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A GAMMA RING WITH MINIMUM CONDITIONS

By

Shoji KYUNO

Abstract. The aim of this note is to study the structure of a
$\Gamma$-ring (not in the sense of Nobusawa) with minimum conditions.
By ring theoretical techniques, we obtain various properties on the
semi-prime $\Gamma$-ring and generalize Nobusawa’s result which corre-
sponds to the Wedderburn-Artin Theorem in ring theory. Using
these results, we have that a $\Gamma$-ring with minimum right and left
conditions is homomorphic onto the $\Gamma_{0}$-ring $\sum_{i=1}^{q}D_{n(i),m(t)}^{(i)}$ , where
$D_{n(i).m(i)}^{(i)}$ is the additive abelian group of the all rectangular matrices
of type $n(i)\times m(i)$ over some division ring $D^{(i)}$ , and $\Gamma_{0}$ is a subdirect
sum of the $\Gamma_{i},$ $1\leqq i\leqq q$ , which is a non-zero subgroup of $D_{m(i),n(i)}^{(i)}$

of type $m(i)\times n(i)$ over $D^{(i)}$ .

1. Introduction.

Nobusawa [8] introduced the notion of a $\Gamma$-ring $M$ as follows: Let $M$ and
$\Gamma$ be additive abelian groups. If for all $a,$ $b,$ $c\in M$ and $\alpha,$ $\beta,$ $\gamma\in\Gamma$, the conditions

$N_{1}$ . $a\alpha b\in M$, $\alpha a\beta\in\Gamma$

$N_{2}$ . $(a+b)\alpha c=a\alpha c+b\alpha c$ , $a(\alpha+\beta)b=a\alpha b+a\beta b$ , $a\alpha(b+c)=a\alpha b+a\alpha c$

$N_{3}$ . $(a\alpha b)\beta c=a(\alpha b\beta)c=a\alpha(b\beta c)$

$N_{4}$ . $x\gamma y=0$ for all $x,$ $y\in M$ implies $\gamma=0$ ,

are satisfied, then $M$ is called a $\Gamma$-ring.
Barnes [1] weakened slightly defining conditions and gave the definition as

follows:
If these conditions are weakened to

$B_{1}$ . $a\alpha b\in M$

$B_{2}$ . same as $N_{2}$

$B_{3}$ . $(a\alpha b)\beta c=a\alpha(b\beta c)$ ,

then $M$ is called a $\Gamma$-ring.
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In this paper, the former is called a $\Gamma$-ring in the sense of Nobusawa and the
latter merely a $\Gamma$-ring.

Nobusawa [8] determined the structures of simple and semi-simple $\Gamma$-rings
in the sense of Nobusawa with minimum right and left conditions as follows:

Using the notation introduced in [5], when $M$ is simple, as a ring,

$\left(\begin{array}{ll}R & \Gamma\\ M & L\end{array}\right)\cong\left(\begin{array}{lll}D_{m} & D_{m}, & n\\D_{n,m} & D_{n} & \end{array}\right)$

where $D$ is a division ring ([8] Theorem 2); when $M$ is semi-simple, as a ring,

$\left(\begin{array}{ll}R & \Gamma\\ M & L\end{array}\right)\cong\Sigma_{i=1\left(\begin{array}{ll}D_{m(t)}^{(i)} & D_{m(i).n(i)}^{(i)}\\D_{n(i),m(i)}^{(t)} & D_{n(t)}^{(i)}\end{array}\right)}^{q}$

where $D^{(i)},$ $1\leqq i\leqq q$ , are division rings ([8] Theorem 3).

Nobusawa’s definitions are in the following: $M$ is simple if $a\Gamma b=0$ implies
$a=0$ or $b=0;M$ is semi-simple if $a\Gamma a=0$ implies $a=0$ .

In [2], we defined that a $\Gamma$-ring $M$ is prime if for any ideal $A$ and $B$ of $M$,
$A\Gamma B=0$ implies $A=0$ or $B=0$ ; a $\Gamma$-ring $M$ is semi-prime if for any ideal $A$ of
$M,$ $A\Gamma A=0$ implies $A=0$ .

When $M$ is a $\Gamma$-ring in the sense of Nobusawa, one can easily verify that $M$

is prime if and only if $a\Gamma b=0$ implies $a=0$ or $b=0;M$ is semi-prime if and only

if $a\Gamma a=0$ implies $a=0$ ([1] Theorem 5). Thus, when $M$ is a $\Gamma$-ring in the sense
of Nobusawa, Nobusawa’s terms ‘ simple’ or ‘ semi-simple’ are equivalent to our
‘ prime’ or ‘ semi-prime ‘ respectively.

However, when $M$ is a $\Gamma$-ring (not in the sense of Nobusawa), they are
quite different notations. Following Luh [7] we call a $\Gamma$-ring $M$ is completely

prime if $a\Gamma b=0$ implies $a=0$ or $b=0;M$ is completely semi-prime if $a\Gamma a=0$

implies $a=0$ . Then, the primeness cannot imply the completely primeness, even
for a finite $\Gamma$-ring ([7] Example 3.1). The semi-prime $\Gamma$-ring is one without
non-zero strongly-nilpotent ideal (Theorem 2.10 below), while the completely

semi-prime $\Gamma$-ring is one without non-zero strongly-nilpotent element (Definition

2.2). The gap between the primeness and completely primeness and the gap
between semi-primeness and completely semi-primeness are caused by lack of a
multiplication: $\Gamma\times M\times\Gamma\rightarrow\Gamma$. In the following we do not treat completely prime
$\Gamma$-rings nor completely semi-prime ones, but prime and semi-prime $\Gamma$-rings.

Also, it should be noticed that a semi-prime $\Gamma$-ring with minimum right

condition cannot always have the minimum left condition, nor $\dim(LM)$ can be
equal to $\dim(M_{R})$ even if it has both minimum right and left conditions, while a
semi-prime ring $R$ (an ordinary ring) with minimum right condition has the
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minimum left condition, and $\dim(RR)=\dim(R_{R})$ (The comments followed Theo-
rem 3.23).

The main aims of this paper are to study the structure of the semi-prime
$\Gamma$-ring with minimum right condition and to generalize Nobusawa’s results to the
prime and semi-prime $\Gamma$-rings with minimum conditions and to determine the
structure of the $\Gamma$-ring with minimum conditions.

Using ring theoretical techniques, we obtain various fundamental results on
$\Gamma$-rings with minimum right condition. Then, using these results, we have the
analogues of the Wedderburn-Artin Theorem for simple (Definition 3.9 and Theo-
rem 3.15 below) and semi-prime $\Gamma$-rings with minimum right and left conditions.
Also, these converses are considered. Nobusawa’s results are obtained as corol-
laries of our theorems. Consequently, the structure of a $\Gamma$-ring with minimum
right and left conditions is determined.

For the following notions we refer to [2]: the right operator ring $R$ , the
left operator ring $L$ , a right (left, two-sided) ideal of $M$, a principal ideal $\langle a\rangle$ ,
$[N, \Phi]$ , where $N\subseteqq M$ and $\Phi\subseteqq\Gamma$, but for the prime radical $\mathcal{P}(M)$ , a residue class
$\Gamma$-ring, and the natural homomorphism to [3].

2. Strongly-nilpotent ideals.

DEFINITION 2.1. Let $M$ be a $\Gamma$-ring and $L$ be the left operator ring. Let $S$

be a non-empty subset of $M$ and denote $S_{l}=\{a\in L|aS=0\}$ . Then $S_{l}$ is a left
ideal of $L$ , called an annihilator left ideal. Let $T$ be a non-empty subset of $L$

and denote $T_{r}=\{x\in M|Tx=0\}$ . Then $T_{r}$ is a right ideal of $M$, called an
annihilator right ideal. For singleton subsets we abbreviate this notation, for
example, $\{a\}_{r}=a_{r}$, where $a$ is an element of $L$ .

DEFINITION 2.2. An element $x$ of a $\Gamma$-ring $M$ is nilpotent if for any $\gamma\in\Gamma$

there exists a positive integer $n=n(\gamma)$ such that $(x\gamma)^{n}x=(x\gamma)(x\gamma)\cdots(x\gamma)x=0$ . A
subset $S$ of $M$ is nil if each element of $S$ is nilpotent. An element $x$ of a $\Gamma$-ring
$M$ is strongly-nilpotent if there exists a positive integer $n$ such that $(x\Gamma)^{n}x=$

$(x\Gamma x\Gamma\cdots x\Gamma)x=0$ . A subset of $M$ is strongly-nil if each its element is strongly-
nilpotent. $S$ is strongly-nilpotent if there exists a positive integer $n$ such that
$(S\Gamma)^{n}S=(S\Gamma S\Gamma\cdots S\Gamma)S=0$ .

