds.

$PROO1^{\backslash }$ . Suppose $B_{0}$ is $A_{0}$ -observable. Then $B_{0}$ is A-observable by transitivity.

Hence $A\coprod_{B_{0}}kg\neq 0$ for any $g\in G(B)$ , viewing $kq$ as a $B_{0}$ -comodule by the restriction
of scalars. Note that it is an $A_{1}$ -module, where $A_{1}$ operates on it by the multiplica-
tion on the factor $A$ . Let $B_{1}q$ be a $B_{1}$ -submodule of $B$ generated by $y$ . It is also
a subcoalgebra. Define a k-linear map $\psi:A\coprod_{B_{0}}kg\rightarrow B_{1}g$ by $\psi(a\otimes(J)\pi(a)$ . It is easy
to show that $\psi$ is a B-comodule map and an $A_{1}$ -module map, where $B_{1}g$ is regarded as
an $A_{1}$ -module via $\pi:A_{1}\rightarrow B_{1}$ . We claim that $\psi$ is surjective. In fact, ${\rm Im}\psi$ is a
non-zero $B_{1}$ -submodule and a left coideal of $B_{1^{(j}}$ . We can choose $bg\in{\rm Im}\psi(b\in B_{1})$

with $\epsilon(bg)=1$ . Since $u\epsilon=m(S\otimes 1)$ , we get $1=\sum_{(b)}S(b_{(1)})b_{(2)}$ ; hence $ g=\sum_{(b)}S(b_{(1)})b_{(2)}g\in{\rm Im}\psi$ .
Therefore ${\rm Im}\psi=B_{1}q$ . The composite of B-comodule maps $\psi$ and $B_{1}g\rightarrow kg,$ $bg\rightarrow\tau(b)g$ ,

is a non-zero map; hence we get $A\Pi_{B}kg\neq 0$ by the universality of induced comodules.
Q.E.D.

REMARMK. Let $B_{1}$ be any sub-Hopf algebra of $B,$ $B_{0}=B/I(B_{1})$ and $g\in G(B)$ .
Then we get

(i) $B\coprod_{B_{0}}kg\ni b\otimes g\Leftrightarrow g\otimes b\in k\prime j\coprod_{J3_{0}}B$ ; hence $B\coprod/3_{0}kg$ is a subcoalgebra of $B\otimes kg$ , and
(ii) $B\coprod_{B_{0}}kq\simeq B_{1}\otimes kg\simeq B_{1}g$ as coalgebras, where $B\coprod_{B_{0}}kq$ and $B_{1}\otimes kg$ are sub-

coalgebras of $B\otimes kg$ , and $B_{1}q$ is a subcoalgebra of $B$. They are also isomorphic as
left B-comodules where $\lambda_{B\square _{B_{0}}kg}=\Delta\coprod_{B_{0}}1,$ $B_{1}\otimes kg$ is the tensor product comodule
and $\lambda_{B_{1}g}=\Delta$ , and also isomorphic as $B_{1}$ -modules, where $B_{1}$ operates respectively on
$B\coprod_{B_{0}}kg$ and $B_{1}\otimes kg$ by the multiplication on the factors $B$ and $B_{1}g$ , and $B_{1}g$ is a
$B_{1}$ -submodule of $B$.

$PROO1^{^{\backslash }}$ . (i) The proof of this assersion is the same as the one of $B\coprod_{B_{0}}k=$

$k\coprod_{B_{U}}B$.
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(ii) It is obvious that if $b\otimes g\in B\coprod_{B_{0}}kg$ , then $bg^{-1}\in B_{1}$ . It is easy to show that
mappings $B\coprod_{B_{0}}kg\rightarrow B_{1}\otimes kq,$ $b\otimes g-bg^{-1}\otimes g$ and $B_{1}\otimes kg\rightarrow B_{1}g,$ $b\otimes g-br$’
give us the required isomorphisms. Q.E.D.

COROLLARY (of proof). Let $A,$ $B$ and $\pi$ be as above, $B_{1}$ a finite dimensional
sub-Hopf algebra of $B$ and $B_{0}=B/I(B_{1})$ . Then the A-observabilities of $B$ and $B_{0}$ are
equivalent.

PROOF. Since $R=A\coprod_{B}B_{1}=A\coprod_{B_{0}}k$ is a $sub-(B, B)$-bicomodule of $A$ and

$\pi\coprod_{B}1$

$\psi:A\coprod_{B}B_{1}-\rightarrow B\coprod_{B}B_{1}\simeq B_{1}$

is a $(B, B)$ -bicomodule map, $ B_{2}={\rm Im}\phi$ is a subcoalgebra of $B_{1}$ . Since $\psi$ is also a k-
algebra map, $B_{2}$ is a subalgebra; hence a sub-bialgebra of $B_{1}$ . Since $B_{1}$ is of finite
dimension, $B_{2}$ is really a sub-Hopf algebra. Let $\tau$ be a non-zero left integral of $B_{2}$ .

Now suppose $B_{0}$ is A-observable and take any $g\in G(B)$ with $A\coprod_{B}kg\neq 0$ ; then
$A\coprod_{B_{0}}kg^{-1}\neq 0$ . Note that it is an R-module, where $R$ operates on it by the multi-
plication on the factor $A$ . Let $\psi$ be the composite;

$A\coprod_{B0}k_{!l^{-1}}\underline{\pi\coprod}\rightarrow^{B_{0}1}B\coprod_{B_{0}}kg^{-1}\simeq B_{1}g^{-1}$ .

If we show ${\rm Im}\psi\subset B_{2}g^{-1}$ , then $R,$ $B_{2},$ $\psi$ and $\tau$ play the same roles as $A_{1},$ $B_{1},$ $\psi$ and $\tau$

in the proof of the proposition respectively, so we shall get $A\coprod_{B}kg^{-1}\neq 0$ .
Choose $a\in A\coprod_{B}kg$ with $\in(a)=1$ . Then $\pi(a)=q$ . Given any $a^{\prime}\otimes g^{-1}\in A\coprod_{B_{0}}kg^{-1}$ ,

$\pi(a^{\prime})q=\pi(aa^{\prime})\in B_{1}$ ; hence $\sum_{(a^{l})}a_{(1)}^{\prime}a\otimes\pi(a_{(2)}^{\prime})g\in A\coprod_{B}B_{1}=R$ . Therefore $\phi(\sum_{(a^{J})}a_{(1)}^{\prime}a\otimes$

$\pi(a_{(2)}^{\prime})g)=\pi(a^{\prime})g\in B_{2}$ and $\psi(a^{\prime})=\pi(a^{\prime})\in B_{2}g^{-}$ . Q.E.D.

