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STABILITY FOR INFINITE-DIMENSIONAL
FIBRE BUNDLDS

By

Katsuro SAKAI

Abstract. In this paper, we prove that any locally trivial fibre
bundles $p:X\rightarrow B$ with fibre $M$ a manifold modeled on an infinite-
dimensional space $E(e$ . $g$ . the Hilbert space $l_{2}$ or the Hilbert cube
$Q)$ is bundle isomorphic to the bundle $p\circ proj:X\times E\rightarrow B$ . Further,
we can obtain a strong version of this Bundle Stability Theorem.
From Bundle Stability Theorem, we can introduce the notion of
deficiency in bundles. We show that a finite union of locally
deficient sets is deficient and we prove a bundle version of Mapping
Replacement Theorem.

\S $0$ . Introduction.

A Hilbert (Hilbert cube) manifold, briefly $l_{2}$-manifold (Q-manifold), is a para-
compact space $M$ admitting an open cover by sets homeomorphic $(\cong)$ to open
subsets of the Hilbert space $l_{2}$ (the Hilbert cube $Q$ ). These manifolds are topo-
logically stable, that is, $M\cong M\times l_{2}(M\cong M\times Q)$ . This Stability Theorem due to
R. D. Anderson and R. M. Schori [A-S] is most fundamental in the theory of

infinite-dimensional manifolds.
In this paper, we establish the stability theorem for locally trivial fibre

bundles with fibre an $l_{2}$-manifold or a Q-manifold. We will call these bundles
$l_{2}$-manifold bundles or Q-manifold bundles, respectively.

BUNDLE STABILITY THEOREM. (Assume $B$ is metrizable.)

(A) An $l_{2}$-manifold bundle is bundle isomorphic to $p\circ proj:X\times l_{2}\rightarrow B$ .
(B) A Q-manifold bundle is bundle isomorphic to $p\circ proj:X\times Q\rightarrow B$ .
Here a bundle $p:X\rightarrow B$ is bundle isomorphic to a bundle $p^{\prime}$ : $X^{\prime}\rightarrow B$ if there

exists homeomorphism $h:X\rightarrow X^{\prime}$ such that $p^{J}h=p$ (such a homeomorphism is
called a bundle homeomorphism).

In this theorem, there is a bundle homeomorphism $h:X\times l_{2}\rightarrow X(h:X\times Q-X)$

is homotopic to the projection proj: $X\times l_{2}\rightarrow X$ (proj: $x\times Q\rightarrow X$ ) by a small bundle
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homotopy. In practice, we prove a more strong result, $i$ . $e$ . Theorem 4-3 (and

Remark 5-1), under the more general situation including (A) and (B).

A subset $K$ of $M$ is $l_{2}$-deficient (Q-deficient) if there is a homeomorphism
$h:M\rightarrow M\times l_{2}(h:M\rightarrow M\times Q)$ such that $h(K)\subset M\times\{0\}$ . A closed subset $K$ of $M$

is a Z-set if there is a continuous map $f:M\rightarrow M\backslash K$ arbitrarily near to the
identity (or equivalently, if for each non-empty homotopically trivial open set $U$

in $M,$ $U\backslash K$ is also non-empty and homotopically trivial). It is well-known that
these two notion are identical for closed sets in $l_{2}$-manifolds or Q-manifolds.
And these notion are very useful and very important in the theory of infinite-
dimensional manifolds.

From Bundle Stability Theorem we can introduce the notion $l_{2}$-deficiency
(Q-deficiency) in $l_{2}$-manifold (Q-manifold) bundles. In this paper, we see several
easy properties of these deficient sets in bundles. We show that a locally
deficient set is deficient and that a finite union of deficient sets is also deficient.
And we prove a bundle version of Mapping Replacement Theorem due to R. D.
Anderson and J. D. McCharen [A-M] which is an important tool in the theory
of infinite-dimensional manifolds. Further aspects shall be developed in sequels
$[Sa_{2,3}]$ .

R. Y. T. Wong and T. A. Chapman ( $[Wo_{1,2}]$ and [C-W]) have developed an
entirely satisfactory infinite-dimensional bundle theory over finite complex. And
T. A. Chapman and S. Ferry ([C-F] and [Fe]) have proved several theorems
for product bundle with a Q-manifold fibre. And H. Toru\’{n}czyk, is his dissert-
ation, have proved several theorems of infinite-dimensional bundles.

\S 1. Semi-Reflective Isotopy Property.

The unit interval $[0,1]$ is denoted by $I$. A pointed topological space $(L, 0)$

is said to have the semi-reflective isotopy property, briefly: SRIP, if there exists
an ambient invertible isotopy $\sigma$ : $L^{2}\times I\rightarrow L^{2}$ (called a semi-reflective isotopy) such
that

$\sigma_{0}=id$ ,

$\sigma_{1}(x, y)=(y, e(x))$ for each $(x, y)\in L^{2}$ and

$\sigma_{l}(0,0)=(0,0)$ for each $t\in I$

where $e:L\rightarrow L$ is a homeomorphism (called a swerving homeomorphism). If $e=id$ ,
we call the reflective isotopy property (RIP). (See [B-P] p. 289) It is easy to
see that if $e^{n}=id$ , then $(L^{n}, 0)$ has RIP.

1-1 EXAMPLE: Any closed (or open) interval with a base point in its inter-
ior and any linear topological space with $0$ a base point have SRIP and those
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semi-reflective isotopies have idenpotent swerving homeomorphisms $(i. e. e^{2}=id)$ .
If each $(L_{\lambda}, 0_{\lambda})$ has SRIP, then $(\prod_{\lambda\in\Lambda}L_{\lambda}, 0)$ and $(\sum_{\lambda\in\Lambda}L_{\lambda}, 0)$ have SRIP where $\prod_{\lambda\in\Lambda}L_{\lambda}$

is the product space of $L_{\lambda}(\lambda\in\Lambda)$ and $\sum_{\lambda\in\Lambda}L_{\lambda}=\{x=(x_{\lambda})\in\prod_{\lambda\in\Lambda}L|x_{\lambda}=0$ for almost

all $\lambda\in\Lambda$ } is a subspace of $\prod_{n\in N}L_{\lambda}$ . We write $L^{\omega}=\sum_{n\in N}L_{n},$
$L_{f}^{\omega}=\sum L_{n}$ provided

$L_{n}=L$ for each $n\in N$ If $(L, 0)$ has a semi-reflective isotopy with an idenpotent
swerving homeomorphism, then $(L^{\omega}, 0)$ and $(L_{f}^{\omega}, 0)$ has RIP. Then $Q=[-1,1]^{\omega}$ ,
$s=(-1,1)^{\omega}\cong R^{\omega}\cong l_{2}$ and $R_{f}^{\omega}$ have RIP.

