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ON PROJECTIVE COHEN-MACAULAYNESS OF A DEL PEZZO
SURFACE EMBEDDED BY A COMPLETE
LINEAR SYSTEM

By

Yuko HommAa

Let & be an algebraically closed field. We understand by a Del Pezzo surface
X over k a non-singular rational surface on which the anti-canonical sheaf —wx is
ample. We call the self-intersection number d=o% of wx the degree of X, then
we get that 1=d=9. It is well known that X is isomorphic to P'X P!, which has
degree 8, or an image of P? under a monoidal transformation with center the union
of r=9—d points which satisfies the following conditions :

(a) no three of them lie on a line;

(b) no six of them lie on a conic;

(c) there are no cubics which pass through seven of them and have a double

point at the eighth point.
Conversely any surface described above is a Del Pezzo surface of the corresponding
degree ([8, I, Theorem 1]). It is also well known that —wx is very ample when
d=3 and that ample divisors on X of degree 3, which is a cubic surface, are very
ample too. In this paper we will get that ample divisors on X of degree d=3 are
very ample and that ample divisors on X of degree 2 [vesp. 1] other than —wx
[resp. —wx nor —2wyx] are very ample.

A closed subscheme V in P¥ is said to be projectively Cohen-Macaulay if its
affine cone is Cohen-Macaulay. It is equivalent to that H'(P¥, Jy(m))=0 for every
meZ and H{V,Ov(m))=0 for every meZ and 0<i<dim V. In this paper, we will
get that ¢,p(X) is projectively Cohen-Macaulay for a very ample divisor D on X,
where ¢,p, is the morphism from X to P=!?! defined by the complete linear system
|D| of D. We also study the homogeneous ideal J(D)=Ker [SF(D) . %r(nz))]
defining ¢,p(X). These results will be stated and proved in §3 and §5. The
fourth section will be devoted to a study on —#xnwy of a Del Pezzo surface X of
degree 1 or 2.

In §1 we will compute the dimension #4%D) of the :-th cohomology group
Hi(X, Ox(D)) of the invertible sheaf ©x(D) corresponding to a divisor D.
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By abuse of terminology we use a divisor D and the corresponding invertible
sheaf Ox(D) interchangeably. In §2 we have general studies of the equations
defining a projective variety. Throughout this paper a curve on a surface will
mean a reduced curve.

§1. Cohomology groups of a divisor on a Del Pezzo surface.

From now on, a Del Pezzo surface means one which is not P'XP' unless
otherwise specified. Let X be a Del Pezzo surface of degree d<8, and f: X — P2
be its representation in the form of monoidal transformation of the plane with
center P, ---, P,. The linearly equivalent class of the exceptional curve E;=f~Y(P;)
is denoted by e;e Pic (X). Put /=f*©p(1). Then (/,e,, ---,e,) is a free basis of
Pic (X) and wx~—3/+ iﬁ_l e;. We denote by & the set of all exceptional curves on
X, then

&={Y|an irreducible curve Y with Y2<0}.
& is a finite set and it is easy to list up all Ee&, as follows.

a b1 bz bs b4 bs bs b7 b8

-1

Sy O b W N~ O
W N NN RO
NN RO
N NN R = O O
NN = RO O
NN = -EO O
NN~ = O o O
N = = OO
N == O Q

where Ox(E)f\«al—ti} bie; wWith b,= -+ = b,.
-]

We begin with a lemma on X of degree 8, which is isomorphic to a rational
ruled surface F, with invariant one.

LeMMA 1.1. Let X be @ Del Pezzo surface of degree 8 and D~al—be, a divisor
on X. Then the following assertions hold:

1) if a=zby=—1 or a—b,=—1, then h(D)=h*(D)=0;

(2) D is ample & D is very ample & a>b,>0.

Proor. We can prove (1) in the manner of [6,§7]. The statement (2) is found
in [1, V, Cor. 2.18].
The following remark is available for us.
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REMARK 1.2. Let X be a Del Pezzo surface of degree d=7 and D a divisor
with D.E>0 for each E€&. Then there exists a monoidal transformation f : X —> P?

such that D ~ al—ijbiei with a=b,+bs+bs (in case r=2, a>b,+b,) and b,=b,=+.-=
i=1 -
b,>0.