By definitions for a subset $S$ of $M$ we have the following diagram of impli-
cation:

$S$ is strongly-nilpotent. $\Rightarrow S$ is strongly-nil. $\Rightarrow S$ is nil.
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LEMMA 2.3. The sum of a finite number of strongly-nilpotent right (left)

ideals of a $\Gamma$-ring $M$ is a strongly-nilpotent right (left) ideal.

PROOF. The proof needs only be given for two strongly-nilpotent right ideals
$A,$ $B$ . Suppose $(A\Gamma)^{m}A=(B\Gamma)^{n}B=0$ . Now we have $((A+B)\Gamma)^{m+n+1}(A+B)=$

$(A+B)\Gamma(A+B)\Gamma\cdots\Gamma(A+B)$ , with $m+n+2$ brackets, so that $((A+B)\Gamma)^{m+n+1}(A+B)$

is a sum of terms, each consisting of $m+n+2$ factors which are either $A$ or $B$ .
Such a term $T$ contains either $m+1$ factors $A$ or $n+1$ factors $B$ . In the former
case, $T\subseteqq(A\Gamma)^{m}A$ or $T\subseteqq M\Gamma(A\Gamma)^{m}A$ , because $A$ is a right ideal; in the latter
case, $T\subseteqq M\Gamma(B\Gamma)^{n}B$ or $T\subseteqq(B\Gamma)^{n}B$ . Thus, $((A+B)\Gamma)^{m+n+1}(A+B)=0$ and $A+B$

is strongly-nilpotent.

COROLLARY 2.4. The sum of any set of strongly-nilpotent right (left) ideals

of a $\Gamma$-ring $M$ is a strongly-nil right (left) ideal.

PROOF. Each element $x$ of the sum is in a finite sum of strongly-nilpotent
right ideals of $M$, which by Lemma 2.3 is strongly-nilpotent. Therefore $x$ is
strongly-nilpotent, and the sum is strongly-nil.

LEMMA 2.5. The sum $S(M)^{\prime}$ of all strongly-nilpotent right ideals of a $\Gamma$-ring
$M$ coincides with the sum $\prime s(M)$ of all strongly-nilpotent left ideals and with the
sum $S(M)$ of all strongly-nilpotent ideals.

PROOF. Let $I$ be a strongly-nilpotent right ideal. The ideal $I+M\Gamma I$ is
strongly-nilpotent, because $((I+M\Gamma I)\Gamma)^{n}(I+M\Gamma I)\subseteqq(I\Gamma)^{n}I+M\Gamma(I\Gamma)^{n}I$ for $n=$

$1,2,$ $\cdots$ . It follows $I\subseteqq S(M)$ and hence that $S(M)^{\prime}\subseteqq S(M)$ . But $S(M)\subseteqq S(M)^{\prime}$

trivially, and hence $S(M)=S(M)^{\prime}$ . Similarly, $S(M)=\prime S(M)$ .

When a $\Gamma$-ring $M$ has the descending (or ascending) chain condition for right
ideals, it is abbreviated to $M$ has min-r condition (or max-r condition). The

terms min-l condition or max-l condition on a $\Gamma$-ring $M$ are likewise defined.
It is natural to ask whether $S(M)$ is strongly-nilpotent. This is so when $M$

has either the min-r or max-r conditions (min-l or max-l also serve). The case
of max-r is trivial, because $S(M)$ is a finite sum of strongly-nilpotent right ideals.
When $M$ has min-r condition, a strongly-nil right ideal is always strongly-nilpotent,
which will be shown in the following theorem. We note that a non-strongly-

nilpotent right ideal means the right ideal which is not strongly-nilpotent.

THEOREM 2.6. Any non-strongly-nilpotent right ideal of a $\Gamma$-ring $M$ with
min-r condition contains an idempotent element.
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PROOF. Let $I$ be a non-strongly-nilpotent right ideal of $M$ and $I_{1}$ be minimal
in the set of non-strongly-nilpotent right ideals which are contained in $I$ . Then,
$I_{1}=I_{1}\Gamma I_{1}$ , since $I_{1}\Gamma I_{1}$ is not strongly-nilpotent. Let $S$ be the set of right ideals
$S$ with properties (1) $S\Gamma I_{1}\neq 0$ and (2) $S\subseteqq I_{1}$ .

The set $S$ is not empty $(I_{1}\in S)$ and we suppose that $S_{1}$ is a minimal member
of $S$ . Let $s\in S_{1},$ $\delta\in\Gamma$ with $s\delta I_{1}\neq 0$ . Then, $s\delta I_{1}=S_{1}$ , because $s\delta I_{1}\in s$ . It follows
that $a\in I_{1}$ exists with $s\delta a=s$ . Then $a$ is not nilpotent, because if $a$ is nilpotent,
$s=s\delta a=s\delta a\delta a=\cdots=(s\delta)(a\delta)\cdots(a\delta)a=0$ , a contradiction. Hence, $I$ cannot be a nil
right ideal. This proves that if $I$ is a strongly-nil right ideal then $I$ is strongly-
nilpotent, since if $I$ is strongly-nil then $I$ is nil.

Now $a\Gamma M\subseteqq I_{1}$ and $a\Gamma M$ is not strongly-nilpotent, for $a$ is not nilpotent.
Hence $a\Gamma M=I_{1}$ , because of the minimal property of $I_{1}$ . Likewise, $a\Gamma a\Gamma M=I_{1}$ and
hence $a\in a\Gamma a\Gamma M$, so that $a=a\omega a_{1}$ , where $a_{1}\in a\Gamma M$. Note that $a\omega(a_{1}-a_{1}\omega a_{1})=0$

and hence $a_{1}-a_{1}\omega a_{1}\in[a, \omega]_{r}\cap a\Gamma M$. Set $a_{2}=a+a_{1}-a_{1}\omega a$ . Then, $a\omega a_{2}=a\omega a+a\omega a_{1}$

$-(a\omega a_{1})\omega a=a\omega a+a-a\omega a=a$ . Also, $a_{2}\omega(a_{1}-a_{1}\omega a_{1})=(a+a_{1}-a_{1}\omega a)\omega(a_{1}-a_{1}\omega a_{1})=$

$a_{1}\omega a_{1}-a_{1}\omega a_{1}\omega a_{1}$ . Moreover, $a_{2}$ is not nilpotent, because $a\omega a_{2}=a$ and $a$ is not zero.
It follows that $a\Gamma M=a_{2}\Gamma M$, and that $[a_{2}, \omega]_{r}\cap a\Gamma M\subseteqq[a, \omega]_{r}\cap a\Gamma M$. However,
either $a_{1}\omega a_{1}=a_{1}\omega a_{1}\omega a_{1}$ , in which case $I$ contains the idempotent $a_{1}\omega a_{1}$ , or else
$a_{1}\omega a_{1}\neq a_{1}\omega a_{1}\omega a_{1}$ , in which case $a_{1}-a_{1}\omega a_{1}\in[a, \omega]_{r}$ and $a_{1}-a_{1}\omega a_{1}\not\in[a_{2}, \omega]_{r}$ . In the
latter case, $[a_{2}, \omega]_{r}\cap a\Gamma M\subsetneqq[a, \omega]_{r}\cap a\Gamma M$. This process is repeated, if necessary,
beginning with $a_{2}$ instead of $a$ , and obtaining $a_{4}$ ; etc. The process ceases because
of the minimum condition and this proves that $I$ has an idempotent element.

COROLLARY 2.7. The sum $S(M)$ of all strongly-nilpotent ideals of the $\Gamma$-ring
$M$ with min-r or max-r conditions, is a strongly nilpotent ideal.

DEFINITION 2.8. When the sum $S(M)$ of all strongly-nilpotent ideals of $M$ is
strongly-nilpotent, $S(M)$ is called the Wedderburn radical of $M$ (or the strongly-
nilpotent radical) and denoted by $W$ .

DEFINITION 2.9. A $\Gamma$-ring $M$ is semi-prime if, for any ideal $U$ of $M,$ $U\Gamma U=0$

implies $U=0$ .

For a semi-prime $\Gamma$-ring we have the following theorem.

THEOREM 2.10. ([3] Theorem 1, 2 and 3). If $M$ is a $\Gamma$-ring, the following
conditions are equivalent:

(1) $M$ is semi-prime,
(2) If $a\in M$ and $a\Gamma M\Gamma a=0$ , then $a=0$ ,
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(3) If $\langle a\rangle$ is a principal ideal of $M$ such that $\langle a\rangle\Gamma\langle a\rangle=0$, then $a=0$ ,

(4) If $U$ is a right ideal of $M$ such that $U\Gamma U=0$ , then $U=0$,

(5) If $V$ is a left ideal of $M$ such that $V\Gamma V=0$ , then $V=0$ ,

(6) The prime radical of $M,$ $\mathcal{P}(M)$ , is zero,

(7) $M$ contains no non-zero strongly-nilpotent ideals (right ideals, left ideals),

(8) The sum $S(M)$ of all strongly-nilpotent ideals of $M$ is zero.

THEOREM 2.11. Let $M$ be a $\Gamma$-ring which has a Wedderbum radical $W$.
Then the residue class $\Gamma$-ring $M/W$ is semi-prime.

