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A GAMMA RING WITH MINIMUM CONDITIONS
By

Shoji Kyuno

Abstract. The aim of this note is to study the structure of a
I'ring (not in the sense of Nobusawa) with minimum conditions.
By ring theoretical techniques, we obtain various properties on the
semi-prime /-ring and generalize Nobusawa’s result which corre-
sponds to the Wedderburn-Artin Theorem in ring theory. Using
these results, we have that a /-ring with minimum right and left
conditions is homomorphic onto the [-ring X%, D% mc», Where
D, me> is the additive abelian group of the all rectangular matrices
of type n(1) Xm(i) over some division ring D, and I, is a subdirect
sum of the [I';,, 1=<i=<gq, which is a non-zero subgroup of D ncs
of type m(i) X n(t) over D,

1. Introduction.

Nobusawa introduced the notion of a I-ring M as follows: Let M and
I" be additive abelian groups. If for all @, b, ce M and a, B, rrI’, the conditions

Ni.. aabeM, aaBel’

Ne. (at+b)ac=aac+bac, ala+p)b=aab+afb, aalb+c)=aab+aac
N;. (aab)Bc=alabB)c=aa(bBc)

N,. xyy=0 for all x, yM implies y=0,

are satisfied, then M is called a I-ring.

Barnes weakened slightly defining conditions and gave the definition as
follows :

If these conditions are weakened to

B,. aabeM
B;. same as N,
Bs. (aab)Bc=aa(bfc),

then M is called a I-ring.
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In this paper, the former is called a I-ring in the sense of Nobusawa and the
latter merely a [-ring.

Nobusawa determined the structures of simple and semi-simple [-rings
in the sense of Nobusawa with minimum right and left conditions as follows:

Using the notation introduced in [5], when M is simple, as a ring,

M L) \Dyn D,
where D is a division ring ([8] Theorem 2); when M is semi-simple, as a ring,

(R P) S ( D3 Dr(rf)(i).nm)
= 2i=1
) "
M L Dy, mei> 2

where D®, 1<i<gq, are division rings ([8] Theorem 3).

Nobusawa’s definitions are in the following: M is simple if al'b=0 implies
a=0 or b=0; M is semi-simple if al'a=0 implies a=0.

In [2], we defined that a I-ring M is prime if for any ideal A and B of M,
AI'B=0 implies A=0 or B=0; a I-ring M is semi-prime if for any ideal A of
M, AI'A=0 implies A=0.

When M is a I-ring in the sense of Nobusawa, one can easily verify that M
is prime if and only if al'b=0 implies a=0 or b=0; M is semi-prime if and only
if al"a=0 implies a=0 (1] Theorem 5). Thus, when M is a I-ring in the sense
of Nobusawa, Nobusawa’s terms ‘simple’ or ‘semi-simple’ are equivalent to our
‘prime’ or ‘semi-prime’ respectively.

However, when M is a [I-ring (not in the sense of Nobusawa), they are
quite different notations. Following Luh we call a I-ring M is completely
prime if al’b=0 implies a=0 or b=0; M is completely semi-prime if al'a=0
implies a=0. Then, the primeness cannot imply the completely primeness, even
for a finite I-ring ([7] Example 3.1). The semi-prime [-ring is one without
non-zero strongly-nilpotent ideal (Theorem 2.1/ below), while the completely
semi-prime /-ring is one without non-zero strongly-nilpotent element
2.2). The gap between the primeness and completely primeness and the gap

between semi-primeness and completely semi-primeness are caused by lack of a
multiplication : I'X MXI'—I". In the following we do not treat completely prime
I-rings nor completely semi-prime ones, but prime and semi-prime /-rings.

Also, it should be noticed that a semi-prime /-ring with minimum right
condition cannot always have the minimum left condition, nor dim(;M) can be
equal to dim(Mpz) even if it has both minimum right and left conditions, while a
semi-prime ring R (an ordinary ring) with minimum right condition has the
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minimum left condition, and dim(zR)=dim(Rz) (The comments followed Theo-
rem 3.23).

The main aims of this paper are to study the structure of the semi-prime
[-ring with minimum right condition and to generalize Nobusawa’s results to the
prime and semi-prime /-rings with minimum conditions and to determine the
structure of the /-ring with minimum conditions.

Using ring theoretical techniques, we obtain various fundamental results on
I'rings with minimum right condition. Then, using these results, we have the
analogues of the Wedderburn-Artin Theorem for simple and Theo-
rem 3.15 below) and semi-prime I-rings with minimum right and left conditions.
Also, these converses are considered. Nobusawa’s results are obtained as corol-
laries of our theorems. Consequently, the structure of a [ ring with minimum -
right and left conditions is determined.

For the following notions we refer to [2]: the right operator ring R, the
left operator ring L, a right (left, two-sided) ideal of M, a principal ideal <a),
[N, @], where NS M and @I, but for the prime radical (M), a residue class
Iring, and the natural homomorphism to [3].

2. Strongly-nilpotent ideals.

DEFINITION 2.1. Let M be a I-ring and L be the left operator ring. Let S
be a non-empty subset of M and denote S;={a=L|aS=0}. Then S, is a left
ideal of L, called an annihilator left ideal. let T be a non-empty subset of L
and denote T,={xeM|Tx=0}. Then T, is a right ideal of M, called an
annihilator right ideal. For singleton subsets we abbreviate this notation, for
example, {a},=a,, where a is an element of L.