Throughout this paper, let $(E, 0)$ denote a paracompact, perfectly normal
pointed space which has SRIP and is homeomorphic to $(E^{\omega}, 0)$ or $(E_{f}^{\omega}, 0)$ .

A manifold modeled on $E$ , briefly E-manifold, is a paracompact space $M$

admitting an open cover by sets homeomorphic to open subsets of $E$ . If $E=Q$ ,

then $M$ is a Hilbert cube manifold, and if $E=l_{2}$ , then $M$ is a Hilbert manifold.
An E-manifold bundle is a locally trivial fibre bundle with an E-manifold fibre.
An E-manifold bundle with fibre $M$ is briefly called an M-bundle. Then an E-
bundle is a locally trivial fibre bundle with fibre $E$ .

The Stability Theorem for E-manifold has been established by R. M. Schori
[Sch] and its strong version has been done by R. Geoghegan and D. W. Hender-
son [G-H] (cf. K. Sakai $[Sa_{1}]$ . The stability theorem for product bundles is
easily proved (cf. Theorem 4.6 in [Fe]). We present the Stability Theorem and
its strong version for E-manifold bundles is Section 4. And in Section 5, we
introduce deficiency in E-manifold bundles and we see several easy properties.
The bundle version of Mapping Replacement Theorem is proved in Section 6.

\S 2. Reduced Cartesian Products.

Let $X$ and $Y$ be topological spaces and $A$ a closed subset of $X$. The product

of $X$ and $Y$ reduced over $A$ , denoted by $(X\times Y)_{A}$ , is defined to be the set
$(X\backslash A)\times Y\cup A$ with the topology gererated by the basis consisting of all sets
$(U\backslash A)\times V$ and $(U\backslash A)\times Y\cup(U\cap A)$ where $U$ is open in $X$ and $V$ is open in $Y$.
(See [B-P] p. 25). Note that $(X\times Y)_{\phi}=X\times Y$ and $(X\times Y)_{X}=X$.

Let $\pi_{X}=\pi_{X}^{X\times Y}$ : $x\times Y\rightarrow X$, $\pi_{Y}=\pi_{Y}^{X\times Y}$ : $X\times Y\rightarrow Y$ be the natural projections,
that is, $\pi_{X}(x, y)=x$ and $\pi_{Y}(x, y)=y$ for each $(x, y)\in X\times Y$. The natural map
$\tau^{A}=\tau_{X}^{(X\times Y)_{A}}$ : $(X\times Y)_{A}\rightarrow X$ is defined by $\tau^{A}|A=id$ and $\tau^{A}|(X\backslash A)\times Y=\pi_{X}(=\pi_{X\backslash Y})$ ,

and the natural map $\tau_{A}=\tau_{(X\times Y)_{A}}^{X\times Y}$ ; $X\times Y\rightarrow(X\times Y)_{A}$ is defined by $\tau_{A}|A\times Y=\pi_{X}$

$(=\pi_{A})$ and $\tau_{A}|(X\backslash A)\times Y=id$ . Then $\tau^{A}$ and $\tau_{A}$ are continuous. Note that
$\pi_{X}=\tau^{A_{T_{A}}},$ $\tau^{\phi}=\tau_{X}=\pi_{X},$ $\tau^{x}=id_{x}$ and $\tau_{\phi}=id_{X\times Y}$ .

Obviously if (X, $A$ ) $\cong(X^{\prime}, A^{\prime})$ and $Y\cong Y^{\prime}$ , then $(X\times Y)_{A}\cong(X^{\prime}\times Y^{\prime})_{A^{\prime}}$ . Observe
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that
$(X\times(Y\times Z)_{B})_{A}=((X\times Y)_{A}\times Z)_{A\cup(X\backslash A)xB}$ ,

so $X\times(Y\times Z)_{B}=((X\times Y)\times Z)_{XxB}$ and $(X\times(Y\times Z))_{A}=((X\times Y)_{A}\times Z)_{A}$ .
We shall define the cone $C(X)$ and the open cone $C^{o}(X)$ of topological space

$X$ as reduced products:

$C(X)=(I\times X)_{|0|}$ ; $C^{O}(X)=([0,1)\times X)_{101}$ .
Let $cU$ and $\mathcal{V}$ be open covers of $X$. We say that $cU$ is a refinement of $\mathcal{V}$

or $\subset U$ refines $\mathcal{V}$ , denote $cU<\mathcal{V}$ , provided each $U\in v$ is contained in some $V\in \mathcal{V}$ .
For $A\subset X$, define st $(A;^{c}U)=\cup\{U\in(U|A\cap U\neq\emptyset\}$ and st $(V)=\{st(U;^{c}U)|U\in V\}$ .
If st $(^{c}U)<\mathcal{V}$ , then $cU$ is called a star-refinement of $\mathcal{V}$ . We say that a map
$f:Y\rightarrow X$ is $cU$-near to a map $g:Y\rightarrow X$ or $f$ and $g$ are $cU$-near if for each $y\in Y$,

there is some $U\in v$ containing both $f(y)$ and $g(y)$ . And a homotopy (an isotopy)
$h:Y\times I\rightarrow X$ is a $cU$-homotopy (a ’U-isotopy) if for each $y\in Y$, $h(\{y\}\times I)$ is con-
tained in some $U\in cU$ .

A map $f:B\times X\rightarrow B\times Y$ (or $f:x\times B\rightarrow Y\chi B$ ) is said to be B-preserving if
$\pi_{B}f=\pi_{B}$ . When $f:B\times X\rightarrow B\times Y$ (or $f:X\times B\rightarrow Y\times B$ ) is B-preserving, for each
$b\in B$ , define $f_{b}$ : $X\rightarrow Y$ by $f_{b}(x)=f(b, x)$ (or $=f(x,$ $b)$ ). Let $p:X\rightarrow B$ and $q:Y\rightarrow B$

be maps. A map $f:X\rightarrow Y$ is B-preserving if $qf=p$ . A map $g:X\times Z\rightarrow Y\times Z^{\prime}$ is
B-preserving if $q\pi_{Y}g=p\pi_{X}$ . And a homotopy $h:X\times I\rightarrow Y$ is B-preserving if
$qh_{t}=p$ for $t\in I$. If $p:X\rightarrow B$ and $q:Y\rightarrow B$ are bundles, then a B-preserving
continuous map (embedding, homeomorphism, etc.) $f:X\rightarrow Y$ is called a bundle
map (a bundle embedding, a bundle homeomorphism, etc.) and a B-preserving
homotopy (isotopy) $h:X\times I\rightarrow Y$ is a called a bundle homotopy (a bundle isotopy).

\S 3. Main Lemma.

