A GEOMETRIC MEANING OF THE RANK OF HERMITIAN SYMMETRIC SPACES

Dedicated to Professor I. Mogi on his 60th birthday

By

Koichi OGIUE and Ryoichi TAKAGI

§1. Introduction.

Let M be a Kaehler manifold and denote by H the holomorphic sectional curvature of M. We say that H is δ -pinched if there exists a positive constant c such that

$$\delta c \leq H \leq c$$
.

In this paper, we shall prove the following

THEOREM. Let M be a compact irreducible Hermitian symmetric space of rank r. Then the holomorphic sectional curvature of M is $\frac{1}{r}$ -pinched.

Although it is possible to verify the result for each Hermitian symmetric space one by one by using the curvature tensors given by E. Calabi and E. Vesentini [1], we shall given here a systematic proof.

§2. Preliminaries.

We begin by constructing a compact Hermitian symmetric space. For details, see e.g. [3].

Let \tilde{g} be a complex simple Lie algebra and \mathfrak{h} a Cartan subalgebra of \tilde{g} . The dual space of the complex vector space \mathfrak{h} is denoted by \mathfrak{h}^* . An element α of \mathfrak{h}^* is called a *root* of $(\tilde{g}, \mathfrak{h})$ if there exists a non-zero vector X_{α} in \tilde{g} such that

$$[H, X_{\alpha}] = \alpha(H) X_{\alpha} \quad \text{for} \quad H \in \mathfrak{h}.$$

We denote by Δ the set of all non-zero roots of $(\tilde{g}, \mathfrak{h})$ and put $\mathfrak{g}_{\alpha} = CX_{\alpha}$. Then we have a direct sum decomposition:

$$\tilde{\mathfrak{g}} = \mathfrak{h} + \sum_{\alpha \in \varDelta} \mathfrak{g}_{\alpha}$$
.

Since the Killing form K of \tilde{g} is non-degenerate on $\mathfrak{h} \times \mathfrak{h}$, for each $\xi \in \mathfrak{h}^*$ we can Received July 21, 1980. define $H_{\xi} \in \mathfrak{h}$ by

$$K(H, H_{\xi}) = \xi(H)$$
 for $H \in \mathfrak{h}$.

Put $\mathfrak{h}_0 = \sum_{\alpha \in \mathcal{A}} \mathbf{R} H_{\alpha}$. Then the dual space \mathfrak{h}_0^* of \mathfrak{h}_0 can be considered as a real subspace of \mathfrak{h}^* . Define an inner product (,) on \mathfrak{h}_0^* by

$$(\xi, \eta) = K(H_{\xi}, H_{\eta})$$
 for $\xi, \eta \in \mathfrak{h}_{0}^{*}$

For each $\alpha \in \Delta$ we choose a basis E_{α} of \mathfrak{g}_{α} so that $\{H_{\alpha_j} (j=1, \dots, 1), E_{\alpha} (\alpha \in \Delta)\}$ forms Weyl's canonical basis of \mathfrak{g} . Then we have $[E_{\alpha}, E_{-\alpha}] = H_{\alpha}$, and a Lie algebra \mathfrak{g} defined as follows is a compact real form of \mathfrak{g} :

$$\mathfrak{g} = \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} H_{\alpha} + \sum_{\alpha \in \mathcal{A}} \mathbf{R} (E_{\alpha} + E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) + \sum_{\alpha \in \mathcal{A}} \mathbf{R} \sqrt{-1} (E_{\alpha} -$$

We denote by $\{\alpha_1, \dots, \alpha_l\}$ the fundamental root system of $\tilde{\mathfrak{g}}$ with respect to a linear ordering in \mathfrak{h}_0^* (so that $\dim_c \mathfrak{h} = l$).