(3.5) PROPOSITiON. Let $A$ and $B$ be as in (3.2), $B_{1}$ a pointed irredecible sub-Hopf
algebra of $B$, and $B_{0}=B/I(B_{1})$ . Then the A-observabilities of $B$ and $B_{0}$ are equivalent.

PROOF. Suppose that $B_{0}$ is A-observable. Then $A\coprod_{I3_{0}}kg\neq 0$ for any $g\in G(B)$ .
We have $A\coprod_{B_{0}}kg\simeq A\coprod_{B}(B\coprod_{B_{0}}kq)\simeq A\coprod_{B}B_{1}g$ . Since $B_{1}g$ is a pointed irreducible
coalgebra with the unique simple coalgebra $kg$ and $A\coprod_{B}B_{1}g$ is a right $B_{1}g$-comodule,
we have Soc $(A\coprod_{B}B_{1}g)=A\coprod_{B}B_{1}g\coprod_{B_{1}g}kg=A\coprod_{B}kg$ , where Soc $(A\coprod_{B}B_{1}g)$ is the socle
of a $B_{1}g$-comodule $A\coprod_{B}B_{1}g$ . Since $A\coprod_{E}B_{1}g\neq 0$ , we get $A\coprod_{B}kg\neq 0$ . Q.E.D.

A Hopf algebra $A$ is split pointed if $A\simeq kG(A)\otimes A^{1}$ as Hopf algebras, where
$kG(A)$ is the group algebra of the group $G(A)$ and $A^{1}$ is the pointed irreducible
component of $A$ containing $k$ .

COROLLARY. Let $A$ and $B$ be as above. If $B\otimes K$ is split pointed for some
extension field $K$ of $k$ , then $B$ is A-observable.
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PROOF. By the corollary in (3.2), we may assume that $B$ is split pointed.
Since $kG(B)$ is co-semi-simple, that is, every $kG(B)$-comodule is an injective comodule,
$A$ is $kG(B)$-injective, where $A$ is a $kG(B)$-comodule through the Hopf algebra map,
$\Lambda\rightarrow B\rightarrow B/I(B^{1})\rightarrow\sim kG(B)$ . Hence $kG(B)$ is A-strongly observable. Therefore the
proposition assures that $B$ is A-observable. Q.E.D.

The next theorem was asserted in [7], prop. 3, but its proof is incorrect (see

the appendix at the last page), so we shall give a new proof here.
For any left coideal subalgebra $R$ of $A$ , we denote by $I(R)$ or $I_{A}(R)$ the ideal

of $A$ generated by $ R^{\vdash}=R\cap ker\epsilon$ . Remark that it is a Hopf ideal.

(3.6) THEOREM. If $R$ is a left coideal subalgebra $A$ , then $I(R)$ is observable
in $A$ .

PROOF. We shall reduce to proving the following problem: let $A$ be a finitely
generated Hopf domain over an algebraically closed field and $R$ a finitely generated
as a k-algebra, then $I(R)$ is observable in $A$ .

In fact, it is obvious that we may assume that $k$ is algebraically closed. Let
$B=A/I(R)$ and $\pi:A\rightarrow B$ be the canonical map. Given any $g\in G(B)$ with $A\coprod_{B}kg\neq 0$ ,

we have only to show $A\coprod_{B}kq^{-1}\neq 0$ . Let $c$ be a simple left coideal in $\sim 4\coprod_{B}kg$ . If
$\dim \mathfrak{c}=1$ , then there is nothing to prove. Let $a_{i}\in A(1\leqq i\leqq n)$ be a k-basis of $c$ with
$\epsilon(a_{i})=\delta_{1i}$ where Oli is the Kronecker symbol. Then $\pi(a_{i})=\sum_{(a_{i})}\epsilon\pi(a_{i(1)})\pi(a_{i(2)})=\epsilon\pi(a_{i})g=$

$\delta_{1i}g$ . Hence $\pi(a_{1})=(J$ and $a_{i}\in I(R)$ for $i=2,$ $\cdots,$ $n$ . Expressing

$a_{i}=\sum_{j=1}^{m}r_{ij}h_{j}$ , $r_{ij}\in R$ , $h_{j}\in A(i=2, \cdots, n)$ ,

put $R^{\prime}$ the left coideal subalgebra generated by the $r_{ij}$ , and $A^{\prime}$ the sub-Hopf algebra
generated by the $a_{i}$ and $R^{\prime}$ . Since $\Delta(a_{1})-a_{1}\otimes a_{1}\in A^{\prime}\otimes c^{+}\subset A^{\prime}\otimes I_{A^{\prime}}(R^{\prime}),\overline{a}_{1}=a_{1}mod$

$I(R^{\prime})$ is a group-like element and $a_{1}\in A^{\prime}\coprod_{B},k\overline{0}_{1}$ , where $B^{\prime}=A^{\prime}/I(R^{\prime})$ . If we have
$A^{\prime}\coprod_{B^{\prime}}k\overline{a}_{1}\neq 0$ , then we get $A\coprod_{B}kg^{-1}\neq 0$ . Hence we can reduce to the case that $A$

and $R$ are finitely generated as k-algebras.

Let $q:A\rightarrow A_{red}$ be the canonical map. We have $A_{red}/\sqrt{I(q(R))}=A/\sqrt{I(R)}=B_{red}$ .
By (3.4), if $\sqrt{I(q(R)}$) is observable in $A_{red},$ $I(R)$ is observable in $A$ . Hence we can
reduce to the case that $A$ is reduced. Finally, let $A_{0},$ $B_{0}$ be as the ones in the
remarks (2) of (3.4), and $q:A\rightarrow A_{0}$ the canonical map. It is easy to show that
$A_{0}/I(q(R))\simeq B_{0}$ . Hence by (3.3) and (3.4), if $\sqrt{I(q(R))}$ is observable in $A_{0},$ $I(R)$ is
observable in $A$ . Hence the reduction to the problem that is stated at the begin-
ning, can be done.