In this section, we will prove the $fo[lowing$ lemma.

3-1 LEMMA. Let $X$ be a space such that $X\times E$ is perfectly normal and $W$

an open subspace of $X\times E$ . Then for any closed sets $A,$ $C$ and $D$ in $W$ such that
$ C\cap D=\emptyset$ , there exists a homeomorphism $h:(W\times E)_{A}\rightarrow(W\times E)_{A\cup D}$ such that

i) $\pi_{X}\tau^{A\cup D}h=\pi_{X}\tau^{A}$

ii) $h|(C\backslash A)\times E\cup A=id$

PROOF: According as $(E, O)\cong(E^{\omega}, 0)$ or $(E_{f^{)}}^{a}, 0),$ $E^{*}$ denotes $E^{\omega}$ or $E_{f}^{\omega}$ . We
may assume that $W$ is an open set in $X\times E^{*}$ . We will write $x=(x_{0} ; X_{1}, x_{2}, \cdots)$

$\in X\times E^{*}$ . For each $n\in N$ , let $\pi_{n}$ ; $X\times E^{*}\rightarrow X\times E^{n}$ be the natural projection, $i$ . $e$ .
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$\pi_{n}(x)=(x_{0} ; x_{1}, \cdots, x_{n})$ . By an n-basic subset of $X\times E^{*}$ , we will mean the inverse
image of a subset of $X\times E^{n}$ by $\pi_{n}$ , that is, $B\subset X\times E^{*}$ is n-basic if and only if
$\pi_{n}^{-1}\pi_{n}(B)=B$ . Note that if $B$ is n-basic, then $\pi_{n}(intB)=int\pi_{n}(B),$ $\pi_{n}(c1B)=c1\pi_{n}(B)$

and $\pi_{n}(bdB)=bd\pi_{n}(B)$ . Each m-basic set is n-basic for $n\geqq m$ . A basic set is
an n-basic for some $n$ . (See [Sch] p. 89).

Since $(E, 0)$ has SRIP, there is a semi-reflective isotopy $\sigma$ : $E^{2}\times I\rightarrow E^{2}$ with a
swerving homeomorphism $e:E\rightarrow E$ . Define an I-preserving continuous map
$\theta$ : $(X\times E^{*})\times E\times I\rightarrow(X\times E^{*})\times 1$ by

$\left\{\begin{array}{l}\theta(x,y,0)=(x,0) and\\\theta(x,y,t)=(x_{0}.\cdot x_{1},\cdots,x_{n-1},\end{array}\right.$

$\sigma(x_{n}, y, 2^{n}t-1),$ $e(x_{n+1}),$ $e(x_{n+2}),$ $\cdots$ ; t)

if $2^{-n}\leqq t\leqq 2^{-n+1}$ .
Note that $\theta|(X\times E^{*})\times E\times(0,1$] is a homeomorphism and that if $t\leqq 2^{-n}$ , then
$\pi_{n}\theta_{l}(x, y)=\pi_{n}(x)$ .

Using normality, construct collections $B$ and $\mathscr{Q}^{\prime}$ of basic open sets in $X\times E^{*}$

such that $\cup \mathscr{Q}=W\backslash (A\cup D),$ $ C\cap c1\cup \mathscr{Q}^{\prime}=\emptyset$ and $\cup(\mathscr{Q}\cup B^{\prime})=W\backslash A$ . Let $\mathscr{Q}_{n}$ and
$B_{n}^{\prime}$ denote the subcollections of $\mathscr{Q}$ and $\mathscr{Q}^{\prime}$ consisting of all n-basic sets, respec-
tively. By Lemma 5.2 of [Sch], take collections $\{K_{n}|n\in N\}$ and $\{K_{n}^{\prime}|n\in N\}$ of
closed sets in $X\times E^{*}$ such that $\bigcup_{n\in N}K_{n}=W\backslash (A\cup D)=\cup \mathscr{Q},\bigcup_{n\in N}K_{n}^{\prime}=\cup \mathscr{Q}^{\prime}$ and each
$K_{n}$ and $K_{n}^{\prime}$ are n-basic and contained int $K_{n+1}\cap\cup \mathscr{Q}_{n}$ and int $K_{n+1}^{\prime}\cap\cup 9_{n}^{\prime}$

respectively. Then $\bigcup_{n\in N}(K_{n}\cup K_{n}^{\prime})=W\backslash A$ and each $K_{n}\cup K_{n}^{\prime}$ is n-basic and contained

int $(K_{n+1}\cup K_{n+1}^{\prime})\cap\cup(\mathscr{Q}_{n}\cup \mathscr{Q}_{n}^{\prime})$ .
From Tietze Extension Theorem, there are continuous maps $f_{n}$ : $\pi_{n}(K_{n}\backslash intK_{n-1})$

$\rightarrow[2^{-n-1},2^{-n}]$ and $f_{n}^{\prime}$ : $\pi_{n}(K_{n}\cup K_{n}^{\prime}\backslash int(K_{n-1}\cup K_{n-1}^{\prime}))\rightarrow[2^{-n-1},2^{-n}]$ such that

$f_{n}(bd\pi_{n}(K_{n}))=f_{n}^{\prime}$ (bd $\pi_{n}(K_{n}\cup K_{n}^{\prime})$ ) $=2^{-n-1}$ and

$f_{n}(bd\pi_{n}(K_{n-1}))=f_{n}^{\prime}(bd\pi_{n}(K_{n-1}\cup K_{n-1}^{\prime}))=2^{-n}$

where $ K_{0}=K_{0}^{\prime}=\emptyset$ . Put $n(x)=\min\{n\in N|x\in K_{n}\}$ for each $x\in W\backslash (A\cup D)$ and
$m(x)=\min\{n\in N|x\in K_{n}\cup K_{n}^{\prime}\}$ for each $x\in W\backslash A$ , and define continuous maps
$f:W\backslash (A\cup D)\rightarrow(0,1]$ and $f^{\prime}$ : $W\backslash A\rightarrow(O, 1$] by

$f(x)=f_{n(x)}\pi_{n(x)}(x)$ and $f^{\prime}(x)=f_{m(x)}^{\prime}\pi_{m(x)}(x)$ .
These are well-defined because each $K_{n}$ and $K_{n}\cup K_{n}^{\prime}$ are n-basic. Note that