PROOF. Set $\overline{M}=M/W$ and suppose $\overline{N}$ is a strongly-nilpotent ideal of $\overline{M}$, and
suppose that $(\overline{N}\Gamma)^{m}\overline{N}=\overline{O}$ . Let $N$ be the inverse image of $\overline{N}$ under the natural
homomorphism $M\rightarrow\overline{M}$. Thus, $N=\{x\in M|x+W\in\overline{N}\}$ . Clearly, $(N\Gamma)^{m}N\subseteqq W$ and
hence $(N\Gamma)^{mn+m+n}N=0$ , where $(W\Gamma)^{n}W=0$ . Thus, $N\subseteqq W$ and $\overline{N}=\overline{O}$ . Hence, $\overline{M}$

is semi-prime.
If $M$ has min-r condition, then $M/W$ has min-r condition ([3] Lemma 1),

Corollary 2.7 and Theorem 2.11 yield the following theorem.

THEOREM 2.12. Let $M$ be a $\Gamma$-ring with min-r condition. Then the residue
class $\Gamma$-ring $M/S(M)$ is a semi-prime $\Gamma$-ring with min-r condition, where $S(M)$ is
the sum of all strongly-nilpotent ideals of $M$.

3. Semi-prime $\Gamma$-rings with min-r condition.

For a right ideal $I$ of a $\Gamma$-ring $M$, if there exists an idempotent element $l$ of
the left operator ring $L$ such that $I=lM$, we say that $I$ has the idempotent
generator 1. The idempotent generator plays an important role in the following.

THEOREM 3.1. Any non-zero right ideal in a semi-prime $\Gamma$-ring $M$ with
min-r condition has an idempotent generator.

PROOF. The result is first proved when the ideal is a minimal right ideal $A$ .
Since $M$ is semi-prime, $A\Gamma A\neq 0$ . Then, there exist $\delta\in\Gamma,$ $a\in A$ such that $a\delta A=A$ .
Thus, there exists $e\in A$ such that $a=a\delta e$ . Then, $e=e\delta e$ , since from $a=a\delta e=$

$(a\delta e)\delta e$ we have $a\delta(e-e\delta e)=0$ which means $e-e\delta e=0$ , for the set $B=\{c\in A|a\delta c=0\}$

is a right ideal contained properly in the minimal right ideal $A$ and is (0). Since
$e\in A,$ $0\neq e\delta M\subseteqq A$ and hence $e\delta M=A$ , where $[e, \delta]$ is an idempotent of $L$ .

Let $I$ be any non-zero right ideal of $M$. Since $I$ contains one or more
minimal right ideals, idempotent generators of the minimal right ideal(s) exist in
[I, $\Gamma$]. Choose an idempotent $1\in[I, \Gamma]$ such that $l_{r}\cap I$ is as small as possible.
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If $l_{r}\cap I\neq 0$ , then $l_{r}\cap I\supseteqq l^{\prime}M$, where $l^{\prime}$ is an idempotent of $L$ . Then, $1^{\prime}\in l^{\prime}L=$

$l^{\prime}[M, \Gamma]\subseteqq[I, \Gamma]$ and $ll^{\prime}=0$ , for since $l^{\prime}M\subseteqq l_{r},$ $ll^{\prime}M=0$ . Set $m=l+l^{\prime}-l^{\prime}l$ and
then $m\in[I, \Gamma]$ , for [I, $\Gamma$] is an right ideal of $L$ . Clearly, $m^{2}=m$ , because $11^{\prime}=0$ .
Moreover, $m_{r}\cap I\subsetneqq l_{r}\cap I$ , since we have $lm=l$ which implies $m_{r}\subseteqq l_{r}$ , and $ll^{\prime}=0$ but
$ml^{\prime}=l^{\prime}\neq 0$ which implies $l^{\prime}M\subseteqq l_{r}$ but $l^{\prime}M\subsetneqq m_{r}$ . This contradicts the minimality of
$l_{r}\cap I$ and the contradiction arises from taking $l_{r}\cap I\neq 0$ . Hence one has $l_{r}\cap I=0$ .
Now let $x\in I$ , then 1$(x-- lx)=0$ , where $x-lx\in I,$ $fo^{}rlx\in I\Gamma I\subseteqq I$ . It follows that
$I=lM$, for since $1\in[I, \Gamma],$ $lM\subseteqq I\Gamma M\subseteqq I$ .

COROLLARY 3.2. A semi-prime $\Gamma$-ring $M$ with min-r condition has max-r
condition.

PROOF. The proof is analogous to that in ring theory but to tackle the
situation that the generator does not exist in $M$ but in $L=[M, \Gamma]$ . For the sake
of completeness, we write out it.

Suppose that the non-empty set $S$ of some right ideals in $M$ has no maximal
elements. Take an element $J_{1}$ of $S$ , then by the assumption there exists $J_{2}\in S$

such that $J_{1}\subsetneqq J_{2}$ . Repeating this process, we have an infinite sequence of right
ideals:

$ J_{1}\subsetneqq J_{2}\subsetneqq\cdots\subsetneqq J_{n}\subsetneqq\cdots$ .
Set $N=\bigcup_{i}J_{i}$ . Then, by Theorem 3.1 $N=lM$, where $l$ is an idempotent of $L$ .
Thus, $l=l^{2}\in lL=l[M, \Gamma]=[N, \Gamma]=[\bigcup_{i}J_{i}, \Gamma]$ and hence there exists an integer
$m$ such that $l\in[J_{m}, \Gamma]$ . Then, $N=lM\subseteqq J_{m}\Gamma M\subseteqq J_{m}$ , so that $J_{m}=N=J_{m+1}$ , a con-
tradiction. Hence, every non-empty set of right ideals of $M$ has a maximal
element. Evidently, the max-r condition holds in $M$.

LEMMA 3.3. If a $\Gamma$-ring $M$ is semi-prime, then the right operator $R$ and the
left operator $L$ are semi-prime.

PROOF. Suppose $rRr=0$ . Then $Mr\Gamma Mr=0$ . Theorem 2.10 (5) implies $Mr=0$
and then $r=0$ . Thus, $R$ is semi-prime. Similarly, it may be verified that $L$ is
semi-prime.

THEOREM 3.4. Let $T$ be any non-zero ideal of semi-prime $\Gamma$-ring $M$ with
min-r condition. Then $T$ has a unique idempotent generator.

PROOF. Let $T=sM$, where $s=\Sigma_{i}[e_{i}, \delta_{i}]$ is an idempotent, be the given ideal.
Then $s_{l}=T_{l}$ is a left ideal of the left operator ring $L$ and $T_{l}\cap[T, \Gamma]=0$,
because $(T_{l}\cap[T, \Gamma])^{2}\subseteqq T_{l}[T, \Gamma]=0$ and $L$ is semi-prime (Lemma 3.3). Hence
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$s_{l}\cap[T, \Gamma]=0$ . But for any $\Sigma_{i}[x_{i}, \gamma_{i}]\in[T, \Gamma](\Sigma_{i}[x_{i}, \gamma_{i}]-\sum_{i}[x_{i}, \gamma_{i}]s)s=0$ and
hence $\Sigma_{i}[x_{i}, \gamma_{i}]-\Sigma_{i}[x_{i}, \gamma_{i}]s\in s_{l}\cap[T, \Gamma]$ , which means that $\Sigma_{i}[x_{i}, \gamma_{i}]=$

$\sum_{i}[x_{i}, \gamma_{i}]s$ . It follows that $[T, \Gamma]=[T, \Gamma]s=sM\Gamma s$ and $s$ is a two-sided identity
for the ring $[T, \Gamma]$ . The latter fact shows that $s$ is unique.

DEFINITION 3.5. Let $M$ be a $\Gamma$-ring and $L$ be the left operator ring. If
there exists an element $\sum_{i}[e_{i}, \delta_{i}]\in L$ such that $\sum_{i}e_{i}\delta_{i}x=x$ for every element $x$

of $M$, then it is called that $M$ has the left unity $\sum_{i}[e_{i}, \delta_{i}]$ .
It can be verified easily that $\sum_{i}[e_{i}, \delta_{i}]$ is the unity of $L$ . Similarly we can

define the right unity which is the unity of the right operator ring $R$ .

COROLLARY 3.6. A semi-prime $\Gamma$-ring $M$ with min-r condition has a left
unity.

PROOF. In Theorem 3.4 set $T=M$. Then, $L=[M, \Gamma]=sM\Gamma s$ . Thus, $s$ is
the unity of $L$ . Then for any $x$ of $M[sx -- x, \Gamma]=0$ and so $(sx-x)\Gamma M\Gamma(sx-x)$

$=0$ . Since $M$ is semi-prime $sx$– $x=0$ or $sx=x$ .

By symmetry we have

COROLLARY 3.7. A semi-prime $\Gamma$-ring $M$ with min-l condition has a right
unity.