Proor. We prove the result by induction on ». The assertion is trivial for
r=2. In fact for any monoidal transformation f:X — P? we can assume D.e;=
D.e;. Also we get D.(l—e,—e;)>0 and D.e;=b,>0 by the assumption.

For =3, choose E, so that D.E=b, is equal to the minimum value of D.E for
any Fe&. Blowing down E,, we have a monoidal transformation = : X — X’, where
X’ is a Del Pezzo surface of degree d+1. By the induction hypothesis for a
divisor D’ on X’ such that z*D’~D+b,e,, there exists a monoidal transforma-
tion f/: X’ — P? satisfying the condition of this remark. Then f’°z is what we
want.

LEmMMA 1.3. Let X be a Del Pezzo surface of degree d=T7 and D~al—i}biei
Ci=1

a dwisor on X such that a=b,+b.+bs (if r=3 or 4, a=b,+b,+b,; if r=2, a>b,+b,)
and by=b,= «-+- =2b,>0. Then in case 3=d=7, D is very ample and in case d=2,
D is ample. Moreover in case d=2, | D| is free from base points.

Proor. If »=2, then it is clear that D~—wx+ (b —1)({—e)+(b:—1){—e)+
(a—b,—b.—1)/ is very ample. Because —wy is very ample and |/—e;| and | /| are
free from base points. Next assume =5 [resp. »=3 or 4]. We put D,=-—wy,

Do=1, Dy=l—e,, D;=2I— Y ¢;, for 2=i=4 [resp. 2=i=r—1], and Dy=3I—3 e,, for
j=1 J=t

5=k=r—1. Then D is linearly equivalent to iCiDi, where ¢,=b,, c;=b;—b;,, for

=0
1=i=7r—1 and co=a—(bs+b.+0b,) [resp. co=a—(b,+b.+b:)]. Since | D;| has no base
points and ¢;=0 for every i,0=i=r—1, D is ample or very ample according as —wx
is ample or very ample. Also |D| has no base points if | —wx | has no base points.

6
Since the anti-canonical divisor 3/— 3] e; is very ample on a cubic surface, it has no
i=1

unassigned base points. This shows that |—wx|=|3/ —27] e;| on X of degree 2 has
i=1

no base points.

ProrosiTiOoN 1.4.1. Let D~al—zr: bie; be a divisor on a Del Pezzo surface X of
i=1
degree d=7. Assume that |D| has an irreducible curve. Then h'(D)=h*D)=0 and

(D)= —} (@+1)(a+2)— 3 S by +1).

=12



92 Yuko Homma

Proor. Let Ye|D| be an irreducible curve on X and pe(Y) the arithmetic
genus of Y. We consider the following exact sequence

00— O9x—D—D|y—0.

From its long cohomology sequence we have H?*D)=0 and H'(D)=H'(Y, Dly).
Since deg (D|y)—(2p(Y)—1)=Y. (—wx)—1 is not less than zero by the ampleness
of —wyx, we get A(Y, D|y)=0 and A'(D)=0. Finally A°(D)=/°(D|y)+1 is computed
by Riemann-Roch theorem.

CoroOLLARY 14.2. Let D~al—Zr]b¢ei be a divisor on a Del Pezzo surface of
i=1

degree d=7. Assume that a=b,+b;+bs (in case r=2,a=b,+b,;) and b,=b,= --- =
b,=0, then h'(D)=h¥D)=0.

