A DIFFERENTIAL GEOMETRIC CHARACTERIZATION OF HOMOGENEOUS SELF-DUAL CONES

(Dedicated to Professor K. Murata on his sixtieth birthday)

By

Hirohiko Shima

In this note we give a differential geometric characterization of self-dual cones among affine homogeneous convex domains not containing any full straight line. Let Ω be an affine homogeneous convex domain in an n-dimensional real vector space V^n . Then Ω admits an invariant volume element

$$(1) v = \phi dx^1 \wedge \cdots \wedge dx^n$$

and the canonical bilinear form defined by

(2)
$$g = \sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j} dx^i dx^j$$

is positive definite and so gives an invariant Riemannian metric on Ω , where $\{x^1, \dots, x^n\}$ is an affine coordinate system on V^n [5]. In an affine coordinate system $\{x^1, \dots, x^n\}$ the components of the Riemannian connection Γ and the Riemannian curvature tensor R for g are expressed as follows

(3)
$$\Gamma^{i}{}_{jk} = \frac{1}{2} \sum_{p} g^{ip} \frac{\partial^{3} \log \phi}{\partial x^{j} \partial x^{k} \partial x^{p}},$$

(4)
$$R^{i}{}_{jkl} = \sum_{p} \left(\Gamma^{i}{}_{pk} \Gamma^{p}{}_{jl} - \Gamma^{i}{}_{pl} \Gamma^{p}{}_{jk} \right),$$

where $g_{ij} = \frac{\partial^2 \log \phi}{\partial x^i \partial x^j}$ and $\sum_p g^{ip} g_{pj} = \delta^{i}_j$ (Kronecker's delta). Since $\frac{1}{2} \sum_p g^{ip} \frac{\partial^3 \log \phi}{\partial x^j \partial x^k \partial x^p}$ defines a tensor field on Ω , we denote this tensor field by the same letter Γ .

An open convex set Ω in V^n is called a cone with vertex o if $o+\lambda(x-o)\in\Omega$ for all $x\in\Omega$ and $\lambda>0$. An open convex cone Ω with vertex o is said to be a self-dual cone if V^n admits an inner product $\langle \ , \ \rangle$ such that

- (i) $\langle x-o, y-o \rangle > 0$ for all $x, y \in \Omega$;
- (ii) if $x \in V^n$ is a vector such that $\langle x-o, y-o \rangle \ge 0$ for all $y \in \overline{\Omega}$ then $x \in \overline{\Omega}$, where $\overline{\Omega}$ is the closure of Ω in V^n .

Received March 24, 1981. Revised November 30, 1981.

THEOREM 1. A homogeneous convex cone Ω not containing any full straight line is a self-dual cone if and only if R is parallel with respect to Γ .(*)

THEOREM 2. A homogeneous convex domain Ω not containing any full straight line is a self-dual cone if and only if Γ is parallel with respect to Γ .

The necessary conditions of these theorems have been proved by O. S. Rothaus [2].

If Γ is parallel with respect to Γ , then by (4) R is parallel with respect to Γ . The converse is not true. For example, in the case of the interior of a paraboloid; $x^2+1-\frac{1}{2}(x^1)^2>0$, R is parallel but Γ is not parallel with respect to Γ .

We denote by \mathcal{F}_X and L_X the covariant differentiation for Γ and the Lie differentiation in the direction of a vector field X respectively. We set

$$(5) A_X = L_X - \nabla_X.$$

Then A_X is a derivation of the algebra of tensor fields and for a vector field Y we have

$$A_X Y = -\nabla_Y X.$$

If X and Y are Killing vector fields, then we know [1]

(7)
$$R(X, Y) = [A_X, A_Y] - A_{[X,Y]}.$$

For vector fields $X = \sum_{i} \xi_{i} \frac{\partial}{\partial x^{i}}$ and $Y = \sum_{i} \eta^{i} \frac{\partial}{\partial x^{i}}$ we define a vector field $X \square Y$ by

(8)
$$X \Box Y = -\sum_{i,j,k} \Gamma^{i}{}_{jk} \xi^{j} \eta^{k} \frac{\partial}{\partial x^{i}},$$

and we put

$$(9) S_X Y = X \square Y.$$

The condition that Γ is parallel with respect to Γ is equivalent to

We shall now recall the construction of clans from affine homogeneous convex domains [5]. It is known that a homogeneous convex domain Ω not containing any full straight line admits a simply transitive triangular affine Lie group T. Let t denote the Lie algebra of T. We fix a point $e \in \Omega$ and choose an affine coordinate system $\{x^1, \dots, x^n\}$ such that $x^1(e) = \dots = x^n(e) = 0$. Identifying $X \in t$ with the vector field induced by the one parameter group of transformations $\exp(-tX)$, X