DEFINITION 2.2. An element x of a I'ring M is nilpotent if for any yerl
there exists a positive integer n=n(y) such that (x7)"x=(x7)(x7)---(x7)x=0. A
subset S of M is nil if each element of S is nilpotent. An element x of a /-ring
M is strongly-nilpotent if there exists a positive integer n such that (xI")"x=
(x['xD" - xI")x=0. A subset of M is strongly-nil if each its element is strongly-
nilpotent. S is strongly-nilpotent if there exists a positive integer n such that
(SIH*S=(SI'ST"--- SI")S=0.

By definitions for a subset S of M we have the following diagram of impli-

cation :
S is strongly-nilpotent. = S is strongly-nil. = S is nil.
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LEMMA 2.3. The sum of a finite number of strongly-nilpotent right (left)
ideals of a I-ring M is a strongly-nilpotent right (left) ideal.

PrOOF. The proof needs only be given for two strongly-nilpotent right ideals
A, B. Suppose (A'A=(BI')"B=0. Now we have ((A+B)")™*"*}(A+B)=
(A+B)(A+B)[---I'(A+ B), with m+n-+2 brackets, so that (A+B)[")™*"**!(A+ B)
is a sum of terms, each consisting of m-+n-+2 factors which are either A or B.
Such a term T contains either m-1 factors A or n-+1 factors B. In the former
case, TS(AI')™A or TS MI'(A')™A, because A is a right ideal; in the latter
case, TS MI'(BI')"B or TS(BI')"B. Thus, (A+B)I")™*"**(A+B)=0 and A+B
is strongly-nilpotent.

COROLLARY 2.4. The sum of any set of strongly-nilpotent right (left) ideals
of a I[-ring M is a strongly-nil right (left) ideal.

PrROOF. Each element x of the sum is in a finite sum of strongly-nilpotent
right ideals of M, which by is strongly-nilpotent. Therefore x is
strongly-nilpotent, and the sum is strongly-nil.

LEMMA 2.5. The sum S(M)' of all strongly-nilpotent right ideals of a [-ring
M coincides with the sum 'S(M) of all strongly-nilpotent left ideals and with the
sum S(M) of all strongly-nilpotent ideals.

PROOF. Let I be a strongly-nilpotent right ideal. The ideal I+MIT is
strongly-nilpotent, because (I +MI'T)[")*U+MI'T)S U [+MI'UT')"] for n=
1,2, ---. It follows ISS(M) and hence that S(M) SS(M). But S(M)SS(M)’
trivially, and hence S(M)=S(M)’. Similarly, S(M)="S(M).

When a I“ring M has the descending (or ascending) chain condition for right
ideals, it is abbreviated to M has min-r condition (or max-r condition). The
terms min-l condition or max-l condition on a I-ring M are likewise defined.

It is natural to ask whether S(M) is strongly-nilpotent. This is so when M
has either the min-» or max-r conditions (min-/ or max-/ also serve). The case
of max-r is trivial, because S(M) is a finite sum of strongly-nilpotent right ideals.
When M has min-r condition, a strongly-nil right ideal is always strongly-nilpotent,
which will be shown in the following theorem. We note that a non-strongly-
nilpotent right ideal means the right ideal which is not strongly-nilpotent.

THEOREM 2.6. Any non-strongly-nilpotent right ideal of a I'-ring M with
min-r condition contains an idempotent element.
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PROOF. Let I be a non-strongly-nilpotent right ideal of M and I, be minimal
in the set of non-strongly-nilpotent right ideals which are contained in I. Then,
I,=I,I,, since I,I'T, is not strongly-nilpotent. Let S be the set of right ideals
S with properties (1) SI'T,+0 and (2) SES1,.

The set S is not empty (/;=S) and we suppose that S, is a minimal member
of 8. Let s€8S,, I’ with s6I,#0. Then, soI,=S;, because s6l,=S. It follows
that a1, exists with sda=s. Then a is not nilpotent, because if a is nilpotent,
s=sda=so0ada= --- =(s0)(ad) --- (ad)a=0, a contradiction. Hence, I cannot be a nil
right ideal. This proves that if I is a strongly-nil right ideal then I is strongly-
nilpotent, since if I is strongly-nil then I is nil.

Now al'MSI, and al’M is not strongly-nilpotent, for a is not nilpotent.
Hence al'M=I,, because of the minimal property of I,. Likewise, al'al'M=1, and
hence asalal’M, so that a=awa,;, where a;eal’ M. Note that aw(a;—awa;)=0
and hence a,—a,wa;,€[a, wl,NalM. Set a,=a+a,—a,wa. Then, awa,=awa+awa,
—(awa)wa =awa+a—awa=a. Also, aw(a,—a,wa;)=(a+a,—a,0a)wla;—a,wa,)=
a,wa;—a,wa,wa;. Moreover, a, is not nilpotent, because awa,=a and a is not zero.
It follows that al'M=a,I'M, and that [a,, w].NalMZ[a, w],nal’M. However,
either a,wa,=a,wa,wa,, in which case I contains the idempotent a,wa;, or else
4,0a,# a,wa,wa;, in which case a;—a,wa;,€[a, wl, and a,—a,0wa,€ [a,, w],. In the
latter case, [a., w],Nal’'M&E[a, w],Nal'M. This process is repeated, if necessary,
beginning with a, instead of a, and obtaining a,; etc. The process ceases because
of the minimum condition and this proves that I has an idempotent element.

COROLLARY 2.7. The sum S(M) of all strongly-nilpotent ideals of the [-ring
M with min-r or max-r conditions, is a strongly nilpotent ideal.