$f(x)=f(x_{0} ; x_{1}, \cdots, x_{n(x)}, *, *, \cdots)\leqq 2^{-n(x)}$

for each $x\in W\backslash (A\cup D)$ , and
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$f^{\prime}(x)=f^{\prime}(x_{0} ; x_{1}, \cdots, x_{m(x)}, *, *, \cdots)\leqq 2^{-m(x)}$

for each $x\in W\backslash A$ , and that $m(x)\leqq n(x)$ for each $x\in W\backslash (A\cup D)$ , and moreover if
$x\not\in\cup B^{\prime}$ , then $n(x)=m(x)$ . Take a continuous map $k:W\rightarrow l$ such that $k(C)=0$

and $k(c1\cup \mathscr{D}^{\prime})=1$ . And define a continuous map $g:W\backslash A\rightarrow(O, 1$] by

$g(x)=\left\{\begin{array}{l}f^{\prime}(x)\\(1-k(x))f(x)+k(x)f^{\prime}(x)\end{array}\right.$ $ifif$ $x\not\in Dx\in D$

.
Then observe that $g|C\backslash A=f|C\backslash A$ and

$g(x)=g(x_{0} : x_{1}, \cdots, x_{m(x)}, *, *, \cdots)\leqq 2^{-m_{\backslash }^{\prime}x)}$

for each $x\in W\backslash A$ .
Now define $h_{f}$ : $(W\times E)_{A\cup D}\rightarrow W$ and $h_{g}$ : $(W\times E)_{A}\rightarrow W$ by

$\{h_{f}|A\cup D=id_{(x)}h_{f}(x,y)=\theta_{f}$

for each $(x, y)\in(W\backslash (A\cup D))\times\overline{L}$

ana

$\{h_{g}|A=idh_{g}(x,y)=\theta_{g(x)}(x, y)$

for each $(x, y)\in(W\backslash A)\chi E$ .
Then $h_{f}|(C\backslash A)\times E\cup A=h_{g}|(C\backslash A)\times E\cup A$ .

Now, we will show that $h_{f}$ and $h_{g}$ are homeomorphisms. Then $h_{f}^{-1}h_{g}$ :
$(W\times E)_{A}\rightarrow(W\times E)_{A\cup D}$ is clearly a desired homeomorphism. From similarity, we
may check up $h_{f}$ alone.

Continuity of $h_{f}$ : Since $h_{f}|(W\backslash (A\cup D))\times E$ is continuous, we have to examine
that $h_{f}$ is continuous at $x\in A\cup D$ . Let $V$ be an n-basic neighbourhood of $x$ in
$W$ . Since $K_{n}\cap(A\cup D)=\emptyset,$ $V\backslash K_{n}$ is a neighbourhood of $x$ in $W$ , so

$U=((V\backslash K_{n})\backslash (A\cup D))\times E\cup((V\backslash K_{n})\cap(A\cup D))$

is a neighbourhood of $x$ in $(W\times E)_{A\cup D}$ . For $(x^{\prime}, y^{\prime})\in((V\backslash K_{n})\backslash (AUD))\times E$ .
$x^{\prime}\not\in K_{n}$ implies $n(x^{\prime})>n$ therefore $f(x^{\prime})\leqq 2^{-n(x^{\prime})}<2^{-n}$ . Then

$\pi_{n}h_{f}(x^{\prime}, y^{\prime})=\pi_{n}\theta_{f(x^{\prime})}(x^{\prime}, y^{\prime})=\pi_{n}(x^{\prime})\in\pi_{n}(V)$

so $h_{f}(x^{\prime}, y^{\prime})\in\pi_{n}^{-1}\pi_{n}(V)=V$. Hence $h_{f}(U)\subset V$.
Inverse of $h_{f}$ : Define $h_{f}^{\prime}$ : $W\rightarrow(W\times E)_{A\cup D}^{-}$ by

$h_{f}^{\prime}(x)=\left\{\begin{array}{l}x if\\\theta_{f(x)}^{-1}(x) if\end{array}\right.$ $x\not\in A\vee Dx\in A\cdot\cdot D$

.
For each $x\in W\backslash (A\cup D)$ put $(x^{\prime}, y^{\prime})=\theta_{f(x)}^{-1}(x)\in(W\backslash (A\cup D))\times E$ . $S\iota nc\simeq$

$x=\theta_{f(x)}(x^{\prime}, y^{\prime})$ and $f(x)\leqq 2^{-n(x)}$ ,

$\pi_{n(x)}(x)=\pi_{n(x)}\theta_{f(x)}(x^{\prime}, y^{\prime})=;\tau_{n(x)}(x^{\prime})$
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therefore $f(x)=f(x^{\prime})$ . Hence

$h_{f}(h_{f}^{\prime}(x))=h_{f}(x^{\prime}, y^{\prime})$

$=\theta_{f(X^{\prime})(x^{\prime}},$ $y^{\prime}$ )

$=\theta_{f(x)}(\theta_{f(x)}^{-I}(x))$

$=x$ .
For each $(x, y)=(W\backslash (A\cup D))\times E$ , put $x^{\prime}=\theta_{f(x)}(x, y)\in W\backslash (A\cup D)$ . Similarly

as above, $f(x)=f(x^{\prime})$ . Hence

$h_{f}^{\prime}(h_{f}(x, y))=h_{f}^{\prime}(x^{\prime})$

$=\theta_{f(x^{J})}^{-1}(x^{\prime})$

$=\theta_{f(x)}^{-1}(\theta_{f(x)}(x, y))$

$=(x, y)$ .
Therefore $h_{f}^{\prime}=h_{f}^{-1}$ .

Continuity of $h_{f}^{-1}=h_{f}^{\prime}$ : Since $h_{f}^{\prime}|W\backslash (A\cup D)$ is continuous, we have to examine
that $h_{f}^{\prime}$ is continuous at $x\in A\cup D$ . Let $V$ be an n-basic neighbourhood of $x$ in
$W$ . Note that $V\backslash K_{n}$ is a neighbourhood of $x$ in $W$ . For $x^{\prime}\in(V\backslash K_{n})\backslash (A\cup D)$ ,
put $h_{f}^{\prime}(x^{\prime})=(x^{\prime\prime}, y^{\prime\prime})$ . Then $\pi_{n(x\prime)}(x^{\prime})=\pi_{n(x^{\prime})}(x^{\prime\prime})$ , so $\pi_{n}(x^{\prime})=\pi_{n}(x^{\prime\prime})$ because
$n<n(x^{\prime})$ . Since $V$ is n-basic, $x^{\prime\prime}\in V$ that is $h_{f}^{\prime}(x^{\prime})=(x^{\prime\prime}, y^{\prime\prime})\in(V\backslash (A\cup D))\times E$ .
Hence

$h_{f}^{\prime}(V\backslash K_{n})\subset(V\backslash (A\cup D))\times E\cup(V\cap(A\cup D))$ . $\square $