^(*) T. Tsuji obtained the same result independently [7].

has an expression $X = \sum_{i} (\sum_{j} a^{i}{}_{j}x^{j} + a^{i}) \frac{\partial}{\partial x^{i}}$, where $a^{i}{}_{j}$ and a^{i} are constants. Let V denote the tangent space of Ω at e. Since T acts simply transitively on Ω , for each $a \in V$ there exists a unique element $X_{a} \in I$ such that the values of X_{a} at e is equal to a. For $a, b \in V$ we define a multiplication $a \triangle b$ in V by

(11)
$$a \triangle b = \sum_{i} \left(\sum_{j} a^{i}{}_{j} b^{j} \right) \left(\frac{\partial}{\partial x^{i}} \right)_{e},$$

where a^{i}_{j} and b^{j} are constants given by

$$X_a = \sum_i \left(\sum_j a^i{}_j x^j + a^i \right) \frac{\partial}{\partial x^i}$$
 and $X_b = \sum_i \left(\sum_j b^i{}_j x^j + b^i \right) \frac{\partial}{\partial x^i}$.

Then we have

$$[X_a, X_b] = X_{b \wedge a - a \wedge b}.$$

Denoting by L_a the left multiplication by $a \in V$;

$$(13) L_a b = a \triangle b,$$

we have

$$[L_a, L_b] = L_{a \wedge b - b \wedge a}.$$

Let \langle , \rangle denote the inner product on V induced by g and we put

$$(15) s(a) = \operatorname{Tr} L_a.$$

Then we know

$$\langle a, b \rangle = s(a \triangle b).$$

The algebra V together with the linear form s is said to be the *clan* of Ω with respect to $e \in \Omega$ and the simply transitive triangular group T and is denoted by $V(\Omega)$.

PROPOSITION 1. For $a, b \in V$ we denote by S_a , A_a , and R(a, b) the values of S_{X_a} , A_{X_a} , and $R(X_a, X_b)$ at e respectively. Then we have

(i)
$$S_a = \frac{1}{2} (L_a + {}^t L_a), \quad S_a b = S_b a,$$

(ii)
$$A_a = -\frac{1}{2}(L_a - {}^tL_a),$$

(iii)
$$R(a,b) = -[S_a, S_b],$$

where ${}^{t}L_{a}$ is the transpose of L_{a} with respect to \langle , \rangle .

PROOF. We may assume $\phi(e)=1$. Since $v=\phi dx^1 \wedge \cdots \wedge dx^n$ is invariant under

the one parameter group of transformations $\operatorname{Exp} tX_a$ generated by X_a , we have $\phi((\operatorname{Exp} tX_a)e) = \exp(-t\operatorname{Tr} L_a)$ and so

(16)
$$\log \phi((\operatorname{Exp} tX_a)e) = -ts(a).$$

Expanding the left side in a power series of t and evaluating the terms of the first, the second and the third orders, we have

(17)
$$\sum_{i} \frac{\partial \log \phi}{\partial x^{i}}(e)a^{i} = -s(a),$$

(18)
$$\sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j} (e) a^i a^j = \langle a, a \rangle = s(a \triangle a),$$

(19)
$$\sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k} (e) a^i a^j a^k = -2\langle a, a \triangle a \rangle = -2s(a \triangle (a \triangle a)),$$

where $a = \sum_{i} a^{i} \left(\frac{\partial}{\partial x^{i}}\right)_{e}$. Taking a + b and a + b + c instead of a in the formulae (18) and (19) respectively we obtain

(18')
$$\sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j}(e) a^i b^j = \langle a, b \rangle = s(a \triangle b),$$

(19')
$$3\sum_{i,j,k} \frac{\partial^{3} \log \phi}{\partial x^{i} \partial x^{j} \partial x^{k}} (e) a^{i} b^{j} c^{k}$$

$$= -\langle \langle a, b \triangle c \rangle + \langle a, c \triangle b \rangle + \langle b, c \triangle a \rangle + \langle b, a \triangle c \rangle + \langle c, a \triangle b \rangle + \langle c, b \triangle a \rangle \rangle.$$

By (14) and (18') we have

$$(20) \qquad \langle a \triangle b, c \rangle + \langle b, a \triangle c \rangle = \langle b \triangle a, c \rangle + \langle a, b \triangle c \rangle.$$