COROLLARY 3.8. Let $T$ be any non-zero ideal of a semi-prime $\Gamma$-ring $M$ with
min-r condition. Then, the generating idempotent of $T$ is the idempotent which
lies in the center of $L$ .

PROOF. Let $T=(\Sigma_{i}[e_{i}, \delta_{i}])M$ and suppose the $l\in L$ . Since $(\Sigma_{i}[e_{i}, \delta_{i}])l\in$

$[T, \Gamma]$ , we have $(\sum_{i}[e_{i}, \delta_{i}])l=((\sum_{i}[e_{i}, \delta_{i}]l)\sum_{i}[e_{i}, \delta_{i}]=\sum_{i}[e_{i}, \delta_{i}](l\sum_{i}[e_{i}, \delta_{i}])=$

$l\Sigma_{i}[e_{i}, \delta_{i}]$ , for $l\Sigma_{i}[e_{i}, \delta_{i}]\in L[T, \Gamma]=[M\Gamma T, \Gamma]\subseteqq[T, \Gamma]$ . Thus, $\Sigma_{i}[e_{i}, \delta_{i}]$ is
central in $L$ .

DEFINITION 3.9. A $\Gamma$-ring $M$ is said to be simple if $M\Gamma M\neq 0$ and $M$ has no
ideals other than $0$ and $M$.

COROLLARY 3.10. (1) Any non-zero ideal $T$ of a semi-prime $\Gamma$-ring $M$ with
min-r condition is a semi-prime $\Gamma$-ring with min-r condition. (2) Any minimal
ideals $S$ of a semi-prime $\Gamma$-ring $M$ with min-r condition is a simple $\Gamma$-ring.

PROOF of (1). Let $J$ be a right ideal of $T$ (considered as a $\Gamma$-ring) $(J\Gamma T\subseteqq J)$ .
Let $T=sM$, where $s=\Sigma_{i}[e_{i}, \delta_{i}]$ is an idempotent. Since $[J, \Gamma]\subseteqq[T, \Gamma]$ Theo-
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rem 3.4 implies $[J, \Gamma]s=[J, \Gamma]$ . Thus, $J\Gamma M=([J, \Gamma]s)M=J\Gamma(sM)=J\Gamma T\subseteqq J$ and
hence $J$ is a right ideal of $M$. It is immediate that the $\Gamma$-ring $T$ has no strongly-

nilpotent right ideals and satisfies the min-r condition.

PROOF of (2). Let $T$ be any non-zero ideal of $M$. Then, as shown in the
proof of (1), a right ideal of $T$ is a right ideal of $M$. Now, we show that a left
ideal $Q$ of $T$ is a left ideal of $M$. Suppose that $T=sM$, where $s$ is an idem-
potent. Then, $M\Gamma Q=[M, \Gamma]Q=[M, \Gamma](sQ)=([M, \Gamma]s)Q=(s[M, \Gamma])Q=[T, \Gamma]Q$

$\subseteqq Q$ . So $Q$ is a left ideal of $M$. Therefore, an ideal of $T$ is an ideal of $M$.
Since $S$ is a minimal ideal of $M$, we deduce that $S$ is a simple $\Gamma$-ring.

THEOREM 3.11. If $T$ is an ideal in a semi-prime $\Gamma$-ring $M$ with min-r
condition, then $M=T\oplus[T, \Gamma]_{r}$ . If $M=T\oplus K$, where $K$ is an ideal of $M$, then
$K=[T, \Gamma]_{r}$ .

PROOF. Suppose that $T=sM$, where $s=\Sigma_{i}[e_{i}, \delta_{i}]$ is an idempotent, then
$M=sM\oplus(1_{L}-s)M$, where $1_{L}$ denotes the left unity of M. $[T, \Gamma](1_{L}-s)M=$

$[T, \Gamma]s(1_{L}-s)M=[T, \Gamma](s-s)M=0$ . Hence, $(1_{L}-s)M\subseteqq[T, \Gamma]_{r}$ . Conversely,

suppose that $[T, \Gamma]x=0$ and $x=x^{\prime}+x^{\prime\prime}$ , where $x^{\prime}\in T,$ $x^{\prime\prime}\in(1_{L}-s)M$. Then,
$sx=sx^{\prime}+sx^{\prime\prime}=sx^{\prime}$ and $0=[T, \Gamma]x=([T, \Gamma]s)x=[T, \Gamma]sx^{\prime}=[T, \Gamma]x^{\prime}$ . Since
$T\Gamma M\subseteqq T,$ $T\Gamma M\Gamma x^{\prime}=0$ and hence $x^{\prime}\Gamma M\Gamma x^{\prime}=0$ , which implies $x^{\prime}=0$ . Thus, $x=$

$x^{\prime\prime}\in(1_{L}-s)M$ and then $[T, \Gamma]_{r}\subseteqq(1_{L}-s)M$. Hence $[T, \Gamma]_{r}=(1_{L}-s)M$ and $M=$

$T\oplus[T, \Gamma]_{r}$ .
In the case when $M=T\oplus K$, it follows that $T\Gamma K=0$ (since $T\Gamma K\subseteqq T\cap K$ ) and

hence $K\subseteqq[T, \Gamma]_{r}$ . However $T\oplus K=T\oplus[T, \Gamma]_{r}$ and hence $K=[T, \Gamma]_{r}$ .

We now prove the fundamental theorem on semi-prime $\Gamma$-rings with min-r
condition.

THEOREM 3.12. A semi-prime $\Gamma$-ring $M$ with min-r condition has only a
finite number of minimal ideals and is their direct sum.

PROOF. Form $M_{1}\oplus M_{2}\oplus\cdots\oplus M_{l}$ of minimal ideals $M_{i}$ of $M$. Because $M$ has
the max-r condition (Corollary 3.2), there is a sum $S$ having maximal length $q$ .
Suppose that $[S, \Gamma]_{r}\neq 0$ . Then $[S, \Gamma]_{r}$ contains a minimal ideal, which can
be added directly to $S$ , because $S\cap[S, \Gamma]_{r}=0$ . This contradicts our supposition
that $S$ has maximal length of minimal ideals. Hence $[S, \Gamma]_{r}=0$ and $M=$

$S\oplus[S, \Gamma]_{r}=S$ , which proves that $M$ is a direct sum of minimal ideals, $M=$

$M_{1}\oplus M_{2}\oplus\cdots\oplus M_{q}$ , say.
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By Corollary 3.10 and Theorem 3.12 we have

THEOREM 3.13. A semi-prime $\Gamma$-ring with min-r condition is a direct sum of
a finite number of simple $\Gamma$-rings with min-r condition.

DEFINITION 3.14. A $\Gamma$-ring $M$ is prime if for all pairs of ideals $S$ and $T$ of
$M,$ $S\Gamma T=0$ implies $S=0$ or $T=0$ . A $\Gamma$-ring $M$ is left (right) primitive if (i) the
left (right) operator ring of $M$ is a left (right) primitive ring, and (ii) $x\Gamma M=0$

$(M\Gamma x=0)$ implies $x=0$ . $M$ is a two-sided primitive $\Gamma$-ring (or simply a primitive
$\Gamma$-ring) if both left and right primitive.

Luh proved the following theorem.

THEOREM 3.15 ([7] Theorem 3.6). For a $\Gamma$-ring $M$ with min-l condition, the
three conditions

(1) $M$ is prime,
(2) $M$ is primitive,
(3) $M$ is simple

are equivalent.

Of course, Theorem 3.15 also holds when $M$ has min-r condition instead of
min-l condition. Thus, we can replace the term ‘ simple’ in Theorem 3.13 by
$i$ prime ’ or ‘ primitive ’.

We will prove further results on the one sided ideal structure of a semi-
prime $\Gamma$-ring with min-r condition.

LEMMA 3.16. Let I be a right ideal in a semi-prime $\Gamma$-ring $M$ with min-r
condition and $J_{1}$ be a right ideal contained in I. Then there exists a right ideal
$J_{2}$ in I such that $I=J_{1}\oplus J_{2}$ .

PROOF. Taking $I\neq 0,$ $J_{1}\neq 0$ and $I=lM$ and $J_{1}=sM$, where $l=\Sigma_{i}[e_{i}, \delta_{i}]$ ,
$s=\Sigma_{j}[f_{j}, \epsilon_{j}]$ are idempotents. Write $x\in I$ as $x=sx+(l-s)x$ . The set $J_{2}=$

$\{x-sx|x\in I\}$ is a right ideal and $J_{2}\subseteqq I$ . Clearly, $I=J_{1}\oplus J_{2}$ .

DEFINITION 3.17. Idempotents $l_{1},$
$\cdots,$

$l_{k}\in L$ are mutually orthogonal if $l_{i}l_{j}=0$

for $i\neq j$ .

The notation $l=l_{1}\oplus\cdots\oplus l_{k}$ indicates that $l=l_{1}+\cdots+l_{k}$ , where $l_{1},$
$\cdots,$

$l_{k}$ are
mutually orthogonal idempotents.