Now let $\mathfrak{G}$ be an affine algebraic group defined by $A$ , St a closed subgroup defined
by $B=A/\sqrt{I(R}$), and ee an affine variety defined by $R$ . The commutative diagrams
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$R\underline{\lrcorner}A\otimes R$ and $RA\otimes R\underline{\Delta}$

$\Delta$ $\downarrow 1\otimes J$ $\backslash \backslash $ $\int\epsilon\otimes 1$

$A\otimes R-\underline{\Delta\otimes 1}A\otimes A\otimes R$
$k\otimes R$

induce the commutative diagrams

ee
$\mathfrak{G}\times \mathfrak{G}\times X\mathfrak{G}\times \mathfrak{X}$

and

$ce\backslash \backslash _{\mathfrak{e}\times \mathfrak{X}^{/}}^{\leftarrow \mathfrak{G}\times \mathfrak{X}}$

$\mathfrak{G}\times \mathfrak{X}$

where $\mathfrak{e}$ is the unit group.
Hence the inclusion $R=A$ induces a $\mathfrak{G}$-equivariant dominant morphism of

varieties $\mathfrak{p}:\mathfrak{G}\rightarrow\chi$ . Given any $q\in G(B)$ with $A\coprod_{B}kg\neq 0$ , we choose an element $a$ of
$A\coprod_{B}kg$ with $\epsilon(a)=1$ and take $\mathfrak{Z}$ as the closed set of zeros of $a$ . Then we get (1)

$\mathfrak{K}\mathfrak{Z}=\mathfrak{Z},$ (2) $\mathfrak{p}^{-1}(\mathfrak{p}\mathfrak{Z})=\mathfrak{Z}$ , and (3) $\mathfrak{p}$ is an open map. In fact, it is easy to show (1)

and (2). (3) may be well-known (cf. [8], p. 58, Prop. 1). From (3), $\mathfrak{p}\mathfrak{Z}$ is closed in
$\mathfrak{p}(\mathfrak{G})$ ; hence $\mathfrak{p}^{-1}(\overline{\mathfrak{p}\mathfrak{Z})}=\mathfrak{p}^{-1}(\mathfrak{p}\mathfrak{Z}),$ $where\overline{\mathfrak{p}\mathfrak{Z}}$ is the closure of $\mathfrak{p}\mathfrak{Z}$ in X. Since $\epsilon(a)=1,$ $\mathfrak{p}(\mathfrak{e})\in\overline{\mathfrak{p}\mathfrak{Z}}$.
Therefore there exists $r\in R$ such that $r(\mathfrak{p}(\mathfrak{e}))=1$ and $r=0$ on $\overline{\mathfrak{p}\mathfrak{Z}\cdot}$ Viewing $r$ as a

regular function on $\mathfrak{G}$ , we get that $r=0$ on $\mathfrak{Z}$ . Hence $r\in\sqrt{(a)}$. Expressing $r^{n}=aa^{\prime}$

for some $a^{\prime}\in A$ and for some positive integer $n$ , we have $(a\otimes g)(a^{\prime}\otimes g^{-1})=a^{n}\otimes 1=$

$(a\otimes g)(\sum_{(a^{\prime})}a_{(1)}^{\prime}\otimes\pi(a_{(2)}^{\prime}))$ in $A\otimes B$ . Since $A$ is an integral domain, $B$ is reduced and $g$

is an invertible element, we have $a^{\prime}\otimes g^{-1}=\sum_{(a^{\prime})}a_{(1)}^{\prime}\otimes\pi(a_{(2)}^{\prime})$ , which means $a^{\prime}\in A\coprod_{B}kg^{-1}$ .
Since $\epsilon(r)=\epsilon(a)=1,$ $a^{\prime}\neq 0$ . Q.E.D.

(3.7) THEOREM ([7]) If $I$ is an observable Hopf ideal in $A$ , then $I=l(A\coprod_{A/I}k)=$

$I(k\coprod_{A/I}A)$ .

COROLLARY. If $I_{1}$ and $I_{2}$ are observable Hopf ideals in $A$ , then so is $I_{1}+I_{2}$ .

PROOF. By the above theorem, $I_{i}$ is determined by a left coideal subalgebra
$R_{i}(i=1,2)$ . We claim that $I_{1}+I_{2}=I(R_{1}R_{2})$ , where $R_{1}R_{2}$ is a left coideal subalgebra

generated by $R_{1}$ and $R_{2}$ . Since $I_{i}$ is generated by $R_{i}^{+}=ker\epsilon\cap R_{i},$ $I_{1}+I_{2}\subseteq I(R_{1}R_{2})$ .
Let $x_{j}\in R_{1},$ $y_{j}\in R_{2}(j=1, \cdots, n)$ and $\sum x_{j}y_{j}\in(R_{1}R_{2})^{+}$ . Then

$\sum_{J}x_{J}y_{J}=\sum Xj(y_{j}-\epsilon(y_{J}))+\sum_{j}(x_{j}-\epsilon(x_{j}))\epsilon(y_{j})\in I_{1}+I_{2}$ . Q.E.D.

The following two propositions show the relation between observable closed
k-subgroup schemes and stabilizer k-subgroup schemes of an affine k-group scheme.