Using this we get

(19")
$$\sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k} (e) a^i b^j c^k = -\langle a \triangle b, c \rangle - \langle b, a \triangle c \rangle$$
$$= -\langle (L_a + {}^t L_a) b, c \rangle.$$

On the other hand it follows from (3) (8) (9) that

$$\sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k} (e) a^i b^j c^k = 2 \sum_{i,j,k,l} (g_{kl} \Gamma^l{}_{ji})(e) a^i b^j c^k$$
$$= -2 \langle S_a b, c \rangle.$$

Thus we have

$$S_a b = \frac{1}{2} (L_a + {}^{\iota}L_a)b$$

and (i) is proved.

For
$$X_a = \sum_i \left(\sum_j a^i{}_j x^j + a^i\right) \frac{\partial}{\partial x^i}$$
 and $X_b = \sum_i \left(\sum_j b^i{}_j x^j + b^i\right) \frac{\partial}{\partial x^i}$ we have
$$V_{X_a} X_b = \sum_i \left\{\sum_p b^i{}_p \left(\sum_q a^p{}_q x^p + a^p\right) + \sum_{r,s} \Gamma^i{}_{rs} \left(\sum_p a^r{}_p x^p + a^r\right) \left(\sum_q b^s{}_q x^q + b^s\right)\right\} \frac{\partial}{\partial x^i}.$$

Since $x^i(e) = 0$, by (8), (11) and (i) the value $(\nabla_{X_a} X_b)_e$ of $\nabla_{X_a} X_b$ at e is reduced to

$$\begin{split} (\nabla_{X_a} X_b)_e &= \sum_i \left(\sum_p b^i{}_p a^p + \sum_{r,s} \Gamma^i{}_{rs} a^r b^s \right) \left(\frac{\partial}{\partial x^i} \right)_e \\ &= b \triangle a - b \square a \\ &= \frac{1}{2} \left(L_b - {}^t L_b \right) a. \end{split}$$

Therefore by (6) we get

$$A_a b = (A_{X_a} X_b)_e = -(\nabla_{X_b} X_a)_e = -\frac{1}{2} (L_a - {}^{\iota} L_a) b,$$

and (ii) is proved.

By (7) we have

$$R(X_a, X_b) = [A_{X_a}, A_{X_b}] - A_{[X_a, X_b]}.$$

Using (12), (14), (i) and (ii) we obtain

$$R(a,b) = [A_a, A_b] - A_{b \triangle a - a \triangle b}$$

$$= \left[-\frac{1}{2} (L_a - {}^t L_a), -\frac{1}{2} (L_b - {}^t L_b) \right] + \frac{1}{2} (L_{b \triangle a - a \triangle b} - {}^t L_{b \triangle a - a \triangle b})$$

$$= \frac{1}{4} [L_a - {}^t L_a, L_b - {}^t L_b] - \frac{1}{2} ([L_a, L_b] - {}^t [L_a, L_b])$$

$$= -[S_a, S_b],$$

and so (iii) is proved.

Q. E. D.

PROPOSITION 2. (i) If Γ is parallel with respect to Γ , then we have $[A_a, S_b] = S_{A_ab}$.

(ii) If R is parallel with respect to Γ , then we have $[A_a, [S_b, S_c]] = [S_{A_ab}, S_c] + [S_b, S_{A_ac}].$

PROOF. Since $X_a = \sum_i \xi^i \frac{\partial}{\partial x^i}$ is an infinitesimal affine transformation with respect to Γ , we have

$$\begin{split} 0 &= \frac{\partial^2 \xi^i}{\partial x^j \partial x^k} + \sum_p \left(\xi^p \frac{\partial \Gamma^i{}_{jk}}{\partial x^p} + \Gamma^i{}_{pk} \frac{\partial \xi^p}{\partial x^j} + \Gamma^i{}_{jp} \frac{\partial \xi^p}{\partial x^k} - \Gamma^p{}_{jk} \frac{\partial \xi^i}{\partial x^p} \right) \\ &= \frac{\partial^2 \xi^i}{\partial x^j \partial x^k} + L_{X_a} \Gamma^i{}_{jk} \,, \end{split}$$

where $L_{X_a}\Gamma^i{}_{jk}$ is the Lie derivative of the tensor field $\Gamma^i{}_{jk}$ by X_a . Since $\xi^i = \sum_i a^i{}_j x^j + a^i$, we get

$$(21) L_{X_a} \Gamma^{i}_{jk} = 0.$$

From this we have

$$(22) L_{X_a}(X_b \square X_c) = (L_{X_a}X_b) \square X_c + X_b \square (L_{X_a}X_c).$$