In Lemma 3.16 we can choose generating idempotents $s_{1}$ of $J_{1},$ $s_{2}$ of $J_{2}$ , so
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that $l=s_{1}\oplus s_{2}$ . The proof is given in the following.

Take $I=lM$ and $J_{1}=sM$ as before, and set $s_{1}=sl$ and $s_{2}=l-sl$ . Then $ls=s$

since $s\in l[M, \Gamma]$ , and $s=s^{2}=s(ls)=(sl)s=s_{1}s$ so that $J_{1}=sM=s_{1}(sM)\subseteqq s_{1}M=s(lM)$

$\subseteqq sM=J_{1}$ . Thus, $J_{1}=s_{1}M$. However, $J_{2}=\{x-sx|x\in I\}=\{la-sla|a\in M\}=$

$\{(l-sl)a|a\in M\}=s_{2}M$. We can easily verify that $s_{1},$ $s_{2}$ are idempotents and that
$l=s_{1}\oplus s_{2}$ . Q. E. D.

DEFINITION 3.18. An idempotent of the left operator ring $L$ is primitive if

it cannot be written as a sum of two orthogonal idempotents.

Lemma 3.16 and subsequent comments imply that in a semi-prime $\Gamma$-ring

with min-r condition an idempotent of $L$ is primitive if and only if it generates

a minimal right ideal.

LEMMA 3.19. Let $M$ be a semi-prime $\Gamma$-ring with min-r condition. Then any

idempotent element $l$ of the left operator ring $L$ is a sum of mutually orthogonal

primitive idempotents.

PROOF. Let $I=lM$ and $M_{1}$ be a minimal right ideal in $I$ . There exists a
right ideal $M_{1}^{\prime}\subseteqq I$ such that $I=M_{1}\oplus M_{1}^{\prime}$ (by Lemma 3.16). Then, either $M_{1}^{\prime}=0$,

in which case $l$ is primitive (1 generates the minimal right ideal), or we choose

generating idempotents $s_{1}$ of $M_{1}$ ; s\’i of $M_{1}^{\prime}$ such that $l=s_{1}\oplus s_{1}^{\prime}$ (by the above

comment). Observe that $s_{1}$ is a primitive idempotent. If $s_{1}^{\prime}$ is not primitive, this

process may be applied to $M_{1}^{\prime}=s_{1}^{\prime}M$, giving $s_{1}^{\prime}=s_{2}\oplus s_{2}^{\prime}$ , where $s_{2}$ is primitive.

Evidently, $l=s_{1}\oplus s_{2}\oplus s_{2}^{\prime}$ , and $s_{1}^{\prime}M\supseteqq s_{2}^{\prime}M$. This process is continued and the
sequence $ s_{1}^{\prime}M\supseteqq s_{2}^{\prime}M\supseteqq s_{3}^{\prime}M\supsetneqq\cdots$ being strictly decreasing, must be stop after a
finite number of terms. Then, $l=s_{1}\oplus\cdots\oplus s_{k}$ , say, which each $s_{i}$ is a primitive

idempotent.

COROLLARY 3.20. Any non-zero right ideal in a semi-prime $\Gamma$-ring $M$ with

min-r condition is a direct sum of minimal right ideals.

PROOF. Lemma 3.19 implies that $I=lM=s_{1}M\oplus\cdots\oplus s_{k}M$.
By symmetry, we have

COROLLARY 3.21. Any non-zero left ideal in a semi-prime I-ring with min-l

condition is a direct sum of minimal left ideals.
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Luh proved the following theorem.

THEOREM 3.22 ([6] Theorem 3.6). Let $M$ be a semi-prime $1^{\neg}$-ring and $L$ and
$R$ be respectively the left and right operator rings of M. If $e\delta e=e$ , where
$e\in M,$ $\delta\in\Gamma$, then the following statements are equivalent:

(1) $M\delta e$ is a minimal left ideal of $M$,

(2) $e\delta M$ is a minimal right ideal of $M$,

(3) $[M, \Gamma][e, \delta]$ is a minimal left ideal of $L$ ,

(4) $[\delta, e][\Gamma, M]$ is a minimal right ideal of $R$ ,

(5) $[e, \delta][M, \Gamma]$ is a minimal right ideal of $L$ ,

(6) $[\Gamma, M][\delta, e]$ is a minimal left ideal of $R$ ,

(7) $[e, \delta][M, \Gamma][e, \delta]$ is a division ring,
(8) $[\delta, e][\Gamma, M][\delta, e]$ is a division ring.
$Mo$ reover, the division rings $[e, \delta][M, \Gamma][e, \delta]$ and $[\delta, e][\Gamma, M][\delta, e]$ are

isomorphic if any of the above statements occurs.

Corollary 3.20 showed that every non-zero right ideal of a semi-prime $\Gamma$-ring
$M$ is a direct sum of minimal right ideals. This decomposition applies to $M$

itself and gives a right dimension number for $M$, considered as an R-module.

THEOREM 3.23. Let $M$ be a semi-prime $\Gamma$-ring with min-r condition and let
$M=I_{1}\oplus\cdots\oplus I_{m}=J_{1}\oplus\cdots\oplus J_{n}$ , where $I_{l},$ $J_{s}$ are minimal right ideals. Then, $m=n$ .

The proof is established by the quite similar fashion to that for an ordinary

ring and so we omit it.

The integer $m=n$ in Theorem 3.23 is called the right demension of the semi-
prime $\Gamma$-ring with min-r condition and denoted by $\dim(M_{R})$ . One can define the

left dimension of a $\Gamma$-ring in a similar manner. But it should be noticed that a
semi-prime $\Gamma$-ring with min-r condition cannot always have the min-l condition.
For example, let $D$ be a division ring and $M$ be the discrete direct sum of the
division rings $D_{i}=D,$ $i\in N$ (the set of all natural numbers), and $\Gamma$ be the set of
all transposed elements of $M$. Then, the $\Gamma$-ring $M$ is semi-prime and $\dim(LM)$

$=\infty$ , while $\dim(M_{R})=1$ . Even for a semi-prime $\Gamma$-ring with both min-r and

min-l conditions, generally the right dimension cannot be equal to the left one.
When $M=D_{2.1}$ , the set of all matrices of type $2\times 1$ over a division ring $D$ , and
$\Gamma=D_{1,2},$ $\dim(M_{R})=2$ and $\dim(LM)=1$ .

When $M$ is a semi-prime $\Gamma$-ring with min-r condition, we consider the left
operator ring $L$ . Corollary 3.6 shows $M$ has the left unity. Thus, by Lemma
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3.19, $1_{L}=[e_{1}, \delta_{1}]+\cdots+[e_{k}, \delta_{k}]$ , where $[e_{1}, \delta_{1}],$
$\cdots,$

$[e_{k}, \delta_{k}]$ are mutually orthog-
onal primitive idempotents. This implies that $L=[e_{1}, \delta_{1}]|L\oplus\cdots\oplus[e_{k}, \delta_{k}]L$ ,
where $[e_{1}, \delta_{1}]L,$

$\cdots,$ $[e_{k}, \delta_{k}]L$ are minimal right ideals. Also, we have $L=$

$L[e_{1}, \delta_{1}]\oplus\cdots\oplus L[e_{k}, \delta_{k}]$ , where $L[e_{1}, \delta_{1}],$
$\cdots,$ $L[e_{k}, \delta_{k}]$ are minimal left ideals

(Theorem 3.22). Thus, we have $\dim(L_{L})=\dim(LL)$ . By symmetry, when $M$ is a
semi-prime $\Gamma$-ring with min-l condition, for the right operator ring $R$ we have
$\dim(RR)=\dim(R_{R})$ .

4. Simple $\Gamma$-rings with min-r and min-l conditions.

We note that if a $\Gamma$-ring $M$ is simple, then the right operator ring $R$ and
the left operator ring $L$ are simple.

Let $I$ be an ideal of $R$ such that $O\subsetneqq I\subsetneqq R$ . Then $MI$ is an ideal of $M$. Since
$M$ is simple, $MI$ must be $0$ or $M$. If $MI=M$, then $R=[\Gamma, MI]=[\Gamma, M]I=RI\subseteqq I$,
a contradiction. If $MI=0$ , then $I=0$ , also a contradiction. Thus, $R$ has only
ideals $0$ and $R$ , and $R^{2}\neq 0$, for $MR^{2}=M[\Gamma, M\Gamma M]=M[\Gamma, M]=M\Gamma M=M\neq 0$ .
This proves $R$ is simple. Similarly, it may be shown that $L$ is simple.

If $M$ is simple, then $M$ is semi-prime. Indeed, for any ideal $U$ of $M$ we
assume $U\Gamma U=0$ . Since only ideals of $M$ are $0$ and $M,$ $U=0$ or $U=M$. If $U=M$,
then $M\Gamma M=M\neq 0$ , a contradiction. Thus, $U=0$ and $M$ is semi-prime.