(3.8) PROPOSITION. Let $\mathfrak{G}=\mathfrak{S}\mathfrak{p}_{k}A$ be an affine k-group scheme, $V$ a left A-

comodule and $v\in V$. Then the stabilizer group $\mathfrak{G}_{v}$ of $v$ is observable in $\mathfrak{G}$ .
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$PROOI^{\backslash }$ . Let $W$ be any subcomodule of $V$ such that it contains $v$ and is of
finite dimension. Let ${}^{t}W$ be the transpose comodule (1.8) (4). The symmetric algebra
$S({}^{t}W)$ on ${}^{t}W$ has naturally the structure of right A-comodule induced by ${}^{t}W$. The
map $\phi_{v}$ : $S({}^{t}W)\rightarrow A,$

$f\sum_{(f)}f_{(0)}(v)f_{(1)}$ is both the k-algebra one and the A-

comodule one. Hence $1m\phi_{v}$ is a right coideal subalgebra of $A$ . By (3.6), $B=A/I({\rm Im}\phi_{v})$

is A-observable. We claim that $\mathfrak{G}_{v}=\mathfrak{S}\mathfrak{p}_{k}B$. In fact, it is enough to show that
$\mathfrak{G}_{v}(T)=\mathfrak{S}\mathfrak{p}_{k}B(T)$ for any commutative k-algebra $T$. Let $v=v_{1},$ $v_{2},$ $\cdots,$ $v_{n}$ be a k-basis
of $W$ and $X_{1},$

$\cdots,$
$X_{n}$ its dual basis of ${}^{t}W$. If $(a_{ij})$ is the invariant matrix afforded

by the k-basis $\{v_{i} ; 1\leqq i\leqq n\}$ , that is, $\lambda_{W}(v_{l})=\sum_{j=1}^{n}a_{ij}\otimes v_{j}$ , then it is also the invariant

matrix afforded by $\{X_{i} ; 1\leqq i\leqq n\}$ . Hence $\phi_{v}(X_{i})=\sum_{j=1}^{n}X_{j}(v)a_{ij}=a_{1i}$ . We get

${\rm Im}\phi_{v}=k[a_{11}, a_{12}, \cdots, a_{1n}]$ ,
$({\rm Im}\psi_{v})^{+}=(a_{11}-1, a_{12}, \cdots, a_{1n})$

and
$B=A/(a_{11}-1, a_{12}, \cdots, a_{1n})A$ .

Recall that $\mathfrak{G}_{v}(T)=\{\sigma\in \mathfrak{S}\mathfrak{p}_{k}A(T);g.v=v\}$ . Since

$g.v=\Sigma g(v_{(-1)})\otimes v_{(0)}=\sum_{j=1}^{n}g(a_{ij})\otimes v_{j}\in T\otimes V$,

we have $g.v=v\Leftrightarrow g(a_{ij})=\delta_{ij}\Leftrightarrow kerg\supset(a_{11}-1, a_{12}, \cdots, a_{1n})A\Leftrightarrow g\in \mathfrak{S}\mathfrak{p}_{k}B(T)$ .
Therefore $\mathfrak{G}_{v}(T)=\mathfrak{S}\mathfrak{p}_{k}B(T)$ Q.E.D.

Remark that $I({\rm Im}_{()}/^{f}v)$ is finitely generated. We have its converse.

(3.9) PROPOSITION. If a Hopf ideal $I$ is observable in $A$ and finitely generated,
then there exists a left A-comodule $V$ and its element $v$ such that $(\mathfrak{S}\mathfrak{p}_{k}A)_{v}=\mathfrak{S}\mathfrak{p}_{k}(A/I)$ .

PROOF. Since $I$ is observable, we have $I=I(R)$ and $R=k\coprod_{A/I}A$ . Hence we
can express

$I=(r_{1}, \cdots, r_{n})$ , $r_{i}\in R(1\leqq i\leqq n)$ .

Let $V_{i}$ be a left A-comodule generated by $r_{i},$ $V=\bigoplus_{i=1}^{n}V_{i}$ and $v=r_{1}+\cdots+r_{n}$ . Then
we claim that $(\mathfrak{S}\mathfrak{p}_{k}A)_{v}=\mathfrak{S}\mathfrak{p}_{k}A/I$. As in the proof of (3.8), we have

$(\mathfrak{S}\mathfrak{p}_{k}A)_{v}=\mathfrak{S}\mathfrak{p}_{k}A/I({\rm Im}\psi_{v})$ ,

where

$\phi_{v}$ : $S({}^{t}V)\rightarrow A,$
$f-\sum_{(f)}f_{(0)}(v)f_{(1)}$ .

Hence it is enough to show that $I=I(1m\phi_{v})$ . For each $i$ , let $v(i)_{1}=r_{i},$ $v(i)_{2},$
$\cdots,$ $v(i)_{N(i)}$
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be a k-basis of $V_{i},$ $X(i)_{1},$ $\cdots,$ $X(i)_{N(i)}$ its dual basis of ${}^{t}V_{i}$ , and $(a(i)_{jm})(1\leqq j, m\leqq N(i))$

the invariant matrix of $V_{i}$ . Then $\Delta(r_{i})=\sum_{m=1}^{N(i)}a(i)_{1m}\otimes v(i)_{m}$ . Since $(1\otimes\epsilon)\Delta=id$ and
$\epsilon(v(i)_{1})=0$ , we get

$r_{i}=\sum_{m=2}^{N(i)}a(i)_{1m}\epsilon(v(i)_{m})$ . (1)

Since $v(i)_{1}=r_{i}\in R$ , we get $\Sigma\pi(a(i)_{1m})\otimes v(i)_{m}=1\otimes v(i)_{1}$ where $\pi;A\rightarrow A/I$ is the canonical
Hopf algebra map. Hence

$a(i)_{11}-1,$ $a(i)_{1m}\in I(2\leqq m\leqq N(i))$ . (2)

On the other hand, since $\phi_{v}(X(i)_{j})=\sum_{m=1}^{N(i)}\langle X(i)_{m}, v\rangle a(i)_{mj}=a(i)_{1j}$ , we get

${\rm Im}\phi_{v}=k[a(i)_{1j} ; 1\leqq i\leqq n, 1\leqq j\leqq N(i)]$

and
$({\rm Im}\phi_{v})+=(a(i)_{11}-1, a(i)_{1j}$ ; $1\leqq i\leqq n,$ $2\leqq j\leqq N(i))$ . (3)

From (1), (2) and (3), we get $I=I({\rm Im}\phi_{v})$ . Q.E.D.

4. A geometric characterization.

We shall give a geometric characterization of observable Hopf ideals. We shall
use notations and technical terms in [3].