Proor. First we consider the case r=2. If a>b,+b. and b.>0, then D is very
ample by So | D| has an irreducible curve, which proves 4'(D)=/4*D)=0
by [Proposition 1.4.1. Next if ¢>b, and b,=0, then H¥D)=H'F\, al—b,e,), which
are vanishing by Lemma 1.1(1) when i=1 or 2. In the other case (i.e., a=b,+b:),
we contract /[—e,—e, to a point on P'XP!. Any divisor on P!'x P! is denoted by

a pair of integers (,) in Z@Z under the isomorphism

Pic (P' X P")=p¥(Pic P")Dp¥(Pic P')=ZDZ,

where p, and p, are the projections of P'x P! onto the two factors. Then we get
Hi(X, D)= H{(P'x P*, (b, b)), since D is b,(l—e))+bs(!—e:). By the assumption
by=b,=0 we get H(P'X P!, (b, b;))=0 for :=1, 2.

Second we consider the case when 3=7=6. If 5,>0, then D is very ample by
In that case we can apply [Proposition 1.4.1l and conclude 4¥D)=0 for
i=1,2. If b,=0, then H{(D)=H X', D’) for each i, where X’ is the contraction of
X via E, and D’ is a divisor on X’ such that D is its transform. Thus we can

prove the corollary by induction on 7.

Finally for the case r=7,8, we may assume b,>0 by using the inductive proof
above. Let Ce| —wx| be an irreducible curve, which has the arithmetic genus
p.(C)=1. Consider the following exact sequence

0 — D4+toxy — D+({l—1Dwxy — D+({E—1D)wx|¢c — 0

where 1=¢=<b,. Since deg (D+({—1)wx) | ¢>0 for 1=t=<b,, H'(C, D+(t—1)wx)=0. So
we get the surjection H(D+twx) —> H(D(t—1)wx) and the isomorphism

H¥D+tox)=H¥(D+(t—1)wx).

Immediately we get the surjection HY(D+b,0x) —> H'(D) and the isomorphism
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H*(D+b,ox)=H*D). But D+b,owx=(a—3b,) —Tj(bi—br)ei satisfies the condition of
this corollary too. Hence we obtain that 4(D+b,0x)=0 for i=1,2, and A%D)=0
for i=1, 2 as required.

COROLLARY 1.4.3. Let D be an ample divisor on a Del Pezzo surface X, which
may be isomorphic to P*XP*. Then:

(i) HY{(X,D+wx)=0 for i=1,2;

(i) H(X, —D)=0 for i=0,1.

Proor. Since (i) and (ii) are equivalent by Serre’s duality, it is sufficient to
prove (i). In case X=P? or P'X P!, the assertion is clear. For the case X=F,
see [Lemma 1.1. For =2, by Remark 1.2 we may assume that D is such that
azb,+by+0bs (in case r=2,a>b,+b,) and b,=-..-=b,>0, because D.E>0 for all Ee&
by Nakai’s criterion. It follows that /((a—3)/— iﬁ;:lw,-—l)ei):o for i=1,2 by Corol-
lary 1.4.2.

This corollary implies that Kodaira’s vanishing theorem holds on a Del Pezzo
surface in any characteristic. The following lemma is also a vanishing theorem on
some divisors which are not ample. This will be used in §4 and §5.

LemmMmA 1.5. Let X be a Del Pezzo surface of degree d=7 and Els exceptional
curves on X. Then:

1) 2(ED)=1 and h(E.)=I*E,)=0;

2) h(—E,)=0 for every i;

() AXE.—Ep=0;

4) W(E.—Es—E,)=0 and h¥(—E,—E,)=0;

(5) M (E.—Es—E,—E;)=0and h*(— Es—E,— E;)=0unless Ep.E,=E,.Es=FEs;.Es=1.

Proor. In [Proposition 1.4.1, (1) is already proved. To prove (2) we assume
X=z=F, and E,~e,. Then (2) is given by (1). For (3) we consider the
following exact sequence

0 —> —Es —> E,—Es —> Op(—1—FEo5) —> 0

and the resulting cohomology sequence H* —E;) —> H¥E.—FE;)—> 0. Since
H—E;)=0, we get H¥E,—FE;)=0. Similarly if H*—FE;—FE,)=0 [resp. H*(—E;—
E,—E;)=0], then H¥E,— E;— E,)=0 [resp. H— E,— E;—E,— E;)=0]. To show that
H*—E;—E,)=0, we consider the following exact sequence

0 — —FE;—FE, —> —E, —> Op(— Es.E,) —> 0.