DEFINITION 4.1. If $M_{i}$ is a $\Gamma_{i}$-ring for $i=1,2$ , then an ordered pair $(\theta, \phi)$

of mappings is called a homomorphism of $M_{1}$ onto $M_{2}$ if it satisfies the following
properties:

(1) $\theta$ is a group homomorphism from $M_{1}$ onto $M_{2}$ ,
(2) $\phi$ is a group homomorphism from $\Gamma_{1}$ onto $\Gamma_{2}$ ,
(3) For every $x,$ $y\in M_{1},$ $\gamma\in\Gamma_{1},$ $(x\gamma y)\theta=(x\theta)(\gamma\phi)(y\theta)$ .

Furthermore, if both $\theta$ and $\phi$ are injections, then $(\theta, \phi)$ is called an isomorphism
from the $\Gamma_{1}$-ring $M_{1}$ onto the $\Gamma_{2}$-ring $M_{2}$ .

THEOREM 4.2. Let $M$ be a simple $\Gamma$-ring with min-r and min-l conditions
and $\Gamma_{0}=\Gamma/\kappa$ , where $\kappa=\{\gamma\in\Gamma|M\gamma M=0\}$ . Then, the $\Gamma_{0}$-ring $M$ is isomorphic onto
the $\Gamma^{\prime}$ -rfng $D_{n.m}$ , where $D_{n,m}$ is the additive abelian group of all rectangular
matrices of type $nXm$ over a division ring $D$ , and $\Gamma^{\prime}$ is a non-zero subgroup of
the additive abelian group $D_{m,n}$ of all rectangular matrices of type $m\times n$ , and
$m=\dim(LM)$ and $n=\dim(M_{R})$ .

PROOF. Let $e\delta M$, where $e\delta e=e$ , be a minimal right ideal of $M$ (Theorem 3.1)
and let $D=[e\delta M\Gamma e, \delta]$ ; certainly $D$ is a division ring (Theorem 3.22). Also,
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$[e\delta M, \Gamma]=e\delta L$ is a minimal right ideal of $L$ (Theorem 3.22). Since $(e\delta M\Gamma e\delta)e\delta L$

$=e\delta L$ (for $0\neq(e\delta M\Gamma e\delta)e\delta L$ ) we see that $e\delta L$ is a vector space over $D$ (a left
D-space).

First we prove:
$l_{1},$

$\cdots,$
$l_{n}\in e\delta L$ are linearly independent over $D$ if and only if

$Ll_{1}\oplus\cdots\oplus Ll_{n}$ , where $L=[M, \Gamma]$ . $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots..(A)$

Suppose $Ll_{1}+\cdots+Ll_{n}$ is not direct sum. Then, there exist $a_{1},$ $\cdots,$ $a_{n}\in L$ ,

not all $a_{i}l_{i}$ zero, such that $a_{1}l_{1}+\cdots+a_{n}l_{n}=0$ . Set $ L_{i}=\{a\in L[e, \delta]|al_{i}\in Ll_{1}+\cdots$

$+Ll_{i-1}+Ll_{t+1}+\cdots+Ll_{n}\}$ , where we suppose that $a_{i}l_{i}\neq 0$ . Then, $0\neq a_{i}[e, \delta]\in L_{i}$

and $L_{i}=L[e, \delta]$ , because $L[e, \delta]$ is a minimal left ideal (Theorem 3.22). Hence,
$[e, \delta]\in L[e, \delta]=L_{i}$ and then $l_{i}=e\delta l_{i}=y_{1}l_{1}+\cdots+y_{i-1}l_{i-1}+y_{i+1}l_{i+1}+\cdots+y_{n}l_{n}$ ,

where $y_{j}\in L$ . Then, $l_{i}=(e\delta y_{1}e\delta)l_{1}+\cdots+(e\delta y_{i-1}e\delta)l_{i-1}+(e\delta y_{i+1}e\delta)l_{i+1}+\cdots+$

$(e\delta y_{n}e\delta)l_{n}$ , which means that $l_{1},$
$\cdots,$

$l_{n}$ are linearly dependent over $D$ .
Conversely, if $Ll_{1}+\cdots+Ll_{n}$ is a direct sum, then $(e\delta Le\delta)l_{1}+$ – $+(e\delta Le\delta)l_{n}$ is

a direct sum, which means $l_{1},$ $\cdots$ $l_{n}$ are linearly independent over $D$ . Q. E. D.

Next, we prove:

$a_{1}\delta_{1}L\oplus\cdots\oplus a_{k}\delta_{k}L$ if and only if $a_{1}\delta_{1}M\oplus\cdots\oplus a_{k}\delta_{k}M$ . $\ldots\ldots\ldots\ldots\ldots\ldots..(B)$

Suppose $a_{1}\delta_{1}M+\cdots+a_{k}\delta_{k}M$ is a direct sum. If $\sum_{i=1}^{k}l_{i}=0$ with $l_{i}\in a_{i}\delta_{i}L$ , then
$\sum_{i=1}^{k}l_{i}x=0$ for all $x\in M$, where $l_{i}x\in l_{i}M\subseteqq[a_{i}\delta_{i}M, \Gamma]M\subseteqq a_{i}\delta_{i}M$. Thus, $l_{i}x=0$

for all $x\in M$ and for all $i$ . Hence, $l_{i}=0$ for every $i$ .
Conversely, assume that $a_{1}\delta_{1}L+\cdots+a_{k}\delta_{k}L$ is a direct sum. If $\sum_{i=1}^{k}x_{i}=0$,

with $x_{i}\in a_{i}\delta_{i}M$, then $\Sigma_{i=1}^{k}[x_{i}, \gamma]=0$ for all $\gamma\in\Gamma$, where $[x_{i}, \gamma]\in[x_{i}, \Gamma]\subseteqq$

$[a_{i}\delta_{i}M, \Gamma]=a_{i}\delta_{i}L$ . It follows that $[x_{i}, \gamma]=0$ for every $\gamma\in\Gamma$ and every $i$ , and
$x_{i}\Gamma M\Gamma x_{i}=0$ for every $i$ . Since $M$ is semi-prime, $x_{i}=0$ for every $i$ . Thus, $a_{1}\delta_{1}M$

$+\cdots+a_{k}\delta_{k}M$ is a direct sum. Q. E. D.

Thus, by (A), the comment (followed Theorem 3.23) on the dimensions of $L$ ,
(B) and Theorem 3.22, we have $\dim(D[e\delta M, \Gamma])=\dim(LL)=\dim(L_{L})=\dim(M_{R})$ .
Similarly, we can prove $\dim(De\delta M)=\dim(LM)=\dim(RR)=\dim(R_{R})$ .

For $a\in M$ define a mapping $\rho_{a}$ of $[e\delta M, \Gamma]$ to $e\delta M$ by $[x, \gamma]\rho_{a}=x\gamma a$ , where
$[x, \gamma]\in[e\delta M, \Gamma]$ . Set $N=\{\rho_{a}|a\in M\}$ .

For $\gamma\in\Gamma$ define a mapping $\psi_{\gamma}$ of $e\delta M$ to $[e\delta M, \Gamma]$ by $x\psi_{\gamma}=[x, \gamma]$ , where
$x\in e\delta M$. Set $\Lambda=\{\psi_{\gamma}|\gamma\in\Gamma\}$ .

Then one can easily verify that for all $a,$ $b\in M$ and $\gamma,$
$\delta\in\Gamma$

$\rho_{a}+\rho_{b}=\rho_{a+b}$ , $\psi_{\gamma}+\psi_{\delta}=\psi_{\gamma+\delta}$ , and $\rho_{a}\psi_{\gamma}\rho_{b}=\rho_{a\gamma b}$ ,
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thus $N$ becomes a $\Gamma_{1}$ -ring, where $\Gamma_{1}=\Lambda$ .
Set $\kappa=\{\gamma\in\Gamma|M\gamma M=0\}$ , then $\kappa$ is a subgroup of $\Gamma$. For any element $\overline{\gamma}\in\Gamma/\kappa$

we define $a\overline{\gamma}b=a\gamma b$ (well defined), where $\overline{\gamma}=\gamma+\kappa$ . Then we get a $\Gamma_{0}$-ring $M$,
where $\Gamma_{0}=\Gamma/\kappa$ .