Let $A$ be a Hopf algebra, $R$ a left coideal subalgebra of $A,$ $\mathfrak{G}=\mathfrak{S}\mathfrak{p}_{k}A$ and $\mathfrak{X}=$

$\mathfrak{S}\mathfrak{p}_{k}R$. Then $\mathfrak{G}$ operates on X via $\mathfrak{S}\mathfrak{p}_{k}\lambda_{R}$ , that is, $(gx)(r)=\sum g(r_{(1)})x(r_{(2)})$ for any
$T\in M_{k}$ , any $g\in \mathfrak{G}(T)$ , any $x\in \mathfrak{X}(T)$ and any $r\in R$ . If $i:R\rightarrow A$ is the inclusion map,
then $\mathfrak{S}\mathfrak{p}_{k}i$ is exactly the orbit map $\mathfrak{p}_{\omega}$ : $\mathfrak{G}\rightarrow \mathfrak{X}$ , where $\omega=\epsilon_{A}|_{R}\in\#(k)$ , that is, $\mathfrak{p}_{\omega}(q)=g|_{R}$

for any $T\in M_{k}$ and any $g\in \mathfrak{G}(T)$ .
Now we shall give some results which are easily proved.
(1) $\mathfrak{C}\mathfrak{e}\mathfrak{n}1_{\mathfrak{G}}(\omega)=\mathfrak{S}\mathfrak{p}_{k}A/I(R)$ . In fact, recalling that $I(R)$ is the ideal of $A$ generated

by $ R^{+}=R\cap ker\epsilon_{A}=ker\omega$ , it is easy to see that $\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)(T)=\mathfrak{S}\mathfrak{p}_{k}A/I(R)(T)$ for any
$T\in M_{k}$ .

(2) If a Hopf ideal $I$ contains $I(R)$ , then we have by (1) and ([3], III, \S 3, 1.6.)

that there is a unique morphism $\mathfrak{r}:\mathfrak{G}/\mathfrak{H}\approx\rightarrow\chi$ such that $\mathfrak{p}_{\omega}=\mathfrak{r}\cdot \mathfrak{p}_{\mathfrak{G}.\mathfrak{H}}\approx$ , where $\mathfrak{H}=\mathfrak{S}\mathfrak{p}_{k}A/l$

and $\approx \mathfrak{p}_{\mathfrak{G}.\mathfrak{H}}:\mathfrak{G}\rightarrow \mathfrak{G}/\mathfrak{H}\approx$ is the canonical morphism. $\mathfrak{r}$ is a monomorphism if and only
if $\mathfrak{H}=\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)$ , that is, $I=I(R)$ . Notice that $\mathfrak{r}$ is induced from the morphism

$\mathfrak{G}(T)/\mathfrak{H}(T)\rightarrow X(T),$ $g\mathfrak{H}(T)-g|_{R},$ $T\in M_{K}$

and the origin of $\mathfrak{G}/\mathfrak{H},\overline{\mathfrak{e}}$, is mapped to $\omega$ by $\mathfrak{r}$ .
(3) If $A$ is finitely generated as a k-algebra, then $\mathfrak{G}^{\sim}/\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)$ is quasi-affine.

In fact, take generators $r_{1},$ $\cdots,$ $r_{n}$ of $I(R)$ from $R$ as an ideal. Then the left coideal
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subalgebra $R^{\prime}$ generated by the $\gamma_{i}$ is finitely generated as a k-algebra. By the
construction, $I(R)=I(R^{\prime})$ . Hence we get $\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)=\mathfrak{C}\mathfrak{e}\uparrow\iota t_{\mathfrak{G}}(0)^{\prime})$ by (1), where $\omega^{\prime}=$

$\epsilon_{A}|_{R^{\prime}}\in(\tilde{s}\mathfrak{p}_{k}R^{\prime}(k)$ . It follows from ([31, III, \S 3, 5.2) that $\mathfrak{G}/\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)=\mathfrak{G}/\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega^{\prime})\sim\sim$ is an
algebraic k-scheme and $\mathfrak{G}^{\sim}/\mathfrak{C}^{\alpha}\mathfrak{n}t_{\mathfrak{G}}(\omega^{\prime})\rightarrow \mathfrak{S}\mathfrak{p}_{k}R^{\prime}$ is an immersion. Therefore $\mathfrak{G}^{\sim}/\mathfrak{C}\vee \mathfrak{n}1_{\mathfrak{G}}(\omega)$

is a separated, quasi-compact, open subscheme of an affine scheme, which means
that it is quasi-affine.

Since $\mathcal{O}(\mathfrak{G}/\mathfrak{C}\mathfrak{e}\mathfrak{n}1_{\mathfrak{G}}(\omega))\sim$ can be identified with $A\coprod_{A/I(R)}k$ (Cf. [3], III, \S 3,7.8.) and
$\mathfrak{G}/\mathfrak{C}\mathfrak{e}\iota\downarrow t_{\mathfrak{G}}(\omega)\sim$ is quasi-affine, it follows from ([5], II, 5.1.2.) that the canonical morphism

$\mathfrak{G}/\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}((/)\sim\rightarrow \mathfrak{S}\mathfrak{p}_{k}\mathcal{O}(\mathfrak{G}^{\sim}/\mathfrak{C}\mathfrak{e}nt_{\mathfrak{G}}((l)))\rightarrow \mathfrak{S}\mathfrak{p}_{k}(A\coprod_{A/l}k)$ is an open immersion. Notice that it
is the same morphism that $\mathfrak{r}$ taking $R=A\coprod_{A/l}k$ . In paticular, $A$ is flat over $A\coprod_{A/I}k$ ,

since the canonical morphism $\mathfrak{G}\rightarrow \mathfrak{G}/\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)\sim$ is faithfully flat. This assertion is
also valid when $A$ is not a finitely generated k-algebra. In fact, $A=\cup A_{i}$ , where
the $A_{i}$ are sub-Hopf algebras of $A$ and finitely generated as k-algebras. Let $R_{i}=$

$A_{i}\cap R$ be a left coideal subalgebra of $A_{i}$ . It is obvious that

$A_{\mathfrak{i}}\coprod_{A_{i^{\prime}}I(R_{i})}k=A_{i}\cap(A\coprod_{A/I(R)}k)$ .