Since —EpE,=—1, H(Op—Es.E,))=0. This means H*—E;—E,)=H* —E,), which
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is vanishing by (2). Finally assume that EsE,#1 or EsE;#1. Then in the same
manner we get HX(—E;—E,— E;)=H¥— E,— E;) because H'(Op((—Es.E,— Es.E;))=0.
Hence we get that H*—FE;—FE,—E;)=0 unless Eu.E,=F,.E;=E;E;=1. We have
finished the proof.

§2. On the equations defining a projective variety.

In this section let V be a projective variety of dimension #=2 over k.

ProroOsITION 2.1. Assume VCPY. Let H be a hyperplane of PV such that
VaH Put V'=VNH. We denote by Iy the ideal sheaf of V in PY and by Yv.u
the ideal sheaf of V'’ in H. For a positive integer m, we assume H'(9v(m))=0. If
I'( Gy am+1)RQ(Ou(1)) —> ['(Iv.,. u(m+2)) is surjective, then

I'(Iv(m+1)R1(Op(1)) —> I'(Yv(m+2))

is also surjective. Futhermore if H'(9v(m+1))=0, then the converse is also true.

Proor. We note the following exact sequence

H
*) 0—>Jv(m)@—> IJv(m+1) — Yy u(m+1) —> 0,

which is obtained from the exact sequence

00— OPN(—l)@—[—{* Opy —> Ou —> 0

tensored with Jy(m+1) (cf. [3, p. 101]). Taking cohomology groups of the exact
suquences (*) and (*) ®Op~(1), we have the following commutative diagram.

HYIv(m+1)@HYOp(1) —— HXIy a(m+1)QHAO1) —> 0

<\’\’\,\§\z\\\\§\la l

0 — HY9y(m+1)) — HXIy(m+2)) —s HYIv' u(m+2)) —> HY(Iy(m+1))

If we define the dotted arrow by ¢+—— tQH where te H(Jy(m+1)), then the shaded

triangle commutes, which proves that the map a is surjective. The rest of the
proposition is clear.

CoOROLLARY 2.2. Assume H'(Ov)=0. Let _L be an ample invertible sheaf on

V such that H'(m L)=0 for every m=1. Assume that there exists a non-zero section
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seHL). Put V'=(8) and L' =_L\v. Then L is normally generated™ if and
only if L' is normally genevated. In this case I(.L)=Ker [S['(.L) —> n@onm"f)] is
generated by its elements of degree 2,3, ---, and v if and only if I(_L") is generated
by its elements of degree 2,3, ---, and v.

Proor. First we note that £’ is ample on V’. From the following exact

sequence

X

00— (m-1)_r 5 mL > m L’ >0, where m = 1,

we get the following commutative diagram with exact rows

0 —> INim—-DLRQN(L) —> I'm LYK (L) — 'V, mLRQI(L) —> 0

4
/// la [[3

0 —— I'im.L) — I'((m+1).L) (v, (m+1)L’) —>0,

where the dotted arrow is defined by ¢ +—— t®s for tel'(m.L). So a is surjective
if and only if 8 is surjective. This proves that the normal generatedness of .
is equivalent to that of _£’. In this case the following diagram commutes

bV C Pdimici
U U
Qe s VO, H=Pdimicn
where H is a hyperplane section such that V/=VNH. Since £ is normally

generated, H'(Jy(m))= for every m=0. Applying [Proposition 2.1 toV and V”’, im-
mediately we get the rest of the corollary.

For curves the following theorem is known.

THEOREM 2.3 ([5],[9] and [10]). Let C be an irreducible rveduced projective
curve and D a divisor on C. Then:

Q) if deg D=2ps(C)+1, then D is normally generated and I(D) is generated by
its homogeneous parts I, (D) of degree 2 and Iy D) of degree 3;

(2) if deg D = 2pa(C)+2, then I(D) is generated by I(D).