3-2 REMARK: In the above proof, note that

$\theta((x, 0),$ $0,$ $t$ ) $=(x, 0, t)$

for each $((x, 0),$ $0,$ $t$ ) $\in X\times E^{*}\times E\times 1$, then

$h_{f}^{-1}h_{g}((x, 0),$ $0$) $=\left\{\begin{array}{l}((x,0),0) if (x,0)\in(W\backslash (A\cup D))\bigcap_{\iota}X\times\{0\}\\(x,0) if (x,0)\in(D\backslash A)\cap X\times\{0\}.\end{array}\right.$

Hence we can require a homeomorphism $h$ in Lemma 3-1 to satisjy

iii) $h|((W\backslash A)\cap X\times\{0\})\times\{0\}=\tau_{A\cup D}$ .
In the above proof, put $ A=D=\emptyset$ , construct $B$ so fine that st $(\mathscr{Q})<cL^{7}$ for ar

open cover $cU$ of $W$ and define $\Theta^{V}$ : $(X\times E^{*})\times E\times 1\rightarrow(X\times E^{*})\times 1$ by

$\Theta^{v}(x, y, t)=\left\{\begin{array}{l}(\theta_{tf(x)}(x,y),t)\\(x,t)\end{array}\right.$ $ifif$ $x\not\in Wx\in W$

.
Then note that $\Theta^{v}$ is X-preserving because $\theta$ is so. From the proof of Lemma
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2-1 of $[Sa_{1}]$ , we have the following lemma:

3-3 LEMMA: Let $X$ be a space such that $X\times E$ is perfectly normal and $W$

an open subspace of $X\times E$ . Then for each $open\subset U$ of $W$, there exists an X- and
I-preserving continuous map $\Theta^{qj}$ : $X\times E\times E\times I\rightarrow X\times E\times I$ such that

i) $\Theta^{V}(x, 0,0, t)=(x, 0, t)$ for each $(x, 0,0, t)\in X\times E\times E\times I$ ,

ii) $\Theta_{0^{I}}^{q}=\pi_{XxE}$ ,

iii) $\Theta_{\iota^{I}}^{q}|((X\times E)\backslash W)\times E=\pi_{XxE}$ for each $t\in I$ ,

iv) $\Theta^{q\int}|W\times E\times(0,1$] $:W\times E\times(O, 1$] $\rightarrow W\times(0,1$] is a homeomorphis $7n$ ,

v) $eV|W\times\{0\}\times I:W\times\{0\}\times I\rightarrow W\times I$ is a closed embedding, and

vi) for each $(x, y)\in W$ , there is some $U\in^{c}U$ such that $eV(\{(x, y)\}\times E\times I)$

$\subset U\times I$ .

\S 4. Stability Theorem for Infinite-Dimensional Bundles.

In [Mi], E. Micheal established a useful criterion for a topological property
$\mathcal{P}$ in order that the implication “if a topological space $X$ has $\mathcal{P}$ locally, then $X$

has $\mathcal{P}$ hold. In the proof of his theorem, he actually proved the following:

4-1 THEOREM (Micheal): Let $X$ be a $pa$ racompact ( $i$ . $e$ . fully normal) space
and $\mathcal{G}$ an open cover of $X$ which satisfies the following conditions:

a) $U$ is open in $X$ and $U\subset V\in \mathcal{G}\subset>U\in \mathcal{G}$ .
b) $U,$ $V\in \mathcal{G}\subset>U\cup V\in \mathcal{G}$ .

c) For any discrete subcollection $\{9_{\lambda}|\lambda\in\Lambda\}$ of $\mathcal{G},\bigcup_{\lambda\in\Lambda}U_{\lambda}\in \mathcal{G}$ .

Then $X\in \mathcal{G}$ .

Using this theorem, we establish the stability theorem for a locally trivial
fibre bundle with fibre $M$ a manifold modeled on $E\cong E^{\omega}$ or $E_{f}^{o}$ which has SRIP.
It is a bundle version of Schori Stability Theorem (Theorem 5.10 in [Sch]).

4-2 BUNDLE STABILIEY THEOREM: Let $p:X\rightarrow B$ be an E-manifold bundle
such that $X\times E$ and $B\times E$ are paracompact, perfectly normal. Then $p\pi_{X}$ : $X\times E$

$\rightarrow B$ is bundle isomorphic to $p:X\rightarrow B$ .

PROOF: Let $\mathcal{G}$ is the collection of all open sets in $X$ whose each open sub-
set $W$ satisfies the following condition:
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$(*)$ For any closed sets $A,$ $C$ and $D$ in $W$ such that $ C\cap D=\emptyset$ , there exists a
homeomorphism $h:(W\times E)_{A}\rightarrow(W\times E)_{A\cup D}$ such that $h|(C\backslash A)\times E\cup A=id$ ,
$p\tau^{A\cup D}h=p_{T^{A}}$ .

Then $\mathcal{G}$ is an open cover of $X$, that is, each $x\in X$ has a neighbourhood
which is a member of $\mathcal{G}$ . In fact, there are an open neighbourhood $U$ of $p(x)$

in $B$ and a homeomorphism $f:p^{-1}(U)\rightarrow U\times M$ such that $\pi_{U}f=p$ , where $M$ is an
E-manifold which is the fibre of $p:X\rightarrow B$ . And there are an open neighbour-

hood $V$ of $\pi_{M}f(x)$ in $M$ homeomorphic to an open set in $E$ . From Lemma 3-1,
it is easily shown that each open subset of $f^{-1}(U\times V)$ satisfies the condition $(*)$ .

Now we will see that $\mathcal{G}$ satisfies the conditions a), b) and c) in Theorem 4-1.
Then it follows $X\in \mathcal{G}$ , therefore there exists a homeomorphism $h:(X\times E)_{g}=X\times E$

$\rightarrow(X\times E)_{X}=X$ such that $ph=p\pi_{X}$ .
Obviously, conditions a) and c) are satisfied. To see condition b), let

$W=W^{\prime}\cup W^{\prime\prime}$ where $W^{\prime}$ and $W^{\prime\prime}$ satisfy $(*)$ and $A,$ $C$ and $D$ closed sets in $W$ so
that $ C\cup D=\emptyset$ . Since $W$ is normal, there are open sets $V^{\prime}$ and $V^{\prime\prime}$ in $W$ such
that $c1_{W}V^{\prime}\cap c1_{W}V^{\prime\prime}=\emptyset,$ $W\backslash W^{\prime\prime}\subset V^{\prime}$ and $W\backslash W^{*}\subset V^{\prime\prime}$ .