Therefore by (5), (10) and (22) the condition $\nabla_{X_a}\Gamma=0$ is equivalent to

$$A_{X_a}(X_b \square X_c) = (A_{X_a}X_b) \square X_c + X_b \square (A_{X_a}X_c).$$

This implies (i). By (4) and (21) it follows

$$L_{X_a}R=0.$$

Thus by (5) the condition $V_{X_a}R=0$ is equivalent to $A_{X_a}R=0$. Since A_{X_a} is a derivation of the algebra of tensor fields, we have

$$\begin{split} ((A_{X_a}R)\,(X_b,\,X_c))X_d &= A_{X_a}(R(X_b,\,X_c)X_d) - R(A_{X_a}X_b,\,X_c)X_d \\ &- R(X_b,\,A_{X_a}X_c)X_d - R(X_b,\,X_c)A_{X_a}X_d \\ &= ([A_{X_a},\,R(X_b,\,X_c)] - R(A_{X_a}X_b,\,X_c) - R(X_b,\,A_{X_a}X_c))X_d \end{split}$$

and so by Proposition 1 (iii)

$$((A_aR)(b,c))d = ([A_a, R(b,c)] - R(A_ab,c) - R(b, A_ac))d$$

$$= ([A_a, -[S_b, S_c]] + [S_{A_ab}, S_c] + [S_b, S_{A_ac}])d$$

This proves (ii). Q. E. D.

LEMMA 1. If Γ is parallel with respect to Γ , then Ω is a cone.

PROOF. It is known that if the clan $V(\Omega)$ of Ω has a unit element then Ω is a cone [5]. Therefore by Proposition 2 (i) it suffices to show that if $[A_a, S_b] = S_{A_ab}$ holds for all $a, b \in V(\Omega)$, then $V(\Omega)$ has a unit element. Let u be the principal idempotent of the clan $V(\Omega)$, i.e., u is an element in $V(\Omega)$ determined by $\langle u, a \rangle = s(a)$ for all $a \in V(\Omega)$. Then we get the principal decomposition

$$V(\Omega) = V_0 + N$$

where $V_0 = \{a \in V(\Omega) ; u \triangle a = a\}$ and $N = \{a \in V(\Omega) ; u \triangle a = \frac{1}{2}a\}$. The principal de-

composition $V(\Omega) = V_0 + N$ is orthogonal with respect to the inner product \langle , \rangle and the following relations hold [5]

(23)
$$V_{0} \triangle V_{0} \subset V_{0}, \qquad V_{0} \triangle N \subset N,$$
$$N \triangle V_{0} = \{0\}, \qquad N \triangle N \subset V_{0}.$$

Let p be an element in N. By our assumption and Proposition 1 we have

$$\begin{split} 0 &= \langle \langle [A_p, S_p] - S_{A_p p} \rangle p, p \rangle = \langle A_p S_p p - 2 S_p A_p p, p \rangle \\ &= -3 \langle S_p p, A_p p \rangle = \frac{3}{4} \langle \langle L_p + {}^t L_p \rangle p, \ (L_p - {}^t L_p) p \rangle \\ &= \frac{3}{4} \langle \langle L_p p, L_p p \rangle - \langle {}^t L_p p, {}^t L_p p \rangle). \end{split}$$

Therefore by the orthogonality of the principal decomposition and by (23) we get

$$\langle p \triangle p, p \triangle p \rangle = \langle {}^{t}L_{p}p, {}^{t}L_{p}p \rangle = \langle p, L_{p}{}^{t}L_{p}p \rangle = 0.$$

This means $p \triangle p = 0$, $\langle p, p \rangle = s(p \triangle p) = 0$ and so p = 0. Thus we have $V(\Omega) = V_0$ and u is a unit element of the clan $V(\Omega)$.

We shall now recall the notion of T-algebras [5] [6].

A matrix algebra with involution is an algebra over the real number field \mathbf{R} which is bigraded by the subspaces \mathfrak{A}_{ij} $(i, j=1, \dots, m)$ and provided with an involutive anti-automorphism * in such a way that

$$\mathfrak{A}_{ij}\mathfrak{A}_{jk}\subset\mathfrak{A}_{ik},$$
 $\mathfrak{A}_{ij}\mathfrak{A}_{lk}=\{0\} \quad \text{if} \quad j\neq l,$
 $\mathfrak{A}_{ij}^*=\mathfrak{A}_{ji}.$

The general element of \mathfrak{A}_{ij} will be denoted by a_{ij} , b_{ij} , etc..