Since $A_{i}$ is flat over $A_{i}\coprod_{A_{t^{\prime}}I(R_{l})}k,$ $A$ is flat over $A\coprod_{A/I(R)}k$ .
(4) Let $I$ be a Hopf ideal of $A$ and $R=A\coprod_{A/I}k$ . It is obvious that $I(R)\subset I$.

If $\mathfrak{a}$ is a non-zero left coideal-ideal of $R$ , then $\mathfrak{r}:\mathfrak{G}^{\approx}/\mathfrak{H}\rightarrow \mathfrak{S}\mathfrak{p}_{k}R$ in (2) factors through
$(\mathfrak{S}\mathfrak{p}_{k}R)_{\alpha}$ . In fact, since $\mathfrak{r}$ is the dur-sheafication of $\mathfrak{r}^{\prime}$ : $\mathfrak{G}/\mathfrak{H}\rightarrow \mathfrak{S}\mathfrak{p}_{k}R$ , it is enough to

show that ${\rm Im} \mathfrak{r}^{\prime}(T)\subset(\mathfrak{S}\mathfrak{p}_{k}R)_{\mathfrak{a}}(T)$ for any $T\in M_{k}$ . Recall that for any $g\in \mathfrak{G}(T),$ $\mathfrak{r}^{\prime}(T)$

$(g\mathfrak{H}(T))=g|_{R}$ . Since $\mathfrak{a}A=A$ , we get $1\in g(\mathfrak{a}A)\subset g|_{R}(\mathfrak{a})T$. Therefore $g|_{R}\in(\mathfrak{S}\mathfrak{p}_{k}R)_{a}(T)$ .

THEOREM. Let $A$ be a Hopf algebra, $I$ a Hopf ideal of $A,$ $R=A\coprod_{A/I}k,$ $\mathfrak{G}=$

$\mathfrak{S}\mathfrak{p}_{k}A,$ $\mathfrak{H}=\mathfrak{S}\mathfrak{p}_{k}A/I$ and $\mathfrak{X}=\mathfrak{S}\mathfrak{p}_{k}R$ . The other notations are similar to the above.

(i) $I$ is observable if and only if $\mathfrak{r}:\mathfrak{G}^{\approx}/\mathfrak{H}\rightarrow\chi$ is a monomorphism.
(ii) The following conditions are equivalent;

(a) $I$ is observable and $R$ has a simple left coideal $M$ such that, if $b$ is a
non-zero left coideal-ideal of $R$ , then $M\subset\sqrt{b}$,

(b) $\mathfrak{G}/\mathfrak{H}\sim$ is a quasi-affine k-scheme,

(c) $\mathfrak{r}:\mathfrak{G}/\mathfrak{H}\approx\rightarrow \mathfrak{X}$ is an open immersion.
(iii) $I$ is observable and finitely generated if and only if $\mathfrak{G}/\mathfrak{H}\approx$ is a quasi-affine

algebraic k-scheme.

PROOF. (i) Suppose $I$ is observable. Since $I=I(R),$ $\mathfrak{r}$ is a monomorphism by

(2). Suppose the contrary. The diagram
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$\mathfrak{H}\underline{inC^{\backslash }l.}\mathfrak{G}$

can.
$\mathfrak{e}_{k}\underline{\overline{\overline{\epsilon}}^{l}}\mathfrak{G}/\mathfrak{H}^{\approx}\downarrow \mathfrak{p}_{\mathfrak{G}.\mathfrak{H}}\approx$

where $=\mathfrak{e}^{g}=\mathfrak{p}_{\mathfrak{G}.\mathfrak{H}}\circ \mathfrak{S}\mathfrak{p}_{k}\epsilon_{A}$ , is cartesian. (cf. [3], III, \S 3, 1.5) Since $\mathfrak{r}$ is a monomorphism,

the diagram of affine k-schemes

$\mathfrak{H}\underline{in}\rightarrow^{cl_{.}}\mathfrak{G}$

can. $|r\cdot \mathfrak{p}_{G.\mathfrak{H}}\approx$

$e_{k}\underline{/}J\rightarrow|$ ee
where $\omega^{\#}=\mathfrak{p}_{\omega}\circ \mathfrak{S}\mathfrak{p}_{k}\epsilon_{A}$ , is cartesian. Hence $A/I\simeq k\otimes_{R}A\simeq R/R^{\vdash}\otimes_{R}A\simeq A/I(R)$ . Since
$I\supset I(R)$ , we get $I=I(R)$ . Therefore $I$ is observable.

(ii) (c) $r\Rightarrow(a)$ . There is an ideal $\mathfrak{a}$ of $R$ such that $\sqrt{\mathfrak{a}}=\mathfrak{a}$ and

$\iota\cdot$ : $\mathfrak{G}/\mathfrak{H}=(\mathfrak{S}\mathfrak{p}_{k}R)_{\mathfrak{a}}\subset\approx-,$
$\mathfrak{X}$ .

Given any non-zero left coideal-ideal $\mathfrak{y}$ it follows from (4) that it factors through

$(\mathfrak{S}p_{k}R)_{b}$ . Hence $\mathfrak{a}\subset\sqrt{!)}$. Since $\lambda_{R}^{-1}(A\otimes \mathfrak{a})$ is a left coideal-ideal contained in $\mathfrak{a}$ , it is
enough to show $\lambda_{R}^{-1}(A\otimes \mathfrak{a})\neq 0$ . In fact, if $M$ is a simple left coideal contained in
$\lambda_{R}^{-1}(A\otimes \mathfrak{a})$ , then $M\subset\sqrt{}\overline{b}$. Now we claim $\mathfrak{a}A=A$ . Given any maximal ideal $\mathfrak{m}$ of $A$ ,

take the residue field $ K=A/\mathfrak{n}\iota$ . Let $\mathcal{G}\in \mathfrak{G}(K)$ be the canonical map $g:A\rightarrow K$ and
$\mathfrak{e}_{K}\in \mathfrak{G}(K)$ the unit element. Then $\mathfrak{p}_{\omega}(\mathfrak{e}_{K})=\omega_{K}\in(\mathfrak{S}\mathfrak{p}_{k}R)_{a}(K)$ . Since $\mathfrak{G}/\mathfrak{H}\approx\rightarrow\sim(\mathfrak{S}\mathfrak{p}_{k}R)_{\mathfrak{a}}$ is
$\mathfrak{G}$-stable, $g\omega_{K}\in(\mathfrak{S}\mathfrak{p}_{k}R)_{\alpha}(K)$ , that is, $g\omega_{K}(\mathfrak{a})\neq 0$ . On the other hand, we have $g\omega_{K}(r)=$