Let $V$ be an open set in $W$ so that $W\backslash W^{\prime}\subset V\subset c1_{W}V\subset V^{\prime\prime}$ . Put $A^{\prime}=A\cap W^{\prime}$ ,
$C’=(C\cup c1_{W}V)\cap W^{\prime}$ and $D^{\prime}=D\backslash V^{\prime\prime}$ . Since $W^{\prime}$ satisfies $(*)$ , there exists $\epsilon$ homeo-
morphism $h^{\prime}:(W^{\prime}\times E)_{A^{\prime}}\rightarrow(W^{\prime}\times E)_{A^{\prime}\cup D^{\prime}}$ such that $h^{\prime}|(C^{\prime}\backslash A^{\prime})\times E\cup A^{\prime}=id$ and
$p\tau^{A^{\prime}\cup D^{\prime}}h^{\prime}=p\tau^{A^{\prime}}$ . Define a homeomorphism $h_{1}$ : $(W\times E)_{A}\rightarrow(W\times E)_{A\cup D^{\prime}}$ by $h_{1}|(W^{\prime}\times E)_{A^{\prime}}$

$=h^{\prime}$ and $h_{1}|(W\times E)_{A}\backslash (W^{\prime}\times E)_{A^{\prime}}=id$ . Then $h_{1}|(C\backslash A)\times E\cup A=id$ and $p\tau^{A\cup D^{\prime}}h_{1}=p\tau^{A}$ .
Put $A^{\prime\prime}=(A\cup D^{\prime})\cap W$“, $C^{\prime\prime}=(C\cup c1_{W}V^{\prime})\cap W^{\prime\prime}$ and $D^{\prime\prime}=D\cap c1_{W}V^{\prime\prime}$ , then using

above argument, we obtain a homeomorphism $h_{2}$ : $(W\times E)_{A\cup D^{\prime}}\rightarrow(W\times E)_{A\cup D}$ such
that $h_{2}|(C\backslash (A\cup D^{\prime}))\times E\cup(A\cup D^{\prime})=id$ and $p\tau^{A\cup D}h_{2}=p\tau^{A\cup D^{\prime}}$ .

Then $h=h_{2}h_{1}$ : $(W\times E)_{A}\rightarrow(W\times E)_{A\cup D}$ is a desired homeomorphism. $\square $

From 3-3 and 4-2, we can easily obtain the following strong version of 4-2
which is a bundle version of Geoghegan-Henderson Strong Stability Theorem
[G-H] and Theorem 2-2 in $[Sa_{1}]$ .

4-3 STRONG BUNDLE STABILITY THEOREM: Let $p:X\rightarrow B$ be an E-manifold
bundle such that $X\times E$ and $B\times E$ paracompact, perfectly normal and let $W$ be an
open set in X. Then for each open cover $cU$ of $W$, there exists an I-preserving
continuous map $\Delta^{U}$ : $X\times E\times I\rightarrow X\times I$ such that

i) $p\Delta_{t}^{U}c=p\pi_{X}$ for each $t\in I$ ,

ii) $\Delta_{0^{I}}^{q}=\pi_{X}$ ,

iii) $\Delta_{t^{j}}^{q}|(X\backslash W)\times E=\pi_{X}$ for each $t\in I$ ,

iv) $\Delta^{V}|W\times E\times(O, 1$] is a homeomorphism, and
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v) for each $x\in W$ , there is some $U\in U$ such that $\Delta^{c}U(\{x\}\times E\times I)\subset U\times I$ .

PROOF: Let $h:X\rightarrow X\times E$ be a bundle homeomorphism. Then $\Delta^{v}=(h^{-1}\times id_{I})$

$\Theta^{h(q/)}(h\times id_{ExI})$ fulfills our requirements. $\square $

In particular, it follows from the above theorem that

I) for each open cover ${}^{t}U$ of $X$, there exists a bundle homeomorphism
$h:X\times E\rightarrow X$ homotopic to the projection $\pi_{X}$ ; $X\times E\rightarrow X$ by a bundle $cU$-homotopy;
and

II) for each open set $W$ , there exists B-preserving homemorphisms $g:W\times E$

$\rightarrow W$ B-preservingly homotopic to the projection $\pi_{W}$ : $W\times E\rightarrow W$ .

\S 5. Deficiency in Bundles.

Let $p:X\rightarrow B$ be a map. A subset $K$ of $X$ is said to be B-preservingly E-
deficient in $X$ (with respect to $p:X\rightarrow B$ ) if there exists a homeomorphism $h:X$

$\rightarrow X\chi E$ such that $p\pi_{X}h=p$ and $\pi_{E}h(K)=0(i.e. h(K)\subset X\times\{0\})$ . And if each
$x\in K$ has a neighbourhood $W$ in $X$ such that $K\cap W$ is B-preservingly E-deficient
in $W$ with respect to $p|W:W\rightarrow B$ , then $K$ is said to be locally B-preservingly

E-deficient in $X$ (with respect to $p:X\rightarrow B$ ).

From Bundle Stability Theorem 4-2 and its strong version 4-3, these notion
of deficiency and local deficiency have the sense for E-manifold bundles.

Throughout the following, let $p:X\rightarrow B$ denote an E-manifold bundle such
that $X\times E$ and $B\times E$ are paracompact, perfectly normal.

First, we remark the following:

5-1 REMARK: In 4-3, let $K$ be a B-preservingly E-deficient set in $X$. In
the proof, using a bundle homeomorphism $h:X\rightarrow X\times E$ such that $h(K)\subset X\times\{0\}$ ,

$we_{-}can$ require $\Delta^{\zeta}U$ to satisfy

vi) $\Delta_{t}^{v}|K\times\{0\}=\pi_{X}$ for each $t\in I$ .

This remark yields the following:

5-2 PROPOSITION: If $K$ is a B-preservingly E-deficient in $X$, then there
exists a bundle homeomorphism $h:X\rightarrow X\times E$ such that $h(x)=(x, 0)$ for each $x\in K$.

And $mo$ reover if $W$ is an open subset of $X$, then $K\cap W$ is B-preservingly

E-deficient in $W$ .

Now, we will show that any locally B-preservingly E-deficient set is B-
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preservingly E-deficient.

5-3 THEOREM: If $K$ is a locally B-preservingly E-deficient set in $X$, then
$K$ is B-preservingly E-deficient in $X$.

PROOF: Let $\mathcal{G}_{K}$ be the collection of all open sets in $X$ whose each open
subset $W$ satisfied the following condition:

$(*)_{K}$ For any closed sets $A,$ $C$ and $D$ in $W$ such that $ C\cap D=\emptyset$ , there exists a
homeomorphism $h:(W\times E)_{A}\rightarrow(W\times E)_{A\cup D}$ such that $h|(C\backslash A)\times E\cup A=id$ ,
$p\tau^{A\cup D}h=p\tau^{A}$ and $h|(K\backslash A)\times\{0\}=\tau_{A\cup D}$ .