DEFINITION 2.8. When the sum S(M) of all strongly-nilpotent ideals of M is
strongly-nilpotent, S(M) is called the Wedderburn radical of M (or the strongly-
nilpotent radical) and denoted by W.

DEFINITION 2.9. A I-ring M is semi-prime if, for any ideal U of M, UTI'U=0
implies U=0.

For a semi-prime /-ring we have the following theorem.

THEOREM 2.10. ([3] Theorem 1, 2 and 3). If M is a I-ring, the following
conditions are equivalent :

(1) M is semi-prime,

(2) If aeM and al’'MI'a=0, then a=0,
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(3) If <a> is a principal ideal of M such that <a>I'<a>=0, then a=0,

(4) If U is a right ideal of M such that UI'U=0, then U=0,

(5) If V is a left ideal of M such that VI'V=0, then V=0,

(6) The prime radical of M, P(M), is zero,

(7) M contains no non-zero strongly-nilpotent ideals (right ideals, left ideals),
(8) The sum S(M) of all strongly-nilpotent ideals of M is zero.

THEOREM 2.11. Let M be a I-ring which has a Wedderburn radical W.
Then the residue class I'-ring M/W is semi-prime.

PrROOF. Set M=M/W and suppose N is a strongly-nilpotent ideal of M, and
suppose that (NI')»N=0O. Let N be the inverse image of N under the natural
homomorphism M—M. Thus, N={xeM|x+WeN}. Clearly, (N[)"NSW and
hence (NI")™**+m+*N=0, where (W[')"W=0. Thus, NEW and N=0. Hence, M
is semi-prime.

If M has min-r condition, then M/W has min-r condition ([3] Lemma 1),
Corollary 2.7 and [Theorem 2.11| yield the following theorem.

THEOREM 2.12. Let M be a [-ring with min-r condition. Then the residue
class I'-ring M/S(M) is a semi-prime [-ring with min-r condition, where S(M) is
the sum of all strongly-nilpotent ideals of M.

3. Semi-prime /-rings with min-r condition.

For a right ideal I of a I-ring M, if there exists an idempotent element [ of
the left operator ring L such that I=I[M, we say that I has the idempotent
generator [. The idempotent generator plays an important role in the following.

THEOREM 3.1. Any non-zero right ideal in a semi-prime [-ring M with
min-v condition has an idempotent generator.

PROOF. The result is first proved when the ideal is a minimal right ideal A.
Since M is semi-prime, A’A+0. Then, there exist 6=/, ac A such that adA=A.
Thus, there exists e A such that a=ade. Then, e=ede, since from a=ade=
(ade)de we have ad(e—ede)=0 which means e—ede=0, for the set B= {c= A|adc=0}
is a right ideal contained properly in the minimal right ideal A and is (0). Since
ec A, 0+edMZ A and hence edM=A, where [e, ] is an idempotent of L.

Let I be any non-zero right ideal of M. Since I contains one or more
minimal right ideals, idempotent generators of the minimal right ideal(s) exist in
[I, I']. Choose an idempotent [€[[I, I'] such that /,~\I is as small as possible.



A gamma ring with minimum conditions 53

It [,~I+0, then I,N\I2I'M, where [’ is an idempotent of L. Then, I'el'L=
VLM, I'JS[I, I'] and [’=0, for since I’MCSI,, I’M=0. Set m=I+1"—]' and
then me[l, I'], for [I, I'] is an right ideal of L. Clearly, m?=m, because [/’=0.
Moreover, m.N\IS%1,N1, since we have [m={ which implies m,</,, and (/=0 but
ml’=0"#0 which implies I’M</, but I’MZm,. This contradicts the minimality of
I:~I and the contradiction arises from taking /,~\I=0. Hence one has LNI=0.
Now let x<l, then I(x—ix)=0, where x—/x&l, for ixeIl'I<I. It follows that
I=IM, for since [€[I, '], IMSITMZ<I.

COROLLARY 3.2. A semi-prime I'-ring M with min-r condition has max-r
condition.

PROOF. The proof is analogous to that in ring theory but to tackle the
situation that the generator does not exist in M but in L=[M, I']. For the sake
of completeness, we write out it.

Suppose that the non-empty set S of some right ideals in M has no maximal
elements. Take an element /; of S, then by the assumption there exists J:€S

such that J,5& /.. Repeating this process, we have an infinite sequence of right
ideals :

VEESN P == F4-=RI

Set N=\U;/;. Then, by N=IM, where [ is an idempotent of L.
Thus, =PFelL=I[M, I'J=[N, I'l=[U:J:;, I'] and hence there exists an integer
m such that /€[ J,, I']. Then, N=IMS ], [M<],, so that Jn=N=]pi,, a con-
tradiction. Hence, every non-empty set of right ideals of M has a maximal
element. Evidently, the max-» condition holds in M.

LEMMA 33. If a I'ring M is semi-prime, then the right operator R and the
left operator L are semi-prime.

PROOF. Suppose rRr=0. Then MrI'Mr=0. (ITheorem 2.10/(5) implies Mr=0
and then »=0. Thus, R is semi-prime. Similarly, it may be verified that L is
semi-prime.

THEOREM 3.4. Let T be any non-zero ideal of semi-prime I'-ring M with
min-r condition. Then T has a unique idempotent generator.