Let $\rho$ be a mapping of $M$ to $N$ by $\rho(a)=\rho_{a},$ $a\in M$, and let $\psi$ be a mapping
from $\Gamma_{0}$ to $\Lambda$ by $\psi(\overline{\gamma})=\psi_{\gamma}$ (well defined), where $\gamma+\kappa=\overline{\gamma}\in\Gamma_{0}$ . Then $\rho(a)=0\Rightarrow\rho_{a}$

$=0\Rightarrow e\delta M\Gamma a=0\Rightarrow M\delta e\delta M\Gamma a=0\Rightarrow M\Gamma a=0\Rightarrow a\Gamma M\Gamma a=0\Rightarrow a=0$ , since $M\delta e\delta M=M$, due
to $M$ being simple, and $M$ is semi-prime. Also, $\psi(\overline{\gamma})=0\Rightarrow\psi_{\gamma}=0\Rightarrow[e\delta M, \gamma]=0\Rightarrow$

$[M\delta e\delta M, \gamma]=0\Rightarrow[M, \gamma]=0\Rightarrow M\gamma M=0\Rightarrow\overline{\gamma}=0$ , since $M$ is simple. Next, $\rho(a\overline{\gamma}b)=$

$\rho(a\gamma b)=\rho_{a\gamma b}=\rho_{a}\psi_{\gamma}\rho_{b}=\rho(a)\psi(\overline{\gamma})\rho(b)$ . Both, $\rho$ and $\psi$ are clearly suriections. Hence,
the mapping $(\rho, \psi)$ is a isomorphism from the $\Gamma_{0}$-ring $M$ onto the $\Gamma_{1}$-ring $N$,
where $\Gamma_{1}=\Lambda$ .

Let $\dim(LM)=m$ and $\dim(M_{R})=n$ , and let $D_{n,m}$ and $D_{m,n}$ denote respectively
the set of all matrices of type $n\times m$ over $D$ and that of all matrices of type
$m\times n$ over $D$ . Similarly, $D_{n}$ and $D_{m}$ are respectively the total matrix ring of
type $n\times n$ over $D$ and that of type $m\times m$ over $D$ .

Choose a basis $l_{1},$
$\cdots,$

$l_{n}$ of the vector space $[e\delta M, \Gamma]$ and a basis $u_{1},$
$\cdots$ , $u_{m}$

of the vector space $e\delta M$.
For $a\in M$ we have

$l_{i}a=l_{i}\rho_{a}=\alpha_{i1}u_{1}+\cdots+\alpha_{im}u_{m}$ ; $i=1_{j}2,$ $\cdots,$ $n$ .
Now the correspondence

$\rho_{a}-\rangle(\alpha_{ij});1\leqq i\leqq n,$ $1\leqq j\leqq m$

is a group isomorphism from the additive abelian group $N$ into the additive
abelian group $D_{n,m}$ . Thus, $\theta$ : $a-(\alpha_{ij})$ is a group isomorphism of $M$ into $D_{n,m}$ .
We show that this is an isomorphism onto $D_{n,m}$ :

Along the similar fashion described in the above, ring theory shows that
elements of the left operator $L$ are linear transformations of the vector space
$[e\delta M, \Gamma]$ and as a ring $L$ is isomorphic onto $D_{n}$ , and elements of the right
operator ring $R$ are linear transformations of the vector space $e\delta M$ and $R$

isomorphic onto $D_{m}$ . Since $M$ is a left L-right R-bimodule, for any $l\in L,$ $x\in M$,
$r\in R,$ $lxr\in M$. Let $l\mapsto(\sigma_{ij})\in D_{n},$ $x\mapsto(\alpha_{ij})\in D_{n,m},$ $ r-\rangle$ $(\tau_{ij})\in D_{m}$ . Then for any
$a\in[e\delta M, \Gamma]$ ,

$a(lxr)=((al)x)r=((a(\sigma_{ij}))(\alpha_{ij}))(\tau_{ij})=a(\sigma_{ij})(\alpha_{ij})(\tau_{ij})$ ,

and hence, $(lxr)\theta=(\sigma_{ij})(x)\theta(\tau_{ij})$ . Thus, $LMR\subseteqq M$ implies $(LMR)\theta\subseteqq(M)\theta$ , and so
$ D_{n}(M)\theta D_{m}\subseteqq(M)\theta$ . It follows $ D_{n,m}\subseteqq(M)\theta$ , for $(M)\theta\subseteqq D_{n,m}$ . Hence, $(M)\theta=D_{n,m}$ .

Q. E. D.
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By the similar argument, we obtain that the additive abelian group $\Gamma_{0}$ is
isomorphic onto a subgroup of $D_{m.n}$ , and we denote the isomorphism by $\phi$ .

We now prove $(a\overline{\gamma}b)\theta=a\theta\overline{\gamma}\phi b\theta$ :
Let $a\theta=(\alpha_{ij}),$ $b\theta=(\beta_{ij}),\overline{\gamma}\phi=(\omega_{uv})$ . Then, for any $1\in[e\delta M, \Gamma]$ we have

$l(a\overline{\gamma}b)=((la)\overline{\gamma})b=((l(\alpha_{ij}))(\omega_{uv}))(\beta_{ij})=l(\alpha_{ij})(\omega_{uv})(\beta_{ij})$ ,

thus, $(a\overline{\gamma}b)\theta=(\alpha_{ij})(\omega_{uv})(\beta_{ij})=a\theta\overline{\gamma}\phi b\theta$ .
Clearly, $D_{n.m}$ is a $\Gamma^{\prime}$ -ring, where $\Gamma^{\prime}$ is $(\Gamma_{0})\phi$ , which is a non-zero subgroup

of $D_{m.n}$ .
Therefore, the $\Gamma_{0}$-ring $M$ is isomorphic onto the $\Gamma^{\prime}$ -ring $D_{n.m}$ and the proof

is completed.
When $M$ is a $\Gamma$-ring in the sense of Nobusawa, $\kappa=0$ and then $\Gamma_{0}=\Gamma$, and

furthermore since $\Gamma$ is a right L- left R-bimodule $ D_{m}(\Gamma)\phi D_{n}\subseteqq(\Gamma)\phi$ . On the
other hand, $(\Gamma)\phi\subseteqq D_{m.n}$ , and so $(\Gamma)\phi=D_{m.n}$ , thus we have

COROLLARY 4.3 ([8] Theorem 2). A simple $\Gamma$-ring $M$ in the sense of Nobu-
sawa with min-r and min-l conditions is isomorphic onto the $\Gamma^{\prime}$-ring $D_{n,m}$ , where
$\Gamma^{\prime}=D_{m.n}$ .

We note that the term ‘ simple’ in this corollary is the one given in Defini-
tion 3.9. However, as shown already, since $M$ has minimum condition, $M$ becomes
prime (Theorem 3.15). Then, since $M$ is the prime $\Gamma$-ring in the sense of Nobu-
sawa, $M$ is completely prime ([1] Theorem 5), which coincides with ’ $M$ is
simple’ in Theorem 2 in Nobusawa [8].

5. $\Gamma$-rings with minimum right and left conditions.

First we consider the semi-prime $\Gamma$-ring with min-r and min-l conditions.
Let $\Gamma_{0}=\Gamma/\kappa$, where $\kappa=\{\gamma\in\Gamma|M\gamma M=0\}$ , and $M=M_{1}\oplus\cdots\oplus M_{q}$ , where $M_{1},$

$\cdots,$ $M_{q}$

are simple $\Gamma$-rings with min-r and min-l conditions (Theorem 3.13). Let $\kappa_{i}=$

$\{\gamma\in\Gamma|M_{i}\gamma M_{i}=0\},$ $1\leqq i\leqq q$ , then $\kappa=\kappa_{1}\cap\cdots\cap\kappa_{q}$ . Thus, $\Gamma_{0}=\Gamma/\kappa$ is isomorphic to

a subgroup of $\Gamma/\kappa_{1}\oplus\cdots\oplus\Gamma/\kappa_{q}$ . Set $\Gamma/\kappa_{i}=\Gamma_{i}$ . This means that $\Gamma_{0}$ is isomorphic

to a subdirect sum of the $\Gamma_{i},$ $1\leqq i\leqq q$ . Theorem 4.2 implies that $M_{i}$ is isomorphic

onto $D_{n(t).m(i)}^{(i)}$ over a division ring $D^{(i)}$ and $\Gamma_{i}$ is isomorphic to a non-zero sub-
group of $D_{m(i).n(i)}^{(i)}$ over $D^{(i)}$ . Thus, we have

$M=\sum_{i=1}^{q}D_{n(i).m(i)}^{(i)}$ (direct sum) and

$\Gamma_{0}=\Gamma/\kappa$ is a subdirect sum of the $\Gamma_{i}$ , where $\Gamma_{i}\subseteqq D_{m(i),n(i)}^{(i)},$ $1\leqq i\leqq q$ , where the
product of elements of $D_{m(i).n(t)}^{(i)}$ and of $D_{n(\dot{j}).m(j)}^{(j)}$ is performed as usual if $i=j$
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and is Oif $i\neq j$ .
Thus we have

THEOREM 5.1. Let $M$ be a semi-prime $\Gamma$-ring with min-r and min-l condi-
tions. Then, the $\Gamma$-ring $M$ is homomorphic onto the $\Gamma_{0}$-ring $\sum_{i=1}^{q}D_{n(i),m(i)}^{(i)}$ where $\Gamma_{0}$

is a subdirect sum of the $\Gamma_{i},$ $1\leqq i\leqq q$ , which is a non-zero subgroup of $D_{m(i),n(i)}^{(t)}$ .

Theorem 2.12 and Theorem 5.1 yield the following corollary.