Using Remark 3-2, it is same as 4-2 to see that $\mathcal{G}_{K}$ is an open cover of $X$

and that $\mathcal{G}_{K}$ satisfies the condition b) in Theorem 4-1. It is clear that conditions
a) and c) in 4-1 are satisfied. Then the result follows from Theorem 4-1. $\square $

The following corollary is a direct consequence on 5-3.

5-4 COROLLARY: A necessary and sufficient condition that $K$ is B-preserving-
ly E-deficient in $X$ is that for each $x\in B$ , there exist a neighbou rhood $U$ of $x$ in
$B$ and a bundle homemorphism $h:p^{-1}(U)\rightarrow U\times M$ such that $\pi_{M}h(K\cap p^{-1}(U))$ is

E-deficient in $M$, where $M$ is an E-manifold which is the fibre of $p;X\rightarrow B$ .

In the following, we will show that a finite union of B-preservingly E-
deficient sets in $X$ is also B-preservingly E-deficient in X. We must assume
that $(C(E), O)\cong(E, 0)$ . The Hilbert cube $Q$ and any locally convex linear metric
space $F$ homeomorphic to $F^{\omega}$ or to $F_{f}^{\omega}$ satisfy this assumption. It is well known
that $C(Q)\cong Q$ and $Q$ is homogeneous (cf. $[Ch_{2}]$ ), then these imply $(C(Q), 0)$

$\cong(Q, 0)$ . Since $F\cong C^{o}(F)$ by Lemma 2 in [He] (with a remark in the proof of
Theorem 3.1 in $[Ch_{1}]$ ) and $F\times(O, 1$] $\cong F,$ $C(F)$ is an F-manifold. From contracti-
bility of $C(F),$ $C(F)\cong F$ by Classification Theorem in [He]. (Using Negligibility

Theorem in $[Cu_{1}],$ $C(F)\cong C(F)\backslash F\times\{1\}=C^{o}(F)\cong F$ because $F\times\{1\}$ is F-deficient
closed in $C(F).)$ Our theorem (5-6) is valid for not closed sets, thus it is an
extension of Proposition 5.3 in $[Cu_{2}]$ .

5-5 LEMMA: If $(C(E), O)\cong(E, 0)$ , then there is a homeomorphism $f:I\times E$

$\rightarrow C(E)=(I\times E)_{10\}}$ such that $f|I\times\{0\}=\tau_{\{0\}}$ , that is, $f(O, 0)=0$ and $f(t, O)=(t, 0)$

for each $t\in(O, 1$]. So $(C(E), O)\cong(E, 0)$ implies $(E\times I, (0, O))\cong(E, 0)$ .

PROOF: Let $h:E\rightarrow C(E)=(I\times E)_{101}$ be a homeomorphism such that $h(O)=0$ .
Then $h$ induces a homeomorphism $h^{*}:(I\times E)_{\{0\}}\rightarrow(I\times(I\times E)_{|0|})_{10\}}$ $define^{\underline{r^{t}}}$ by

$h^{*}(O)=0$ and $h^{*}|(0,1$] $\times E=id_{(0,1j}\times h$ . Observe that
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$(I\times(I\times E)_{\{01})_{\{01}=((I\times I)_{\{01}\times E)_{|0I\cup(01\ddagger x|0|}$

and that
$I\times(I\times E)_{\{0I}=((I\times I)\times E)_{Ix10\}}$ .

We can easily constract a homeomorphism $g:I\times I\rightarrow(I\times I)_{10I}$ so that $g|I\times\{0\}$

$=\tau_{|0|}$ . This $g$ induces a homeomorphism

$g^{*}:$ $((I\times I)\times E),_{X}\rightarrow((I\times I)_{10\}}\times E)_{|0|\cup(0,1Jxl01}$

defined by $g^{*}|I\times\{0\}=g|I\times\{0\}$ and $g^{*}|I\times(0,1$ ] $\times E=(g|I\times(0,1$]) $\times id_{E}$ .
Now define.$f=h^{*-1}g^{*}(id_{I}\times h):I\times E\rightarrow(I\times E)_{|0|}$ .

$I\times E$

id, $\times h$

$I\times(I\times E)_{|0|}$

$11$

$((I\times I)\times E)_{Ix101}$

$g^{*}$

$((I\times I)_{|0|}\times E)_{|0|\cup(0.1JxE}$

$11$

$(I\times(I\times E)_{|0|})_{|0|}$

$h^{*-1}$

$(I\times E)_{10\mathfrak{l}}$

For $t\in(O, 1$ ], $f(t, O)=h^{*-1}g^{*}(t, 0)=h^{*-1}(t, 0)=(t, 0)$ and $f(O, O)=h^{*-1}g^{*}(0,0)$

$=h^{*-1}(0)=0$ . Hence $f$ is a desired homeomorphism. $\square $

5-6 THEOREM: Assume $(C(E), O)\cong(E, 0)$ . Then a finite union of B-preser-

vingly E-deficient sets in $X$ is also B-preservingly E-deficient.

PROOF: Let $K$ and $L$ be B-preservingly E-deficient in $X$. We may show
that $K\cdot L$ is B-preservingly E-deficient in $X$. Since $(E\times I, (0, O))\cong(E, 0)$ , there
is a bundle homeomorphism $g:X\rightarrow X\times I$ such that $g(L)\subset X\times\{0\}$ . Put
$A=g^{-1}(X\times\{0\})$ . Then $g$ induces a B-preserving homeomorphism $g^{*}:$ $(X\times E)_{A}$

$\rightarrow((X\times I)\times E)_{Xx10I}$ defined by $g^{*}|A=g|A$ and $g^{*}|(X\backslash A)\times E=(g|X\backslash A)\times id_{E}$. By
5-5, there is a homeomorphism $f:I\times E\rightarrow(I\times E)_{101}$ such that $f|I\times\{0\}=\tau_{\{01}$ .
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$X\times E\underline{g\times id_{E--}}X\times I\times E$

$id_{x}\times f$

$h^{\prime}$

$X\times(I\times E)_{\{0\}}$

It

$(X\times E)_{A}=\overline{g^{*1}-}((X\times I)\times E)_{Xxt01}$

Then $h^{\prime}=g^{*-1}(id_{X}\times f)(g\times id_{E}):X\times E\rightarrow(X\times E)_{A}$ is a B-preserving homeomorphism
such that $h^{\prime}|X\times\{0\}=\tau_{A}|X\times\{0\}$ .

From proof of 5-3, there exists a B-preserving homeomorphism $h^{\prime\prime}$ : $(X\times E)_{A}$

$\rightarrow X$ such that $h^{\prime\prime}|A\cup(K\backslash A)\times\{0\}=\tau^{A}$ . Then $h=h^{\prime\prime}h^{\prime}$ : $X\times E\rightarrow X$ is a bundle
homeomorphism such that $h|(K\cup L)\times\{0\}=\pi_{x}$ . Hence $K\cup L$ is B-preservingly
E-deficient in X. $\square $

\S 6. Mapping Replacement.