PROOF. Let T=sM, where s=2l;[e;, 0;] is an idempotent, be the given ideal.
Then s,=T, is a left ideal of the left operator ring L and T\N[T, I']=0,
because (T'NLT, I')*ST,[T, 'J=0 and L is semi-prime (Lemma 3.3). Hence
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siN[T, I']J=0. But for any X;[xs, 7:1€LT, I'] (Zilxs, 7:]— il x4, 7:1s)s=0 and
hence X;[xi 7:]1— X:l[xs, rids<€siNLT, I'], which means that X;[x;, 7:]1=
2ilxq, rids. It follows that [T, I'J=[T, I']Js=sMIs and s is a two-sided identity
for the ring [T, I']. The latter fact shows that s is unique.

DEFINITION 3.5. Let M be a [-ring and L be the left operator ring. If
there exists an element X;[e;, ;] L such that 3>;e;0;x=x for every element x
of M, then it is called that M has the left unity 3;[ei, 0:].

It can be verified easily that 3;[e;, ;] is the unity of L. Similarly we can
define the right unity which is the unity of the right operator ring R.

COROLLARY 3.6. A semi-prime [-ring M with min-r condition has a left
unity.

"PrOOF. In set T=M. Then, L=[M, I'l=sMI's. Thus, s is
the unity of L. Then for any x of M [sx—x, I']J=0 and so (sx—x)[MI(sx—x)
=(0. Since M is semi-prime sx—x=0 or sx=ux.

By symmetry we have

COROLLARY 3.7. A semi-prime I-ring M with min-l condition has a right
unity.

COROLLARY 3.8. Let T be any non-zero ideal of a semi-prime I-ring M with
min-r condition. Then, the generating idempotent of T is the idempotent which
lies in the center of L.

PrOOF. Let T=(Xi[e:;, 6;:])M and suppose the /= L. Since (Xiles, 0: )i
[T, F], we have (X;[e, 0: NI=((Z:[es, 0:103:es, 0:1=2>:[es, 0:1(2:[es, 0:1)=

lzt[eiy 51:]: for lEiEei) 51]EL[T; F]:[MFT: F:lg[T: r]- Thus, Ei[ei’ 51] iS
central in L.

DEFINITION 3.9. A I-ring M is said to be simple if M[M=0 and M has no
ideals other than 0 and M.

COROLLARY 3.10. (1) Any non-zero ideal T of a semi-prime I-ving M with
min-r condition is a semi-prime [-ring with min-r condition. (2) Any minimal
tdeals S of a semi-prime I-ring M with min-r condition is a simple I'-ring.

PROOF of (1). Let J be a right ideal of T (considered as a Iring) (JI'TZS)).
Let T=sM, where s=3;[e;, 6;] is an idempotent. Since L/, '1<S[T, I'] Theo-
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rem 3.4 implies [ J, [']Js=[J, I']. Thus, JI'TM=(], I'1s)M=JI'(sM)=]JI'T <] and
hence J is a right ideal of M. It is immediate that the /-ring 7 has no strongly-
nilpotent right ideals and satisfies the min-» condition.

ProOOF of (2). Let T be any non-zero ideal of M. Then, as shown in the
proof of (1), a right ideal of T is a right ideal of M. Now, we show that a left
ideal Q of T is a left ideal of M. Suppose that T=sM, where s is an idem-
potent. Then, MI'Q=[M, I'1Q=[M, I'1sQ)=IM, I']1s)Q=(s[M, I'DQ=[T, I']Q
SQ. So Q is a left ideal of M. Therefore, an ideal of T is an ideal of M.
Since S is a minimal ideal of M, we deduce that S is a simple /-ring.

THEOREM 3.11. If T is an ideal in a semi-prime I-ring M with min-r
condition, then M=T®D[T, I'],. If M=TDK, where K is an ideal of M, then
K=[T, I'],.

PROOF. Suppose that T=sM, where s=>[e;, 0;] is an idempotent, then
M=sM®P(1,—s)M, where 1, denotes the left unity of M. [T, ['J1.,—s)M=
[T, I'ls(Q,—s)YM=[T, I'](s—s)M=0. Hence, (1,—s)YM<[T, I'].. Conversely,
suppose that [T, I'Jx=0 and x=x'+x”, where x'eT, x"=(.—s)M. Then,
sx=sx"+sx"=sx’ and O0=[T, I'Jx=(T, I']s)x=[T, ['Jsx’=[T, I']Jx’. Since
TI'McST, TI'MI'x’=0 and hence x’I'MI'x’=0, which implies x’=0. Thus, x=
x”€(1,—s)M and then [T, I'],&(1.—s)M. Hence [T, I'],=1,—s)M and M=
TOLT, I']..

In the case when M=TOK, it follows that TI'K=0 (since T'KSTNK) and
hence KS[T, I'],, However T®OK=T®[T, '], and hence K=[T, I'],.

We now prove the fundamental theorem on semi-prime [-rings with min-»
condition.

THEOREM 3.12. A semi-prime [-ring M with min-r condition has only a
finite number of minimal ideals and is their direct sum.

PrRoOOF. Form M, PM,P --- M, of minimal ideals M; of M. Because M has
the max-r condition (Corollary 3.2), there is a sum S having maximal length gq.
Suppose that [S, I'],#0. Then [S, I'], contains a minimal ideal, which can
be added directly to S, because SN[S, I'],=0. This contradicts our supposition
that S has maximal length of minimal ideals. Hence [S,I'],=0 and M=
SEPBLS, I'],=S, which proves that M is a direct sum of minimal ideals, M=

MPMD --- BM,, say.
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By (Corollary 3.10 and [Theorem 3.12 we have

THEOREM 3.13. A semi-prime I'-ring with min-r condition is a direct sum of
a finite number of simple I'-rings with min-r condition.