& According to an ample invertible sheaf [ on a projective variety is said to be
normally generated if I'(_L)QRI'(m_L) — I'(m+1).C) is surjective for every m=1. By abuse
of terminology we say that a divisor D is normally generated if the corresponding invertible
sheaf is normally generated. In this case D is very ample.
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§3. Ample divisors on a Del Pezzo surface of dgree d, where 3=d=<8.

Now we enter the main issue of this paper.

ProprosITION 3.1. Let X be a Del Pezzo surface of degree d<7. For a divisor
D on X the following conditions are equivalent :

(1) for every exceptional curve E on X, E.D>0;

(ii) D is ample.
Moreover if 3=d=7, the above conditions are equivalent to the next one.

(iii) D is very ample.

Proor. The implication (ii) = (i) is clear by Nakai’s criterion. Combining
Remark 1.2 and we get (i) = (ii), (iii).

LEmMMA 3.2. Let X be a Del Pezzo surface of degree d=8. For an ample
diwisor D~al —é}l bie; assume that :

@) |D| has an irreducible curve; and

(b) 3a—Z bi—320.
Then D is very ample and ¢ ,p(X) is projectively Cohen-Macaulay. In this case I(D)
is generated by I,(D) and Iy(D). Moreover if D satisfies the condilion

(b)) 3a— X 6i—3>0,
then I(D) is gemerated by ID).

Proor. Let Ye|D| be an irreducible curve. By the adjunction formula we get
deg (DIy)—(Zpa(Y)+1)=3a—iZl:1bi—3, which is not less than zero. Then D|y is
normally generated by [Theorem 2.3 and so is D by since HY(mD)=0
for every m=0. Also H'(mD) vanishes for every m<0 by |Corollary 1.4.3 (ii), so
we see that ¢,p(X) is projectively Cohen-Macaulay. The rest follows also [Theorem|
2.3 and

THEOREM 3.3. Let X be a Del Pezzo surface of degree 3=d=8 and D be a
very ample divisor on X. Then ¢p(X) is projectively Cohen-Macaulay. Moreover if
D is not linearly equivalent to the anti-canonical divisor on a cubic surface, then
I(D)=Ker [S['(D) —> n@o I'(mD)] is generated by its elements of degree 2.

Proor. We have only to apply Since D is very ample, the con-
dition (a) of the lemma is satisfied. If d=8, then D on F, can be written a/—b,e,

with ¢>5,>0 by Lemma L1 In case 3=d=<7, we may assume that D~al— Sbie;

i=1

is such as in Remark 1.2. In each case D satisfies the condition (b). The equality
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holds if and only if ¢=3 and b,=---=bs=1. So we get the theorem.

§4. Anti-canonical divisors on Del Pezzo surfaces of degree 1 and 2.

A detailed study on anti-canonical divisors on Del Pezzo surfaces is found in
[8, IV and V]. Here the author will add a few results on generaters of I(—nwx).

THEOREM 4.1. Let X be a Del Pezzo suvface of degree 2. Then —nwy is very
ample if and only if n=2. In this case ¢\—no X,(X ) is projectively Cohen-Macaulay and
[{(—nwyx) is generated by its elements of degree 2.

Proor. We prove only that I(—nwy) is generated by its elements of degree
2. For the other assertions are found in [8, V, Theorem 1]. Since —nwx~3nl/—
ﬁ_]nei, Sa—_‘;_,:' b;—3=9n—7n—3 is grater than zero under »=2. Hence [(—nwx) is
é;nerated ‘;)_3; its elements of degree 2 from

THEOREM 4.2. Let X be a Del Pezzo surface of degrvee 1. Then:

(1) Bs|—wx|={one point} and Bs|—2wx|=¢;

(2) |—nwx| has an irreducible member for every n=1;

(8) —nwx is very ample if and only if n=3. In this case ¢ -n.(X) is projec-
tively Cohen-Macaulay ;

4) if n=4, then [(—nwx) is generated by I,(—nwx);

(5) I(—3wx) is generated by its elements of degree 2 and 3 but not generated
by only those of degree 2.