A matrix algebra with involution is said to be a *T-algebra* if the following axioms are satisfied:

- (T.1) For any *i* the algebra \mathfrak{A}_{ii} is one-dimensional and admits an isomorphism $\rho: \mathfrak{A}_{ii} \to \mathbb{R}$ with the following properties.
- (T.2) $a_{ii}b_{ij} = \rho(a_{ii})b_{ij}$;
- (T.3) $n_i \rho(a_{ij}b_{ji}) = n_j \rho(b_{ji}a_{ij})$, where $n_i = 1 + \frac{1}{2} \sum_{s \neq i} \dim \mathfrak{A}_{is}$;
- (T.4) $\rho(a_{ij}a_{ij}^*)>0$ if $a_{ij}\neq 0$;
- (T. 5) $a_{ij}(b_{jk}c_{ki}) = (a_{ij}b_{jk})c_{ki}$;
- (T.6) $a_{ij}(b_{jk}c_{kl}) = (a_{ij}b_{jk})c_{kl}$ if i < j < k and j < l;
- (T.7) $a_{ij}(b_{jk}b_{jk}^*) = (a_{ij}b_{jk})b_{jk}^*$ if i < j < k.

Let \mathfrak{X} denote the space of hermitian matrices in the T-algebra \mathfrak{A} ; $\mathfrak{X} = \{a \in \mathfrak{A} : a \in$

 $a^*=a$. For each $a=\sum_{i,j} a_{ij} \in \mathfrak{X}$ we put

$$\hat{a} = \frac{1}{2} \sum_{i} a_{ii} + \sum_{i < j} a_{ij},$$

$$a = \frac{1}{2} \sum_{i} a_{ii} + \sum_{i \neq i} a_{ij},$$

We define a multiplication $L_ab=a \triangle b$ in $\mathfrak X$ by the formula

$$a \triangle b = \hat{a}b + ba$$

Then \mathfrak{X} is a clan with unit element and we denote this clan by $\mathfrak{X}(\mathfrak{A})$. Let $\Omega(\mathfrak{A})$ be the set of matrices which are expressible in the form tt^* , where t is an upper triangular matrix with positive elements on the diagonal. Then $\Omega(\mathfrak{A})$ is a homogeneous convex cone in $\mathfrak{X}(\mathfrak{A})$. For every homogeneous convex cone Ω there exists a T-algebra \mathfrak{A} such that Ω is isomorphic to $\Omega(\mathfrak{A})$ and a clan $V(\Omega)$ of Ω is isomorphic to $\mathfrak{X}(\mathfrak{A})$.

Now we return to the proof of our theorems. By the above fact we may assume $V(\Omega) = \mathfrak{X}(\mathfrak{A})$. Then it is known that for $a, b \in \mathfrak{X}(\mathfrak{A})$

$$\operatorname{Tr} L_a = \operatorname{Spur} a$$
,

$$\langle a, b \rangle = \operatorname{Spur} ab$$
,

where Spur $a = \sum_{i} n_{i} \rho(a_{ii})$. It is easy to see

$$^{t}L_{a}b = ab + b\hat{a}$$
.

Therefore we get

$$S_a b = \frac{1}{2} (ab + ba),$$

(25)
$$A_{a}b = -\frac{1}{2} \{ (\hat{a} - \underline{a})b - b(\hat{a} - \underline{a}) \}.$$

Let n_{ij} denote the dimension of \mathfrak{A}_{ij} . We define inductively an equivalence relation \overline{R} in the set $\{1, \dots, m\}$ of indices:

- (1) $i \equiv i \pmod{\bar{R}}$ for all i,
- (2) if we have already determined whether the i,j such that |i-j| < r are comparable modulo \overline{R} or not, then for |i-j| = r we define $i \equiv j \pmod{\overline{R}}$ if and only if (i) $n_{ij} \neq 0$, (ii) $n_{ik} = n_{jk}$ for all $k \neq i$, j, and (iii) for all k lying between i and j (except i and j) either $n_{ik} = n_{kj} = 0$ or $i \equiv k \pmod{\overline{R}}$ and $k \equiv j \pmod{\overline{R}}$.