DEFINITION 3.14. A [-ring M is prime if for all pairs of ideals S and T of
M, SI'T=0 implies S=0 or T=0. A I-ring M is left (right) primitive if (i) the
left (right) operator ring of M is a left (right) primitive ring, and (ii) x/"M=0
(MI'x=0) implies x=0. M is a two-sided primitive I-ring (or simply a primitive
I'ring) if both left and right primitive.

Luh proved the following theorem.

THEOREM 3.15 ([7] Theorem 3.6). For a I-ring M with min-l condition, the
three conditions

(1) M is prime,

(2) M is primitive,

B) M is simple
are equivalent.

Of course, also holds when M has min-» condition instead of

min-/ condition. Thus, we can replace the term ‘simple’ in [Theorem 3.13 by
‘prime’ or ‘primitive’.

We will prove further results on the one sided ideal structure of a semi-
prime [-ring with min-r condition.

LEMMA 3.16. Let I be a right ideal in a semi-prime [-ring M with min-r

condition and J, be a right ideal contained in I. Then there exists a right ideal
Jo in I such that I1=],H],.

Proor. Taking [I+#0, /,#0 and /=I/M and J,=sM, where [=3;[e;, 0:],

s=2;[f; €] are idempotents. Write x&l as x=sx+(—s)x. The set J,=
{x—sx|x=l} is a right ideal and J,S/I. Clearly, I=],D/,.

DEFINITION 3.17. Idempotents [y, ---, [, € L are mutually orthogonal if [;/,=0
for 71+ ].

The notation [=[,p --- DI, indicates that /=/,+ --- +{,, where [, ---, [, are
mutually orthogonal idempotents.
In we can choose generating idempotents s, of J;, s, of J, so
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that /=s,Ps,. The proof is given in the following.

Take I=IM and J,=sM as before, and set s,=s/ and s,=/—sl. Then Is=s
since s€{[M, '], and s=s*=s(ls)=(sl)s=s;s so that Jy=sM=s,(sM)S s;M=s(M)
csM=]J, Thus, J;=s,M. However, [,={x—sx|xel}= {la—slalas M} =
{U—shalae M} =s,M. We can easily verify that s;, s, are idempotents and that
[=5,Ps,. Q.E.D.

DEFINITION 3.18. An idempotent of the left operator ring L is primitive if
it cannot be written as a sum of two orthogonal idempotents.

and subsequent comments imply that in a semi-prime [-ring
with min-» condition an idempotent of L is primitive if and only if it generates

a minimal right ideal.

LEMMA 3.19. Let M be a semi-prime [-ring with min-r condition. Then any
idempotent element [ of the left operator ring L is a sum of mutually orthogonal

primitive idempotents.

PrOOF. Let I=IM and M,; be a minimal right ideal in I. There exists a
right ideal M/ such that I=M,®M{ (by Lemma 3.16). Then, either Mi{=0,
in which case [ is primitive (/ generates the minimal right ideal), or we choose
generating idempotents s; of M;; s; of Mj such that [=s5,Ps; (by the above
comment). Observe that s, is a primitive idempotent. If s{ is not primitive, this
process may be applied to Mi=s{M, giving s;=s,(Ds;, where s, is primitive.
Evidently, [=s5,Ds,PDs;, and siM2Rs;M. This process is continued and the
sequence S\M2Rs;MRs;M= --- being strictly decreasing, must be stop after a
finite number of terms. Then, /=5, --- Bs;, say, which each s; is a primitive

idempotent.

COROLLARY 3.20. Any non-zero right ideal in a semi-prime I-ring M with

min-r condition is a direct sum of minimal right ideals.
PROOF. implies that /=IM=s,M® --- Ds M.
By symmetry, we have

COROLLARY 3.21. Any non-zero left ideal in a semi-prime [ -ring with min-i

condition is a direct sum of minimal left ideals.
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Luh proved the following theorem.

THEOREM 3.22 ([6] Theorem 3.6). Let M be a semi-prime I'-ring and L and
R be respectively the left and right operator rings of M. If ede=e, where
ecM, oI, then the following statements are equivalent .

(1) Mode is a minimal left ideal of M,

(2) edM is a minimal right ideal of M,

(3) [M, I'lle, 0] is a minimal left ideal of L,

4) [0, e][I, M] is a minimal right ideal of R,

(5) [e, 01[M, I'] is a minimal right ideal of L,

6) [, M1[0, e] is a minimal left ideal of R,

(7) [e, 61[M, I'1[e, 6] is a division ring,

8) [0, e[, M1[6, e] is a division ring.

Moreover, the division rings [e, 01[M, I'1[e, 6] and [0, e][I, M]1[0, e] are
isomorphic if any of the above statements occurs.

Corollary 3.20| showed that every non-zero right ideal of a semi-prime /-ring
M is a direct sum of minimal right ideals. This decomposition applies to M
itself and gives a right dimension number for M, considered as an R-module.

THEOREM 3.23. Let M be a semi-prime [-ring with min-r condition and let
M=I1,F - BIn=]PD - BJrn, where 1., Js are minimal right ideals. Then, m=n.

The proof is established by the quite similar fashion to that for an ordinary

ring and so we omit it.

The integer m=n in is called the right demension of the semi-
prime [-ring with min-r condition and denoted by dim(Mpg). One can define the
left dimension of a I-ring in a similar manner. But it should be noticed that a
semi-prime [I-ring with min-» condition cannot always have the min-/ condition.
For example, let D be a division ring and M be the discrete direct sum of the
division rings D;=D, i€ N (the set of all natural numbers), and /I’ be the set of
all transposed elements of M. Then, the I-ring M is semi-prime and dim( M)
=oo, while dim(Mz)=1. Even for a semi-prime [-ring with both min-» and
min-/ conditions, generally the right dimension cannot be equal to the left one.
When M=D, ,, the set of all matrices of type 2X1 over a division ring D, and
I'=D, ,, dim(Mg)=2 and dim(,M)=1.