Proor. The assertions (1), (2) and (3) are found in [8, IV, Proposition 6 and V,
Theorem 1]. We will prove (4) and (5), applying The condition (b’)
of that is 3a— 3 b;—3=9%2—81—3>0, holds when #=4, hence (4) is
proved. When =3, the c:)_nldition (b) holds, so I(—3wyx) is generated by its ele-
ments of degree 2 and 3. Let Ye|—3wx| be a non-singular irreducible curve whose

genus is equal to four. To prove (5) we have only to study generaters of /(—3wx|,)

by [Corollary 2.21 By the adjunction formula we get wy~—2wx|,, this implies
—3wx|,~wy+(—wx)ly. We claim that —ex|, is an effective divisor of degree 3.

In fact considering the following exact sequence
00— I'Cwx) — [(—wx) —> I'(Y, —wx|yr) — H'(2wx),

we get I'(—wx|,)=I'(—wx), because H¥(2wx)=0 for i=0and 1. So —wx|, is effec-
tive. It is clear that deg(—mX]Y)=3a)3Y=3. An application of the next lemma to
—3wx|, yields that I(—Sa)le) is not generated by only its elements of degree 2.
Hence I{(—3wx) is not generated by its elements of degree 2 by
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LemMMA 4.3. ([4]). Let C be a non-singular irreducible curve of genus g=1 and D
a dwisor on C of type wc+ P+ Py+ Ps, where P; is a closed point of C. Then D is
normally generated and I(D) is generated by its elements of degree 2 and 3 but not
generated by only those of degree 2.

§5. Ample divisors on Del Pezzo surfaces of degree 1 and 2.

In this section X is a Del Pezzo surface of degree 1 or 2. We study ample
divisors on X from the same point of view as §3.

THEOREM 5.1. Let D be an ample divisor other than —wx on X of degree 2.

Then D is very ample, ¢,p(X) is projectively Cohen-Macaulay and I(D) is generated
by its elements of degree 2.

THEOREM 5.2. Let D~al— _.aglbiei be an ample divisor on X of degree 1 such
that a=b,+b.+bs and blz---zll;3>0. Assume that D is neither —wy nor —2wy.
Then the following assertions hold :

(1) D is very ample and ¢p(X) is projectively Cohen-Macaulay

@) if Dis 4I—2e,— ji:]zej or 61-23 ei—es or 9-33 ei, then I(D) is generated by
1(D) and ID), but not generated by only I,(D).

3) if D is not any of the three divisors described above, then I(D) is generated
by IL,(D).

Before the proof, we state some lemmas.

Lemma 53. ([2, §1. Generalized lemma of Castelnuovo]). Suppose that M is
an invertible sheaf on a variety V such that I'(M) has no base points. Let F be a
coherent sheaf on V such that H{(FR(—iM))=0 for every i=1. Then the map
IN'FR/E—1) MQL (M) —> I'(FRQiM) is surjective for every i=1.

LemMmA 54. Let D be an ample divisor on X such that 1I'(D) has no base

points. Assume that the map B:1'(DYQI (D) —> I'(2D) is surjective. Then D is
normally generated.

Proor. From [Corollary 14.2, Hi¥(t—:)D)=0 for every i=1,2 and ¢=2. By
we see that I'¢D)RI'(D) — I'((t+1)D) is surjective for each #=2.
Under the assumption that g is surjective, this proves that D is normally generated.

LemMMA 5.5.1. Let D be an ample divisor on X such that ['(D) has no base points.
Assume :
(1) —D.wx=3;



Projective Cohen-Macaulayness 99

(2) |D+wx| has no base points
3) A(—D—2wx)=0.
Then D is normally generated.

Proor. By we have only to prove the surjectivity of the map 8.
Let C be an irreducible curve of |—wx| whose arithmetic genus is equal to one.
Consider the following commutative diagram.