Now we fix a simple root α_i $(i=1, \dots, l)$. For simplicity, we put $A_{\alpha} = E_{\alpha} + E_{-\alpha}$ and $B_{\alpha} = \sqrt{-1}(E_{\alpha} - E_{-\alpha})$. We define a subset Δ_i of Δ , a subalgebra \mathfrak{k}_i of \mathfrak{g} and a subspace \mathfrak{m}_i of \mathfrak{g} by

$$\Delta_{i} = \{\alpha = \sum_{j} m_{j} \alpha_{j}; m_{i} \ge 1\},$$

$$\mathfrak{t}_{i} = \sum_{\alpha \in \mathcal{A}} R \sqrt{-1} H_{\alpha} + \sum_{\alpha \in \mathcal{A}^{+} - \mathcal{A}_{i}} (RA_{\alpha} + RB_{\alpha}),$$

$$\mathfrak{m}_{i} = \sum_{\alpha \in \mathcal{A}_{i}} (RA_{\alpha} + RB_{\alpha}),$$

where Δ^+ denotes the set of all positive roots.

Let G be the simply connected Lie group with Lie algebra g and K_i the connected Lie subgroup of G with algebra \mathfrak{f}_i . Let π denote the natural projection of G onto a compact homogeneous space $M_i = G/K_i$ and put $o = \pi(K_i)$. Then we can identify the vector space \mathfrak{m}_i with the tangent space $T_0(M_i)$ of M_i at o. It is easily seen that there exists a unique G-invariant Riemannian metric g on M_i such that $g = -K|\mathfrak{m}_i \times \mathfrak{m}_i$ at o. It is known that a compact Riemannian homogeneous space M_i obtained as above from a pair (\mathfrak{g}, α_i) of a complex simple Lie algebra \mathfrak{g} and a simple root α_i becomes a Hermitian symmetric space if and only if the coefficient \mathfrak{m}_i of α_i in every $\alpha \in \Delta_i$ is equal to 1 and the center $\mathfrak{g}(\mathfrak{f}_i)$ of \mathfrak{f}_i is 1-dimensional, and that every compact irreducible Hermitian symmetric space space can be obtained in this way.

Hereafter we assume that M_i is a Hermitian symmetric space. Then it is known that there exists an element Z_0 in $\mathfrak{z}(\mathfrak{k}_i)$ such that the complex structure of M_i at o is given by $I=\operatorname{ad} Z_0|\mathfrak{m}_i$ and $IA_{\alpha}=B_{\alpha}$, $IB_{\alpha}=-A_{\alpha}$ for $\alpha \in \Delta_i$. Since $Z_0 \in \mathfrak{z}(\mathfrak{k}_i)$, we have

34

A geometric meaning of the rank of Hermitian symmetric spaces

(1)
$$I \circ Ad(k) = Ad(k) \circ I$$
 for $k \in K_i$.

Let θ^{α} , $\theta^{-\alpha}$ be the dual forms of E_{α} , $E_{-\alpha}$. Then we have at o

(2)
$$g = 2 \sum_{\alpha \in \mathcal{A}_i} \theta^{\alpha} \theta^{-\alpha},$$

since $K(E_{\alpha}, E_{-\alpha}) = -1$. The norm of $X \in \mathfrak{m}_i$ is denoted by |X|.

§3. Proof of Theorem.

First we state a fundamental lemma without proof.

LEMMA (E. Cartan). Let a and a' be two maximal abelian subspaces of \mathfrak{m}_i . Then

(i) there exists an element k in K_i such that Ad(k)a=a', and

(ii) $\mathfrak{m}_i = \bigcup_{k \in K_i} Ad(k)\mathfrak{a}.$

The rank r of M_i as a symmetric space is, by definition, the common dimension of maximal abelian subspaces of \mathfrak{m}_i . By a theorem of Harish-Chandra ([2], Lemma 8), there exist r roots $\delta_1, \dots, \delta_r$ in Δ_i such that none of $\delta_i \pm \delta_j$ belong to Δ , which are called strongly orthogonal roots. Thus the space \mathfrak{a}_0 spanned by $A_{\delta_1}, \dots, A_{\delta_r}$ over \mathbf{R} is a maximal abelian subspace of \mathfrak{m}_i . We denote by R the curvature tensor of (M_i, g) . Then we have the following formula due to E. Cartan:

$$R(X, Y)Z = -[[X, Y], Z]$$
 for $X, Y, Z \in \mathfrak{m}_i$.