$\sum_{(r)}g(r_{(1)})_{6_{A}}(r_{(2)})=g(r)$ for any $r\in R$ . Hence $g(\mathfrak{a})\neq 0$ , or $\mathfrak{a}\not\subset kerg=\mathfrak{m}$ . This means $\mathfrak{a}A=\Lambda$ .

From the lemma below, we get $\lambda_{R}^{-1}(A\otimes \mathfrak{a})\neq 0$ .
$(a)\Leftrightarrow(b)$ or (c). Let $\mathfrak{a}$ be the ideal generated by $M$. Notice that $\mathfrak{a}$ is a left

coideal-ideal. If $f_{1},$ $\cdots,$
$f_{n}$ form a k-basis of $M$, then $\mathfrak{a}=(f_{1}, \cdots f_{n})$ . We claim

$\mathfrak{G}/\mathfrak{H}\rightarrow\sim(\mathfrak{S}\mathfrak{p}_{k}R)_{\mathfrak{a}}=\bigcup_{i=1}\mathfrak{S}\mathfrak{p}_{k}R_{f_{i}}n$ from which (b) and (c) follow. It is enough to show that

the sequence in $\overline{M_{k}E}$

$\mathfrak{S}\mathfrak{p}_{k}(1\otimes\pi)\Delta$ $\mathfrak{p}_{\omega}$

$\mathfrak{G}\times \mathfrak{H}=\mathfrak{G}\rightarrow(\mathfrak{S}\mathfrak{p}_{k}R)_{\alpha}$

$p_{\gamma_{1}}$

where $\pi:A\rightarrow A/I$ is the canonical map, is exact.
The remaining proof is to show that $\mathfrak{p}_{\omega}$ is faithfully flat. Since $\mathfrak{p}_{\omega}$ : $\mathfrak{G}\rightarrow(\mathfrak{S}\mathfrak{p}_{k}R)_{a}$

is flat by (3), it is enough to show that given any maximal ideal $\mathfrak{m}$ of $R$ such that
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$m\mathfrak{D}\mathfrak{a}$ , we have $mA\neq A$ . Suppose $\mathfrak{n}\iota A=A$ . By the lemma below, $\mathfrak{d}=\lambda_{R}^{-1}(A\otimes \mathfrak{m})\neq 0$ . By
the assumption on $M$, we get $\mathfrak{a}\subset\sqrt{b}$. Since $b\subset m,$ $a\subset \mathfrak{m}$ , which is the contradiction.
$(b)\subset*(c)$ . It follows from (3).

(iii) (\subset $) Let $I=(r_{1}, \cdots, r_{n}),$ $R^{\prime}$ a left coideal subalgebra generated by $r_{1},$ $\cdots,$ $r_{n},$
$A^{\prime}$

a sub-Hopf algebra generated by $R^{\prime}$ and $I^{\prime}=I_{A},(R^{\prime})=R^{J+}A^{\prime}$ . Since $A$ is faithfully
flat over $A^{\prime}(2.2),$ $I^{\prime}=I\cap A^{\prime}$ . Since $I_{A}(R^{\prime})=I,$ $\mathfrak{H}=\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega^{\prime})$ where $\omega^{\prime}=\epsilon_{A}|_{R},\in(\mathfrak{S}\mathfrak{p}_{k}R^{\prime})(k)$ .
Since $I_{A^{\prime}}(R^{\prime})=I^{\prime},$

$\mathfrak{H}^{\prime}=\mathfrak{S}\mathfrak{p}_{k}A^{\prime}/I^{\prime}=\mathfrak{C}\mathfrak{e}\mathfrak{n}1_{\mathfrak{G}}(\omega^{\prime})$ . Since $\mathfrak{G}^{\prime}$ and $\mathfrak{H}^{\prime}$ are affine algebraic k-
schemes, $\mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\approx\simeq \mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\sim$ is an algebraic k-scheme. We get the commutative diagram,

$\mathfrak{G}/\mathfrak{H}*$
mono.

$\mathfrak{S}\mathfrak{p}_{k}R^{\prime}$

$ can.\backslash _{\mathfrak{G}\prime/\mathfrak{H}^{/^{\nearrow}}}open\sim$

immersion

Hence the canonical morphism $\mathfrak{G}/\mathfrak{H}\approx\rightarrow \mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\sim$ is a monomorphism. On the other
hand, we have the commutative diagram

$\mathfrak{G}\underline{can.}\mathfrak{G}^{\prime}\mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\underline{\tilde{\mathfrak{p}}_{\mathfrak{G}^{\prime}.\mathfrak{H}^{\prime\sim}}}$

$\dot{\mathfrak{p}}_{\circ\circ\backslash _{\mathfrak{G}}}\swarrow can$
.

where $\mathfrak{G}\rightarrow \mathfrak{G}^{\prime}$ is faithfully flat and quasi-compact, and $\mathfrak{G}^{\prime}\rightarrow \mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\sim$ is faithfully flat
and of finite presentation ([3], III, \S 3, 2.5). By ([3], III, \S 1, 2.10 &3.3), we get the top

can.
morphism is an epimorphism. Then $\mathfrak{G}/\mathfrak{H}\approx\rightarrow \mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\sim$ is an epimorphism. Hence
$\mathfrak{G}/\mathfrak{H}\simeq \mathfrak{G}^{\prime}/\mathfrak{H}^{\prime}\approx\sim$ By (3), $\mathfrak{G}/\mathfrak{H}\approx$ is quasi-affine algebraic.