0 — I''D+wx)QI'(D) —> I'(DYRI(D) —> I'(DIe)®(D) —> 0

T

0 —— I'@2D+wy) ——> I'(2D) I'2Dle) ——> 0

Since A'(mD+wx)=0 for every m=1, the rows are exact. The assumption (1)
implies that deg (D|¢)=2ps(C)+1. Hence D|¢ is normally generated by
2.3(1). So y is surjective. Next we can apply to a by the assumptions
(2), (8) and the fact that 4'(D—(D+wx))=0. Hence « is surjective, and so is f.

LEMMA 55.2. Let X be a Del Pezzo surface of degree 1 and let D be an ample
divisor on X such that I'(D) has no base points. Assume:

0) A (D+2wx)=0;

(1) —D2wx=5;

(2) |D+2wx| has no base points;

3) AY(—D—4wx)=0.
Then D is normally generated.

Proor. By [Theorem 4.2(2) there exists an irreducible curve C of |—2wx| whose

arithmetic genus is equal to two. Then we have only to replace wy in Lemma
55.1 by 2wy.

Now to prove the theorems we may assume that D~al—i} bie; is such that
@=b,+by+bs and b,=-.-=b,>0 by Remark 1.2. In this case Z\;e get a=4 since
D~—wx. Moreover if a=4, then D is either 41—;1 e; (say D,) or 41—2e,—12:_‘,2ej
(say D»).

ProoF orF THEOREM 5.1. We have only to apply For the condi-
tion (a) of we will prove that D is very ample, classifying D’s as
follows.

Case 1. D is either Duy or D.

Case 2. b,=2.
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Case 3. a>4,a>b,+bys+bs and b,=1.

Case 4. a>4,a=b,+b;+bs, by>bs=bs and b,=1.

Case 5. a=3b,,b,=bs=2 and b,=1.
Since it is a simple calculation to check the condition (b’) of it is
omitted.

Case 1. We will prove that D is normally generated using Lemma 5.5.1. First
we note that I'(D) has no base points by Lemma 1.3. Easily we can check the
condition (1) of Lemma 5.5.1. Since Duy+wx [resp. Du,+wx] is [ [resp. [—e,], the

condition (2) holds. Finally for (3), since —D—2wx is 21—ée;=(21—25}ei)—ee-—e7
1=1 i=1

[resp. (Zl—ji:;zej)—eqj, its second cohomology is vanishing by (4) [resp.
Lemma 1.5 (3)]. Thus we can apply Lemma 5.5.1 and get that D is normally
generated.

Case 2. We will prove that D is very ample. Put v=[(1/2)b:]. then D is linearly
equivalent to the sum of the very ample divisor »(—2wx) and the divisor (@—6v)/—
i}l(bi—Zv)ei. Since |[(@—6v)/— i}l(bi—Zu)eil is free from base points by
ZD is very ample. 1

Case 3. Since |D—D,| has no base points, D is very ample.

Case 4. Since |D—Du,| has no base points, D is very ample.

Case 5. First we note that if b,=2, then D is either 61—225e,-—e6—e7 (say D)
i=1

or 61—2ie¢—e7 (say D). It is clear that D<s)~D(4,)+(21—j}E_‘,e,) is very ample.
£ =2

i=1

For D), we can prove its normal generatedness applying Lemma 5.5.1. Indeed
it is easy to see that the conditions (1) and (2) of Lemma 5.5.1 are satisfied. Since
h*(— D¢, —2wx)=h¥—e1)=0 by [Lemma 1.5, (3) holds. Finally when b,=3, we see
that |D—D,| or |D—De,| has no base points. So D is very ample.

Now we will prove on the same lines as above. But in the first
place we have to prove the following lemma.

LEMMA 5.6. Let D~al— Zs}b,-ei be a divisor other than — wx such that a=b,+b.+bs
i=1

and by=---=bg=1 or 2. Then |D| has no base points.