When M is a semi-prime /-ring with min-» condition, we consider the left
operator ring L. shows M has the left unity. Thus, by Lemma
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3.19, 1.=[ey, 6,1+ - +[ex, 0,1, where [ey, 6,1, -, [es, 65] are mutually orthog-
onal primitive idempotents. This implies that L =[e,, 0.JLGD - Bles, 0:]1L,

where [e;, 6,]L, -+, [ex, 0,]L are minimal right ideals. Also, we have L=
Lles, 6,]D --- DL[es, 6:]1, where L[ey, 6,1, ---, L[e,, 0] are minimal left ideals
(Theorem 3.22). Thus, we have dim(L;)=dim(;L). By symmetry, when M is a

semi-prime /-ring with min-/ condition, for the right operator ring R we have
dim(zR)=dim(Rg).

4. Simple [-rings with min-r and min-/ conditions.

We note that if a I-ring M is simple, then the right operator ring R and
the left operator ring L are simple.

Let I be an ideal of R such that 05/ R. Then MI is an ideal of M. Since
M is simple, MI must be 0 or M. If MI=M, then R=[I', MI]=[I", M]I=RI<I,
a contradiction. If MI=0, then /=0, also a contradiction. Thus, R has only
ideals 0 and R, and R*#0, for MR*=M[I, M[TM1=M[I, M]=MI"M=M=+0.
This proves R is simple. Similarly, it may be shown that L is simple.

If M is simple, then M is semi-prime. Indeed, for any ideal U of M we
assume UI'U=0. Since only ideals of M are 0 and M, U=0 or U=M. If U=M,
then MI'M=M=0, a contradiction. Thus, U=0 and M is semi-prime.

DEFINITION 4.1. If M; is a [;-ring for i=1, 2, then an ordered pair (4, 1))
of mappings is called a homomorphism of M, onto M, if it satisfies the following
properties :

(1) @ is a group homomorphism from M, onto M,,

(2) ¢ is a group homomorphism from I, onto I3,

(3) For every x, yeM,, rell, (xry)0=(x0)rd)(»0).

Furthermore, if both ¢ and ¢ are injections, then (4, @) is called an isomorphism
Srom the I'-ring M, onto the [y-ring M,.

THEOREM 4.2. Let M be a simple I-ring with min-r and min-l conditions
and I'\=I'/r, where k={yel'| MyM=0}. Then, the I';-ring M is isomorphic onto
the I"-ring Dy m, where Dy, . is the additive abelian group of all rectangular
matrices of type nXm over a division ring D, and I’ is a non-zero subgroup of
the additive abelian group D, . of all rectangular matrices of type mXn, and
m=dim(t M) and n=dim(Mp).

PROOF. Let edM, where ede=e, be a minimal right ideal of M (Theorem 3.1)
and let D=[edMIe, 0]; certainly D is a division ring (Theorem 3.22). Also,
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[edM, I'J=edL is a minimal right ideal of L (Theorem 3.22). Since (edMIed)ed L
=edL (for 0+#(edMIled)edL) we see that edL is a vector space over D (a left
D-space).

First we prove:

ly, -, In€edL are linearly independent over D if and only if
LI ---BLL,, where L=[M, '] ..ot (A)
Suppose LI,+ --- +Ll, is not direct sum. Then, there exist a,, -, a,€L,

not all a;/; zero, such that a,/,+ --- +a,l{,=0. Set L;={aeL[e, 6]lal;sLl,+ --
+Ll;_y+ Ll + - +L1,}, where we suppose that a;/;#0. Then, 0+#a;[e, 6] L;
and L;=L[e, 0], because L[e, 6] is a minimal left ideal (Theorem 3.22). Hence,
[e, 0l L[e, 6]=L; and then l;=edli=y,li+ - + yi-ili-i+ yierdiea+ - + yula,
where y;e L. Then, /;=(edy,ed)l;+ - +(e0yi-1e0)li-1+(edy;+1€0)l141+ - +

(edyned)l,, which means that [,, ---, [, are linearly dependent over D.
Conversely, if Ll,+ --- + LI, is a direct sum, then (edLed)l,+ --- +(edLed)l, is
a direct sum, which means /,, ---, [, are linearly independent over D. Q.E.D.

Next, we prove:
a0, LPD---Pa,d. L if and only if a6 . MPB ---Bad .M. .......ccco...... (B)

Suppose a;0, M+ --- +a0,M is a direct sum. If 3% ,/;=0 with /;=a;d;L, then
>k _l;x=0 for all xM, where lixel;MS[a;0;:M, 'IMZa0:M. Thus, /;x=0
for all xeM and for all i. Hence, /;=0 for every 1.

Conversely, assume that a,0,L+ - +az0,L is a direct sum. If X%  x;,=0,
with x;€a;0,M, then X%_,[x;, yY]=0 for all yel’, where [x;, rls(x;, I']JS
[ai0:M, 'J=a;0;L. It follows that [x;, y]=0 for every yel' and every i, and
x:I'MI'x;=0 for every i. Since M is semi-prime, x;=0 for every i. Thus, @,0,M

+ -+ 4+a 0, M is a direct sum. Q.E.D.
Thus, by (A), the comment (followed [Theorem 3.23) on the dimensions of L,

(B) and [Theorem 3.22, we have dim(p[edM, I'])=dim(yL)=dim(L ;)=dim(Mpg).
Similarly, we can prove dim(pedM)=dim(;M)=dim(zR)=dim(Rg).