We put

$$\mathfrak{A}_{ij}^{c} = \begin{cases} \mathfrak{A}_{ij} & \text{if } i \equiv j \pmod{\bar{R}} \\ \{0\} & \text{if } i \neq j \pmod{\bar{R}}. \end{cases}$$

$$\mathfrak{A}^c = \sum_{i,j} \, \mathfrak{A}^c_{ij}$$
 .

Then \mathfrak{A}^c is a T-algebra and the homogeneous convex cone $\Omega(\mathfrak{A}^c)$ corresponding to \mathfrak{A}^c is self-dual.

Lemma 2. If the clan $\mathfrak{X}(\mathfrak{A})$ corresponding to a T-algebra \mathfrak{A} satisfies the condition

$$[A_a, [S_b, S_c]] = [S_{A_ab}, S_c] + [S_b, S_{A_ac}],$$

then we have $\mathfrak{A} = \mathfrak{A}^c$.

Proof. By the condition we have

$$[[A_a, S_b] - S_{A_ab}, S_c] = [[A_a, S_c] - S_{A_ac}, S_b].$$

Let $a_{ij} \in \mathfrak{A}_{ij}$, $b_{jk} \in \mathfrak{A}_{jk}$ and $e_i \in \mathfrak{A}_{ii}$, where i < j, $k \neq i, j$ and $\rho(e_i) = 1$. We put $a = a_{ij} + a_{ij}^*$, $b = b_{jk} + b_{jk}^*$ and $c = e_i$ and calculate the following formula

$$[[A_a, S_b] - S_{A_ab}, S_c]b = [[A_a, S_c] - S_{A_ac}, S_b]b$$

Using (24) and (25), the left side is equal to

$$\frac{1}{4} \left\{ a_{ij}(b_{jk}b_{jk}^*) - (a_{ij}b_{jk})b_{jk}^* + (b_{jk}b_{jk}^*)a_{ij}^* - b_{jk}(b_{jk}^*a_{ij}^*) \right\}$$

and the right side is reduced to 0. Considering \mathfrak{A}_{ij} -component, by (T.2) we get

$$(a_{ij}b_{jk})b_{jk}^* = a_{ij}(b_{jk}b_{jk}^*) = \rho(b_{jk}b_{jk}^*)a_{ij}$$
.

Multiplying both sides on the right by a_{ij}^* we obtain

$$((a_{ij}b_{jk})b_{ik}^*)a_{ij}^* = \rho(b_{jk}b_{ik}^*)a_{ij}a_{ij}^*$$
.

Therefore, by (T.2) we have

(26)
$$\rho((a_{ij}b_{jk})(a_{ij}b_{jk})^*) = \rho((a_{ij}b_{jk})b_{jk}^*)a_{ij}^*) = \rho(b_{jk}b_{jk}^*)\rho(a_{ij}a_{ij}^*).$$

Assume $n_{ij} \neq 0$. For $a_{ij} \neq 0 \in \mathfrak{A}_{ij}$, by (26) the linear mapping given by $\mathfrak{A}_{jk} \ni b_{jk} \rightarrow a_{ij}b_{jk} \in \mathfrak{A}_{ik}$ is injective and so $n_{jk} \leq n_{ik}$. In the same way we have $n_{ik} \leq n_{jk}$. Therefore we have $n_{ik} = n_{jk}$ for all $k \neq i, j$. This implies that $i \equiv j \pmod{\overline{R}}$ if $n_{ij} \neq 0$. Thus we have $\mathfrak{A} = \mathfrak{A}^c$.

Since the homogeneous convex cone $\Omega(\mathfrak{A}^c)$ determined by \mathfrak{A}^c is self-dual, in view of Proposition 2, Lemma 1 and 2 the sufficient conditions of our theorems are proved.

References

- [1] Kobayashi, S. and Nomizu, K., Foundations of differential geometry I, Interscience Publishers, New York, 1963.
- [2] Rothaus, O.S., Domains of positivity, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 189-235.
- [3] Shima, H., Homogeneous convex domains of negative sectional curvature, J. Diff. Geom. 12 (1977), 279-284.
- [4] Vinberg, E.B., Homogeneous cones, Soviet Math. Dokl. 1 (1960), 787-790.
- [5] Vinberg, E.B., The theory of convex homogeneous cones, Trans. Moscow Math. Soc. (1963), 340-403.
- [6] Vinberg, E.B., The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc. (1965), 63-93.
- [7] Tsuji, T., A characterization of homogeneous self-dual cones, to appear.

Department of Mathematics Yamaguchi University Yamaguchi, 753 Japan