ProOOF. When bs;=1, we consider a morphism r:X —> X’ to a Del Pezzo
surface X’ of degree 2 such that =(E;) is a point. By abuse of notation we also
denote by (/,ey, - -, er) the basis of Pic (X’) such that e;~n*e; for 1=i=7. Then

the divisor al—i}bte.; on X’ is ample, hence very ample by [Theorem 5.1 So it has
i=1

7
no unassigned base points, which shows that |a/— Y b:e;—es| has no base points on
i=1

X. Next if bs=2, then we may assume D~—2wx since we have already known
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that |—2wx| has no base points. Then |D+2wx| is free from base points, and so
is |D|.

Proor or THEOREM 5.2. We classify ample divisors D other than —wyx nor
—2wx into the following six cases.

Case 1. D is either Dy or De.

Case 2. bs=3.

Case 3. a>4,a>b,+b,+bs and bg=1, 2.

Case 4. a>4,a=0b,+by+bs, b,>bs=b; and bg=1, 2.

Case 5. bs=1,a=3b, and b,=bs=2.

Case 6. bg=2,2=3b, and b,=bs=3.

Case 1. By |D| is free from base points, so we get that D is
normally generated from Lemma 5.5.1.

Case 2. Put v=[(1/3)bs], then D is linearly equivalent to the sum of the two
divisors v(—3wx) and (a—9v)/— i‘l(bi—?w)ei. If the latter is —wx, then D~—Bv+1wx
with v=1, which is very arrzlple by [Theorem 4.2. In the other case, |(@—9v)—
zZf}l(lh-—?m)eil is free from base points by hence D is very ample.

Case 3. When b3=1,|D—D,| has no base points, so D is very ample. When
bs=2, we replace Dy, by 4l—iilei—268.

Case 4. Unless D~7l—3e1—2jf_,ej,D is very ample. Because |D— D] is free

from base points. When D~7l—3e1—2§;ej, we get that it is normally generated
from Lemma 5.5.1. j=2

Case 5. Similarly to Case 5 of the previous proof, first we note that if 5,=2,
then D is one of the D s’s, where D<6,k)~61—22§e,-—— zs;kej,k=0, 1,2. It is clear

J=6+

i#5
Lemma 55.1 we can prove that D¢, and D, are normally generated. When
0,23, |D— D, x| has no base points, for some .. Hence D is very ample.

that D, oy, Which is the sum of 4/— i}ei—2es and Zl—ﬁ;e,-, is very ample. Applying
i=1

Case 6. In the same manner as above, we have only to prove that D with

k
b,=3 is very ample. Such D is one of the D 1’s, Where ch,kwgz—{ie,,— 3 e,

=1 i=6+k
k=0,1,2. For k=0 or 1, since D(g,k)~D<s.k)+(3I—S_§ei—e3), it is very ample. Next
applying to D, 2, we conclude that z5(9_ » is normally generated.
Finally we will examine the condition (b) of Lemma 3.2. By a simple calcula-
tion we see that 3a—i}bi—-Sis zero when D is either D¢y, D,y Or —3wyx, and
that it is grater than l;:ero for the other cases. Hence we get the assertions (1)
and (3) of the theorem.
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Now to complete the proof we will show that [(D¢,) and I(De,») are not
generated by their elements of degree 2. Since the homogeneous part of I(Du»)
of degree 2 is the kernel of the surjection S%/'(D¢.y) —> ['(2D»y), its dimension is
equal to sHy—A°(2D ) =(1/2)6x5—(1/2)(9x10—4x5—-7x2x3)=1. This implies that
I(D») cannot be generated by its elements of degree 2. Next when D~D,», the

proof is similar to that of [Theorem 4.2(5) for —3wx. Let Y be an irreducible
curve of |D|, then D|y~wy+(—wx)|,. Looking at the following exact sequence

0 — I'(—D—wx) — ['(—wx) — I'(—wx|,) — H'(—D—wx),
since Ai(—D—wx)=h*"(D+2wx)=h*"%es)=0 for i=0,1, we get that
I'—ox)=I'(—ox|,)+0.

Thus —wx|, is an effective divisor of degree 3. Applying and
corollary 2.2, we conclude that I(D) is not generated by I,(D). We have done.
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