(o). $\mathfrak{r}$ can be expressed as

$\mathfrak{G}/\mathfrak{H}\simeq\bigcup_{i=1}^{n}\mathfrak{S}\mathfrak{p}_{k}R_{f_{i}}=\mathfrak{S}\mathfrak{p}_{k}R\approx$

and each $R_{f_{i}}$ is a finitely generated k-algebra. Let
$R_{f_{i}}=k[r_{i1}/f_{i}^{n_{1}}, \cdots, r_{im(i)}/f_{\iota^{m(i)}}^{n}]$ , $r_{ij}\in R,$ $(1\leq i\leq n, 1\leq j\leq m(i))$

and $R^{\prime}$ is the left coideal subalgebra generated by $r_{i1},$ $\cdots r_{im(i)},$ $f_{i}(1\leq i\leq n)$ . Note
that $R^{\prime}$ is finitely generated as a k-algebra. It is obvious that $R_{f_{i}}=R_{f_{i}}^{\prime}$ . Since
$\mathfrak{H}=\mathfrak{C}\mathfrak{e}\mathfrak{n}t_{\mathfrak{G}}(\omega)=\mathfrak{C}\mathfrak{e}\mathfrak{n}1_{\mathfrak{G}}(\omega^{\prime}),$ $I=I(R^{\prime})$ . Therefore $I$ is finitely generated. Q.E.D.

LEMMA. Let $R$ be a left coideal subalgebra of a Hopf algebra $A$ and $\mathfrak{a}$ a non-
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zero ideal of $R$ such that $\sqrt{\mathfrak{a}}=\mathfrak{a}$ . If $\mathfrak{a}A=A$ , then $\lambda_{R}^{-1}(A\otimes \mathfrak{a})\neq 0$ .

PROOF. Recall that $\lambda_{R}^{-1}(A\otimes \mathfrak{a})$ is the largest left coideal of $R$ contained in $\mathfrak{a}$ .
It is easy to show that $(\lambda_{R}\otimes\overline{k})^{-1}(A\otimes^{\sqrt{\mathfrak{a}\otimes\overline{k}}})\neq 0$ implies $\lambda_{R}^{-1}(A\otimes \mathfrak{a})\neq 0$ , where $\overline{k}$ is
an algebraic closure of $k$ . Hence we may assume $k$ is an algebraically closed field. Let
$\sum_{i=1}^{n}r_{i}a_{i}=1,$ $r_{i}\in \mathfrak{a}$ and $a_{i}\in A$ . If $R^{\prime}$ is a left coideal subalgebra generated by $r_{1},$ $\cdots,$ $r_{n}$

and $A^{\prime}$ a sub-Hopf algebra generated by $r_{1},$ $\cdots,$ $r_{n},$ $a_{1},$ $\cdots,$ $a_{n}$ , then they are finitely
generated as k-algebras and $R^{\prime}$ is a left coideal subalgebra of $A^{\prime}$ . If $\mathfrak{a}^{\prime}=\mathfrak{a}\cap R^{\prime}$ , then
$\sqrt{\mathfrak{a}^{\prime}}=\mathfrak{a}^{\prime}$ and $\mathfrak{a}^{\prime}A^{\prime}=A^{\prime}$ . Since $\lambda_{R^{\prime}}^{-1}(A^{\prime}\otimes \mathfrak{a}^{\prime})\subset\lambda_{R}^{-1}(A\otimes \mathfrak{a})$ , we may assume that $A$ and $R$

are finitely generated as k-algebras. We may also assume that $A$ is reduced. In
fact, let $\phi:A\rightarrow A/\sqrt{(O)}$ be the canonical Hopf algebra map, then $\phi(A),$ $\phi(R)$ and
$\phi(\mathfrak{a})$ satisfy the assumptions. If $\lambda_{\phi(R)}^{-1}(\phi(A)\otimes\phi(\mathfrak{a}))\neq 0$ , then there is its element $\phi(r)$

such that $\epsilon(\phi(r))=1$ . Hence $\Sigma r_{(1)}^{p^{n}}\otimes r_{(2)}^{p^{n}}\in A\otimes \mathfrak{a}$ for a natural number $n$ being large
enough, where $p$ is the characteristic exponent of $k$ . (Recall that, if $p=1$ , then $A$

is always reduced.) Therefore $r^{P^{n}}\in\lambda_{R}^{-1}(A\otimes \mathfrak{a})$ . Since $\epsilon(r)=1,$ $r^{p^{n}}\neq 0$ .
Now, if $\mathfrak{a}=R$ , then the assertion is trivial. If $\mathfrak{a}$ is a proper ideal then the

proof of (2.4) shows that the defining ideal $\mathfrak{b}$ of the closed set $SpecR-|\mathfrak{p}_{\omega}|(SpecA)$

is a non-zero left coideal. Given any $\mathfrak{p}\in SpecR,$ $\mathfrak{p}\supset \mathfrak{a}$ implies $\mathfrak{p}A=A$ , hence $\mathfrak{p}\supset \mathfrak{b}$ .
We get $\mathfrak{a}\supset \mathfrak{b}$ . Therefore $b$ is contained in $\lambda_{R}^{-1}(A\otimes \mathfrak{a})$ . Q.E.D.

Appendix: Correction to my paper ” A correspondence between observable
Hopf ideals and left coideal subalgebras “ [7].

In my paper [7], prop. 3, it was claimed that let $A$ be any left coideal subalgebra
of a Hopf algebra $H$ ; then $H\otimes_{A}H$ is a right H-comodule via $ 1\otimes\Delta$ where $H\otimes H$ is
viewed as an A-module through $A\rightarrow H\otimes A$ and $H\otimes H\otimes fI$, through $A\rightarrow H\otimes H\otimes A$ .
This is false because $H\otimes_{A}H$ can not be a right $H- co\mathfrak{n}lodule$ via $ 1\otimes\Delta$ . So I have
given in (3.6) a new proof of prop. 3 of [7]. The theorem 4 in [7] is also incorrect;
it was claimed in its proof that $k[G/K]=S^{-1}A$ . This is false because they are not
always equal. Therefore it must be deleted the theorem 4 and its corollary in the
paper [7].
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