COROLLARY 5.2. Let $M$ be a $\Gamma$-ring with min-r and min-l conditions. Then,
the $\Gamma$-ring $M$ is homomorphic onto the $\Gamma_{0}$-ring $\sum_{i=1}^{q}D_{n(t),m(t)}^{(i)}$ where $\Gamma_{0}$ is a sub-
direct sum of the $\Gamma_{i},$ $1\leqq i\leqq q$ , which is a non-zero subgroup of $D_{m(i),n(i)}^{(i)}$ .

We consider the converse of the preceding comment to Theorem 5.1. First
we prove the converse of Theorem 4.2.

THEOREM 5.3. $D_{n.m},$ $D$ is a division ring, is a simple $\Gamma$-ring with min-r and
min-l conditions, where $\Gamma$ is a non-zero subgroup of $D_{m.n}$ and $[\Gamma, D_{n,m}]=D_{m}$ and
$[D_{n,m}, \Gamma]=D_{n}$ .

PROOF. Denote the elementary matrices by $E_{ij}\in D_{n.m},$ $1\leqq i\leqq n,$ $1\leqq j\leqq m$ ;
$G_{st}\in D_{m},$ $1\leqq s,$ $t\leqq m;H_{pq}\in D_{n},$ $1\leqq p,$ $q\leqq n$ . Let $A=(\alpha_{ij})$ belong to $D_{n,m}$ , then
$A=\Sigma_{i,j}\alpha_{ij}E_{ij}$ .

The ideal generated by $A$ contains $H_{pq}AG_{st}=\alpha_{qs}E_{pl}$ . If $A\neq 0$ , then $\alpha_{qs}\neq 0$

for some $(q, s)$ and the $E_{pt}$ is in the ideal generated by $A$ . This is true for all
$p=1,$ $\cdots$ , $n;t=1,$ $\cdots,$ $m$ , and hence the ideal is equal to $D_{n,m}$ , so that $D_{n,m}$ is
simple. To verify the min-r condition, observe that $D_{n.m}$ is a right vector space
of dimension $nm$ over $D$ . Every right ideal $J$ of $D_{n,m}$ is a subspace, since $A\in J$

$\Rightarrow Ad=A(dE_{m})\in J$, where $E_{m}$ the identity matrix and $d\in D$ . The min-r condi-
tion holds. Similarly, the min-l condition holds.

THEOREM 5.4. If $M=M_{1}\oplus\cdots\oplus M_{q}$ , where $M_{1},$ $\cdots$ , $M_{q}$ are simple $\Gamma_{i}$-rings
with min-r and min-l conditions, then $M$ is a semi-prime $\Gamma$-ring with min-r and
min-l conditions, where $\Gamma$ is a subdirect sum of the $\Gamma_{i}\prime s,$ $M_{i}\Gamma M_{j}=0(i\neq j)$ and
$M_{i}\Gamma_{j}M_{i}=0(i\neq j)$ .

PROOF. Let $S$ be a strongly-nilpotent ideal of $M$ and let $S_{1},$
$\cdots,$

$S_{q}$ be its
component ideals in $M_{1},$ $\cdots$ , $M_{q}$ , respectively. If $(S\Gamma)^{n}S=0$ then $(S_{i}\Gamma_{i})^{n}S_{i}=0$ for
each $i$ . Since $M_{i}$ is simple $S_{i}=M_{i}$ or $S_{i}=0$ . If $S_{i}=M_{i}$ , then $(S_{i}\Gamma_{i})^{n}S_{i}=M_{i}=0$,
a contradiction. Thus, $S_{i}=0$ and hence $S=S_{1}\oplus\cdots\oplus S_{q}=0$ and $M$ is semi-prime.
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To verify the min-r condition, suppose $ J^{(1)}\supseteqq J^{(2)}\supseteqq\cdots$ is a descending sequence of

right ideals of $M$. The components $J_{i}^{(n)}$ in the $\Gamma_{i}$-ring $M_{i}$ are a descending

sequence in $M_{i}(J_{i^{(1)}}\supseteqq J_{i}^{(2)}\supseteqq\cdots\supseteqq J_{i^{(n)}}\supseteqq\cdots)$ and hence $J_{i^{(n)}}$ is fixed for $n\geqq n(i)$ ,

say. It followed that $J^{(n)}$ is fixed for $n\geqq\max[n(1), \cdots, n(q)]$ , and hence the

min-r condition holds in $M$. Similarly, the min-l condition can be verified.

We consider the $\Gamma$-rings in the sense of Nobusawa.

Let $M$ be a $\Gamma$-ring in the sense of Nobusawa and $M$ be semi-prime with

min-r and min-l conditions. Let $M=M_{1}\oplus\cdots\oplus M_{q}$ , where $M_{1},$
$\cdots,$

$M_{q}$ are simple
$\Gamma$-rings with min-r and min-l conditions (Theorem 3.13). Let $\Gamma_{i}=\Gamma/\kappa_{i}$ , where
$\kappa_{i}=\{\gamma\in\Gamma|M_{i}\gamma M_{i}=0\}$ . We show that each $\Gamma$-ring $M_{i}$ is the $\Gamma_{i}$-ring in the sense
of Nobusawa. Since $\Gamma M_{i}\Gamma\subseteqq\Gamma,$

$\kappa_{i}$ is an ideal of $\Gamma$. Indeed, $M_{i}(\Gamma M_{i}\kappa_{i})M_{i}=$

$(M_{i}\Gamma M_{i})\kappa_{i}M_{i}=M_{i}\kappa_{i}M_{i}=0$ and then $\Gamma M_{i}\kappa_{i}\subseteqq\kappa_{i}$ . Similarly, $\kappa_{i}M_{i}\Gamma\subseteqq\kappa_{i}$ . Hence, we
can define a multiplication: $\Gamma_{i}\times M_{i}\times\Gamma_{i}\rightarrow\Gamma_{i}$ as follows:

For any $\overline{\gamma},\overline{\delta}\in\Gamma_{i},$ $a\in M_{i}$ , where $\overline{r}=\gamma+\kappa_{i},\overline{\delta}=\delta+\kappa_{i}$ ,

$\overline{\gamma}a\overline{\delta}=\overline{\gamma a\delta}$ (well defined).

Clearly, $M_{i}\overline{\gamma}M_{i}=0$ implies $\overline{\gamma}=0$ . Q. E. D.

Therefore, by Corollary 4.3, we have $\Gamma_{i}=D_{m(i),n(i)}^{(i)}$ . Since $\kappa=0$ and so $\Gamma_{0}=\Gamma$,

$\Gamma$ is isomorphic to the subgroup of $\Sigma_{i=1}^{q}D_{m(i),n(i)}^{(t)}$ . Let this isomorphism be $\phi$ ,

then
$\gamma\phi=\gamma_{1}+\cdots+\gamma_{q}$ , where $\gamma_{i}=\gamma+\kappa_{i},$ $1\leqq i\leqq q$ .

We show that the subgroup coincides with the group $\sum_{i=1}^{q}D_{m(i),n(i)}^{(i)}$ . Fix an

element $i$ of the index set $\{1, 2, \cdots, q\}$ . For any $\sigma_{i}\in\Gamma_{i}=D_{m(i).n(i)}^{(i)}$ , choose an
element $\sigma\in\Gamma$ such that $\sigma_{i}=\sigma+\kappa_{i}$ . Let $\sigma\phi=\sigma_{1}+\cdots+\sigma_{i}+\cdots+\sigma_{q}$ , where $\sigma_{k}=$

$\sigma+\kappa_{k},$ $1\leqq k\leqq q$ , and $E_{ii}$ be the unit matrix of $D_{m(i)}^{(i)}$ , and $F_{ii}$ be the unit matrix

of $D_{n(i)}^{(i)}$ . Then, since $\Gamma$ is the right L-left R-bimodule and $D_{n(t)}^{(i)}=[M_{i}, \Gamma_{i}]\subseteqq L$

and $D_{m(i)}^{(i)}=[\Gamma_{i}, M_{i}]\subseteqq R,$ $\sigma_{i}=E_{ii}(\sigma\phi)F_{ii}\in(\Gamma)\phi,$ $1\leqq i\leqq q$ . Now let $i$ be free. Then,

$\sum_{i=I}^{q}\sigma_{i}\in(\Gamma)\phi$ , where each $\sigma_{i}$ is an arbitrary element of $\Gamma_{i}$ . This means
$\Sigma_{i=1}^{q}D_{m(i).n(i)}^{(i)}\subseteqq(\Gamma)\phi$ , and $(\Gamma)\phi=\Sigma_{l}^{q_{=1}}D_{m(t).n(i)}^{(i)}$ .

Thus, we have

$M=\Sigma_{l}^{q_{=1}}D_{nti),m(i)}^{(i)}$ and $\Gamma=\Sigma_{i=1}^{q}D_{m(i)n(i)}^{(i)}$ ,

which is Theorem 3 of Nobusawa [8].
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