Recall our assumption that $p;X\rightarrow B$ is an E-manifold bundle such that $X\times E$

and $B\times E$ are paracompact, perfectly normal.
In this section, we will prove two theorems, using results in Section 3. The

first theorem is a bundle version of Theorem 4.1 in $[Ch_{1}]$ (Theorem 2-5 in $[Sa_{1}]$ ).

6-1 THEOREM: Let $K$ be a B-preservingly E-deficient subset of X. Then
for each open cover $cU$ of $X$, there exists an invertible bundle $cU$-isotopy $g_{t}$ : $X\rightarrow X$

$(t\in I)$ such that

i) $g_{0}=id$ ,

ii) $g_{l}|K=id$ for each $t\in I$, and

iii) $g_{t}(X)$ is a B-preservingly E-deficient closed set in $X$ for each $t\in(O, 1$].

PROOF: Since $K$ is B-preservingly E-deficient in $X$, there is a bundle homeo-
morphism $h:X\rightarrow X\times E$ such that $h(K)\subset X\times\{0\}$ . Define a closed embedding
$i:X\times E\rightarrow X\times E\times E$ by $i(x, y)=(x, y, 0)$ . Then $g=h^{-1}\pi_{X\times E}\Theta^{h(U)}c(ih\times id_{I}):X\times I$

$\rightarrow X$ is a desired isotopy, where $\Theta^{h(U)}\subseteq$ is a map in Lemma 3-3. $\square $

The second theorem is a bundle version of Mapping Replacement Theorem
due to R. D. Anderson and J. D. McCharen [A-M] (Lemma 5.1 in $[Ch_{1}]$ ;
Theorem 3-1 in $[Sa_{1}]$ ). In case of a product Q-manifold bundle, it has been
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proved (Proposition 4.9 in [Fe], Corollary 2.4 in [C-F]). In the following, we
assume metrizability of $B$ and $E$ , hence metrizability of all spaces and that
$(E\times I, O)\cong(E, 0)$ . The Hilbert cube $Q$ and any linear metric space $F$ homeo-
morphic to $F^{\omega}$ or to $F_{f}^{\omega}$ have this property.

6-2 MAPPING REPLACEMENT THEOREM: Assume that $E$ and $B$ are metrizable

and that $(E\times I, O)\cong(E, 0)$ . Let $Y\supset Z$ be closed subsets of $B\times E$ . If $f:Y\rightarrow X$ is
a B-preserving continuous map such that $f|Z$ is a closed embedding and $f(Z)$ is
B-preservingly E-deficient in $X$, then for each open cover $\mathfrak{B}$ of $X$, there is a B-
preserving $qj$-homotopy $f^{*}:$ $Y\times I\rightarrow X$ such that

i) $f_{0}^{*}=f$ ,

ii) $f_{t}^{*}|Z=f|Z$ for each $t\in I$ ,

iii) $f_{1}^{*}$ : $Y\rightarrow X$ is a closed embedding, and

iv) $f_{1}^{*}(Y)$ is B-preservingly E-deficient in $X$ .

PROOF (cf. Proof of Theorem 3-1 in $[Sa_{1}]$): According as $E\cong E^{\omega}$ of $E\cong E_{f}^{\omega}$ ,
$E^{*}$ denotes $E^{\omega}$ or $E_{f}^{a}$ . Note that $(E, O)\cong(E^{*}\times I, 0)$ . Let $d$ and $d^{*}$ be metrics
on $Y$ and $X\times E^{*}\times I$, respectively, defined as follows

$d(y, y^{\prime})=d_{Y}(y, y^{\prime})+d_{x}(f(y), f(y^{\prime}))$

and

$d^{*}((x, z, t), (x^{\prime}, z^{\prime}, t^{\prime}))=d_{X}(x, x^{\prime})+\sum_{i=1}^{\infty}2^{-i}d_{E}(z_{i}, z_{i}^{\prime})+2^{-1}|t-t^{\prime}|$

where $d_{X},$ $d_{Y}$ and $d_{E}$ are metrics bounded by 1/4 on $X,$ $Y$ and $E$ respectively.

Let $\mathcal{V}$ be a star-refinement of $cU$ . From Theorem 6-1, we have an invertible
bundle $\mathcal{V}$ -isotopy $g:X\times I\rightarrow X$ such that $g_{0}=id,$ $g_{l}|f(Z)=id$ for each $t\in I$ and
$g_{1}(X)$ is B-preservingly E-deficient closed in $X$. Let $h:X\rightarrow X\times E^{*}\times I$ be a
homeomorphism so that $p\pi_{x}h=p$ and $hg_{1}(x)=(g_{1}(x), 0,0)$ for each $x\in X$. Using

the above metrics, define a continuous map $k:Y\rightarrow[0,1/2]$ by

$k(y)=d(y, Z)=\inf\{d(y, y^{\prime})|y^{\prime}\in Z\}$

and a continuous map $e:X\times E^{*}\times I\rightarrow I$ by

$e(x, z, t)=\sup\{d^{*}((x, z, t), X\times E^{*}\times I\backslash h(V))|V\in \mathcal{V}\}$ .
(Since $|e(x, z, t)-e(x^{\prime}, z^{\prime}, t^{\prime})|<d^{*}((x, z, t), (x^{\prime}, z^{\prime}, t^{\prime})),$ $e$ is continuous. This
map $e$ is called a majorant for with respect to $d^{*}$ in $[Sa_{1}]$ ; see [Cu] 2.)

Now, let $\theta$ : $X\times E^{*}\times E\times I\rightarrow X\times E^{*}\times I$ be the X- and I-preserving continuous
map defined in the proof of Lemma 3-1 and define a homotopy $f^{\prime}$ : $Y\times I\rightarrow X$ by

$f_{t}^{\prime}(y)=h^{-1}\theta(g_{1}f(y), 0, \pi_{E}(y), tk(y)ehg_{1}f(y))$ ,
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Note that $(pg_{1}f(y), \pi_{E}(y))=(\pi_{B}(y), \pi_{E}(y))=y$ for each $y\in Y$. Then by the same
arguments in the proof of Theorem 3-1 in $[Sa_{1}]$ , a homotopy $f^{*}:$ $Y\times I\rightarrow X$ by

$f_{t}^{*}(y)=\left\{\begin{array}{l}g_{2l}f(x) if 0\leqq t\leqq 1/2\\f_{2l- 1}^{\prime}(x) if 1/2\leqq t\leqq 1\end{array}\right.$

fulfills our requirements. $\square $
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