For a= M define a mapping p, of [edM, I'] to edM by [x, yJp.=xra, where
[x, y1€ledM, I']. Set N={p,|lacsM}.

For yel" define a mapping ¢, of edM to [edM, I'] by x¢,=[x, r], where
x€edM. Set A={p,\rel’}.

Then one can easily verify that for all ¢, b M and 7, oI’

Pa+Pb:Pa+b, ¢r+¢5:¢r+6; and Pa¢rpbzparb:



A gamma ring with minimum conditions 61

thus N becomes a [)-ring, where I;=/A.

Set k= {rel'| MyM=0}, then & is a subgroup of I. For any element 7/«
we define afb=ayrb (well defined), where 7=r+x. Then we get a [,-ring M,
where I',=1"/k.

Let p be a mapping of M to N by p(a)=p., a€M, and let ¢ be a mapping
from Iy to A by ¢(F)=¢, (well defined), where y+x=7<l,. Then p(@)=0>p,
=0>e0MIa=0>MdedMIa=0=>MIa=0=>al M a=0=>a=0, since MéedM=M, due
to M being simple, and M is semi-prime. Also, ¢(7)=0>¢,=0=>[edM, 71=0>
[MoedM, y]1=0=>[M, r1=0>MyM=0=>7=0, since M is simple. Next, p(a7b)=
0(arb)=pars=p.¢;0s=p(@))(7)p(b). Both, p and ¢ are clearly surjections. Hence,
the mapping (p, ¢) is a isomorphism from the ['-ring M onto the [}-ring N,
where I'1=A.

Let dim(;M)=m and dim(Mg)=n, and let D, » and D, , denote respectively
the set of all matrices of type nXm over D and that of all matrices of type
mXn over D. Similarly, D, and D, are respectively the total matrix ring of
type nXn over D and that of type mXm over D.

Choose a basis /,, -+, [, of the vector space [edM, I'] and a basis uy, -+, Unm
of the vector space edM.

For a= M we have

lLia=lLip,=anui+ - +&inin; 1=1, 2, ---, n.
Now the correspondence
pa—(agy); 1=i=n, 1=j=m

is a group isomorphism from the additive abelian group N into the additive
abelian group D, ». Thus, 6:a—(a;;) is a group isomorphism of M into Dj, n.
We show that this is an isomorphism onto D, n:

Along the similar fashion described in the above, ring theory shows that
elements of the left operator L are linear transformations of the vector space
[eoM, I'] and as a ring L is isomorphic onto D, and elements of the right
operator ring R are linear transformations of the vector space edM and R
isomorphic onto D,. Since M is a left L-right R-bimodule, for any /€L, x& M,
reR, IxreM. Let l—(c:)€Dy, x—(ai;)E Dy, m, ¥—(t:;)€EDn. Then for any
acsedM, '],

a(lﬂ’):((al)x)rz((a(m;‘))(afz‘j))(fz’j):G(Uz‘j)(aij)(z'ij) ,
and hence, ({x7)0=(0;)(x)0(z;;). Thus, LMRS M implies (LMR)8<(M)8, and so

D.(M)0D,,=(M)6. It follows D, .S (M)8, for (M)8<D,, . Hence, (M)8=D,, .
Q.E.D.
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By the similar argument, we obtain that the additive abelian group [ is
isomorphic onto a subgroup of D, ., and we denote the isomorphism by ¢.

We now prove (a7b)0=al7pbéo :

Let af=(aij), b0=(B:j;), Fp=(wuw). Then, for any /€[edM, I'] we have

l(a7b)=((Ua)7)bo=(({a:1))@un))(Bi5)=Uas ;) @uo)(Bi) ,

thus, (a7b)0="(a:;)(@u)(B:i;)=a07pb0.

Clearly, D, » is a I"”-ring, where I"” is (I',)¢, which is a non-zero subgroup
of Dy, n.

Therefore, the I',-ring M is isomorphic onto the I”-ring D, » and the proof
is completed.

When M is a [-ring in the sense of Nobusawa, k=0 and then [,=I’, and
furthermore since I' is a right L- left R-bimodule D,(I)¢D,S(")¢. On the
other hand, (") ¢S Dy, », and so (I')¢=Dn, », thus we have

COROLLARY 4.3 ([8] Theorem 2). A simple [-ring M in the sense of Nobu-
sawa with min-r and min-l conditions is isomorphic onto the I'’-ring D, ., where

I"=D,,,.

We note that the term ‘simple’ in this corollary is the one given in Defini-
tion 3.9. However, as shown already, since M has minimum condition, M becomes
prime (Theorem 3.15). Then, since M is the prime /-ring in the sense of Nobu-
sawa, M is completely prime ([1] Theorem 5), which coincides with ‘M is
simple’ in Theorem 2 in Nobusawa [8].

5. [-rings with minimum right and left conditions.