Put $S = \{X \in \mathfrak{m}_i; |X| = 1\}$. Then, for $X \in S$, the holomorphic sectional curvature H(X) of the plane section spanned by X and IX is given by

(3) H(X) = g(R(X, IX)IX, X) = -g([[X, IX], IX], X) $= |[X, IX]|^{2}.$

We assert that the range of the function H on S coincides with that of H on $S \cap \mathfrak{a}_0$. In fact, Lemma implies that, for every $H \in S$, there exists an element k in K_i such that $Ad(k)X \in S \cap \mathfrak{a}_0$. Therefore from (1) and (3) we have

$$H(Ad(k)X) = |[Ad(k)X, IAd(k)X]|^{2}$$
$$= |[Ad(k)X, Ad(k)IX]|^{2}$$
$$= |Ad(k)[X, IX]|^{2}$$
$$= |[X, IX]|^{2}$$

35

=H(X),

which proves our assertion.

Let $X = \sum_{j=1}^{r} x_j A_{\delta_j} \in S \cap \mathfrak{a}_0$. Then by (2) we have

$$1 = |X|^{2} = \sum_{j, k=1}^{r} x_{j} x_{k} g(E_{\delta_{j}} + E_{-\delta_{j}}, E_{\delta_{k}} + E_{-\delta_{k}})$$
$$= 2 \sum_{j=1}^{r} x_{j}^{2},$$

and

$$\begin{bmatrix} X, IX \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{r} x_j A_{\delta_j}, \sum_{k=1}^{r} x_k B_{\delta_k} \end{bmatrix}$$
$$= \sum x_j^2 \begin{bmatrix} A_{\delta_j}, B_{\delta_j} \end{bmatrix}$$
$$= \sum x_j^2 \begin{bmatrix} E_{\delta_j} + E_{-\delta_j}, \sqrt{-1}(E_{\delta_j} - E_{-\delta_j}) \end{bmatrix}$$
$$= -2\sqrt{-1} \sum x_j^2 \begin{bmatrix} E_{\delta_j}, E_{-\delta_j} \end{bmatrix}$$
$$= -2\sqrt{-1} \sum x_j^2 H_{\delta_j}.$$

Hence

$$|[X, IX]|^{2} = 4|\sum x_{j}^{2}H_{\delta_{j}}|^{2}$$
$$= 4\sum x_{j}^{4}(\delta_{j}, \delta_{j})$$

But by a theorem of C. C. Moore ([3], p. 362) we have $(\delta_1, \delta_1) = \cdots = (\delta_r, \delta_r)$. Thus the range of H is given by

$$4r\left(\frac{1}{2r}\right)^2(\delta_1, \delta_1) \leq H \leq 4\left(\frac{1}{2}\right)^2(\delta_1, \delta_1),$$

since $\sum x_j^2 = \frac{1}{2}$. Therefore our theorem is proved.

§4. Remark.

Let $(M_{\lambda}, g_{\lambda})$ be a compact irreducible Hermitian symmetric space of rank r_{λ} and H_{λ} the holomorphic sectional curvature of $(M_{\lambda}, g_{\lambda}), \lambda=1, \dots, n$. Assume that max $H_1 = \dots = \max H_n$. Then a compact Hermitian symmetric space $(M_1 \times \dots \times M_n, g_1 \times \dots \times g_n)$ of rank $r_1 + \dots + r_n$ is $\frac{1}{r_1 + \dots + r_n}$ -pinched

References

- [1] Calabi, E. and Vesentini, E., On compact locally symmetric Kaehler manifolds, Ann. of Math. 71 (1960), 472-507.
- [2] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math. 78

36

A geometric meaning of the rank of Hermitian symmetric spaces

(1956), 564-628.

- [3] Helgason, S., Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [4] Moore, C.C., Compactifications of symmetric spaces II: the Cartan domains, Amer. J. Math. 86 (1964), 358-378.

Tokyo Metropolitan University University of Tsukuba