First we consider the semi-prime [-ring with min- and min-/ conditions.
Let I',=I"/k, where k= {rel'| MyM=0}, and M=M,P --- BM,, where M,, ---, M,
are simple /-rings with min-» and min-/ conditions (Theorem 3.13). Let ;=
{re'M;yM;=0}, 1=<i<gq, then £=r:" - Nk, Thus, I',=1I"/x is isomorphic to
a subgroup of I'/x,P --- B[ /k, Set I'/k;=I3. This means that [} is isomorphic
‘to a subdirect sum of the I, 1<i<q. implies that M; is isomorphic
onto D&y meiy over a division ring D® and I'; is isomorphic to a non-zero sub-
group of Dy nciy over D, Thus, we have

M=3%_,D®:. mu (direct sum) and

I''=I/x is a subdirect sum of the I;, where IS D%y, nci», 1=1=¢q, where the
product of elements of Dy iy and of DY m¢s is performed as usual if i=j
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and is 0 if i#7.
Thus we have
THEOREM 5.1. Let M be a semi-prime I-ring with min-r and min-l condi-

tions. Then, the I'-ring M is homomorphic onto the ['»-ring 39-.D&% mci> where [
is a subdivect sum of the I';, 1=<i=<q, which is a non-zero subgroup of D u>. nci>-

(Iheorem 2.12 and [Theorem 5.1 yield the following corollary.

COROLLARY 5.2. Let M be a I'-ring with min-r and min-l conditions. Then,
the I'-ring M is homomorphic onto the I'y-ring 391Dy mci» where Iy is a sub-
divect sum of the I';, 1=<i<gq, which is a non-zero subgroup of D% ncp.

We consider the converse of the preceding comment to [Theorem 5.1. First
we prove the converse of

THEOREM 5.3. Dy, m, D is a division ring, is a simple I-ring with min-r and
min-l conditions, where I' is a non-zero subgroup of Dy, and [I', Dy m]=D, and
[Dn,m: F]:Dn.

PROOF. Denote the elementary matrices by E;;€D, n, 1=i<n, 1=5j<m;
Gst€EDp, 1=s,t=m; Hyp<D,, 1=p, gq=n. Let A=(a;;) belong to D, n, then
A=30 ja;E;.

The ideal generated by A contains HyyAGy=agEyp. If A#0, then a,#0
for some (g, s) and the E,, is in the ideal generated by A. This is true for all
p=1, -, n; t=1, .-, m, and hence the ideal is equal to D, ,, so that D, , is
simple. To verify the min-r condition, observe that D, , is a right vector space
of dimension nm over D. Every right ideal J of D, . is a subspace, since A</
>Ad=A(dE,)=], where E, the identity matrix and d=D. The min-» condi-
tion holds. Similarly, the min-/ condition holds.

THEOREM 5.4. If M=M,D --- BM,, where M,, ---, M, are simple [;-rings
with min-r and min-l conditions, then M is a semi-prime I-ring with min-r and
min-l conditions, where I' is a subdirect sum of the I';/s, M;I'M;=0 (i#j) and
M. IM;=0 (i+7).

PrROOF. Let S be a strongly-nilpotent ideal of M and let S,, -, S, be its
component ideals in M, ---, M,, respectively. If (SI")"S=0 then (S:[})*S;=0 for
each i. Since M; is simple S;=M; or S;=0. If S;=M,, then (S;[})"S;=M;=0,
a contradiction. Thus, S;=0 and hence S=S,® --- §S,=0 and M is semi-prime.
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To verify the min-r condition, suppose J 22/ ®2 - is a descending sequence of
right ideals of M. The components J{® in the I;-ring M; are a descending
sequence in M, (JP2J®»=2.- 2J{M2 ) and hence Jm is fixed for n=n(i),
say. It followed that J™ is fixed for n=max[n(1), ---, n(g)], and hence the
min-» condition holds in M. Similarly, the min-/ condition can be verified.

We consider the I-rings in the sense of Nobusawa.

Let M be a Iring in the sense of Nobusawa and M be semi-prime with
min-7 and min-/ conditions. Let M=M,®D --- ®M,, where M,, ---, M, are simple
[rings with min-» and min-/ conditions (Theorem 3.13). Let I'i=I"/k;, where
ki={rel|M;yM;=0}. We show that each I-ring M; is the I';-ring in the sense
of Nobusawa. Since I'M,'STI, k; is an ideal of I Indeed, M(I'M:)M;=
(M. M )e:M;=M;x;M;=0 and then I'M;x,Sx;. Similarly, kM 'S k;. Hence, we
can define a multiplication : I X M; X I';—I; as follows:

For any 7, 6, ac M;, where F=7+£;, 6=0+k;,

7ad=7ad (well defined).

Clearly, M.;7M;=0 implies 7=0. Q.E.D.

Therefore, by we have I;=D% nci». Since k=0 and so [,=1T,
I’ is isomorphic to the subgroup of 3%.,D{:;. nc». Let this isomorphism be ¢,
then
ré=r1+---+7, Where 7;=r+r;, 1=1=g.

We show that the subgroup coincides with the group 3%.,Dfw, »i». Fix an

element i of the index set {1, 2, -+, g}. For any o:€l's=D{: nw, choose an
element os=I" such that ¢;=o-+k;. Let o¢p=0:+ - +0:i+ -+ +0, Where o,=
o+k, 1=k=<gq, and E;; be the unit matrix of D&, and F;; be the unit matrix
of D$,. Then, since I is the right L- left R-bimodule and D@, =M, I';JSL
and D¥y,=[I;, M;]1ER, 6.=E(a®)FiscI)¢, 1=i=q. Now let i be free. Then,
> ,0.(¢, where each og; is an arbitrary element of [;. This means
%=1D§rf)<i>.n(i>g(r)¢, and (F)¢:z%=1D§rf)(i>,n<i>.
Thus, we have

M=3% D@ mw and I'= 11DFw ac>
which is Theorem 3 of Nobusawa [8].
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