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\S 1. Introduction.

Let $M$ be a Kaehler manifold and denote by $H$ the holomorphic sectional
curvature of $M$. We say that $H$ is $\delta$-pinched if there exists a positive constant
$c$ such that

$\delta c\leqq H\leqq c$ .
In this paper, we shall prove the following

THEOREM. Let $M$ be a compact irreducible Hermitian symmetric space of
rank $r$. Then the holomorphic sectional curvature of $M$ is $\frac{1}{r}$-pinched.

Although it is possible to verify the result for each Hermitian symmetric
space one by one by using the curvature tensors given by E. Calabi and E.
Vesentini [1], we shall given here a systematic proof.

\S 2. Preliminaries.

We begin by constructing a compact Hermitian symmetric space. For details,
see $e$ . $g$ . $[3]$ .

Let $\tilde{\mathfrak{g}}$ be a complex simple Lie algebra and $\mathfrak{h}$ a Cartan subalgebra of $\tilde{\mathfrak{g}}$ . The
dual space of the complex vector space $\mathfrak{h}$ is denoted by $\mathfrak{h}^{*}$ . An element $\alpha$ of $\mathfrak{h}^{*}$

is called a root of $(\tilde{\mathfrak{g}}, \mathfrak{h})$ if there exists a non-zero vector $X_{\alpha}$ in $\tilde{\mathfrak{g}}$ such that

$[H, X_{\alpha}]=\alpha(H)X_{\alpha}$ for $H\in \mathfrak{h}$ .
We denote by $\Delta$ the set of all non-zero roots of $(\tilde{\mathfrak{g}}, \mathfrak{h})$ and put $\mathfrak{g}_{\alpha}=CX_{\alpha}$ . Then
we have a direct sum decomposition:

$\tilde{\mathfrak{g}}=\mathfrak{h}+\sum_{\alpha\in\Delta}\mathfrak{g}_{\alpha}$ .
Since the Killing form $K$ of $\tilde{\mathfrak{g}}$ is non-degenerate on $\mathfrak{h}X\mathfrak{h}$ , for each $\xi\in \mathfrak{h}^{*}$ we can
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define $H_{\xi}\in \mathfrak{h}$ by
$K(H, H_{\xi})=\xi(H)$ for $H\in \mathfrak{h}$ .

Put $\mathfrak{h}_{0}=\sum_{\dot{\alpha}\in\Delta}RH_{a}$ . Then the dual space $\mathfrak{h}_{0}^{*}$ of $\mathfrak{h}_{0}$ can be considered as a real

subspace of $\mathfrak{h}^{*}$ . Define an inner product $(, )$ on $\mathfrak{h}_{0}^{*}$ by

$(\xi, \eta)=K(H_{\xi}, H_{\eta})$ for $\xi,$ $\eta\in \mathfrak{h}_{0}^{*}$ .
For each $\alpha\in\Delta$ we choose a basis $E_{\alpha}$ of $\mathfrak{g}_{a}$ so that $\{H_{\alpha_{j}}(j=1, \cdots, 1), E_{\alpha}(\alpha\in\Delta)\}$

forms Weyl’s canonical basis of $\tilde{\mathfrak{g}}$ . Then we have $[E_{\alpha}, E_{-\alpha}]=H_{a}$ , and a Lie

algebra $\mathfrak{g}$ defined as follows is a compact real form of $Q$ :

$\mathfrak{g}=\sum_{\alpha\in\Delta}R\sqrt{-1}H_{\alpha}+\sum_{\alpha\in\Delta}R(E_{\alpha}+E_{-\alpha})+\sum_{a\in\Delta}R\sqrt{-1}(E_{\alpha}-E_{-a})$ .

We denote by $\{\alpha_{1}, \cdots, \alpha_{l}\}$ the fundamental root system of $\tilde{\mathfrak{g}}$ with respect to a
linear ordering in $\mathfrak{h}_{0}^{*}$ (so that $\dim_{C}\mathfrak{h}=l$).

Now we fix a simple root $\alpha_{i}(i=1, \cdots, l)$ . For simplicity, we put $A_{\alpha}=$

$E_{\alpha}+E_{-\alpha}$ and $B_{\alpha}=\sqrt{-1}(E_{\alpha}-E_{-\alpha})$ . We define a subset $\Delta_{i}$ of $\Delta$ , a subalgebra $\mathfrak{k}_{i}$

of $\mathfrak{g}$ and a subspace $\mathfrak{m}_{i}$ of $\mathfrak{g}$ by

$\Delta_{i}=\{\alpha=\sum_{j}m_{j}\alpha_{j} ; m_{i}\geqq 1\}$ ,

$f_{i}=\sum_{\alpha\in\Delta}R\sqrt{-1}H_{a}+$ $\sum_{-,\alpha\in\Delta+\Delta_{i}}(RA_{\alpha}+RB_{\alpha})$
,

$\mathfrak{m}_{i}=\sum_{\alpha\in\Delta_{i}}(RA_{\alpha}+RB_{\alpha})$
,

where $\Delta^{+}$ denotes the set of all positive roots.

Let $G$ be the simply connected Lie group with Lie algebra $\mathfrak{g}$ and $K_{i}$ the

connected Lie subgroup of $G$ with algebra $f_{i}$ . Let $\pi$ denote the natural projec-

tion of $G$ onto a compact homogeneous space $M_{i}=G/K_{i}$ and put $0=\pi(K_{i})$ . Then

we can identify the vector space $\mathfrak{m}_{i}$ with the tangent space $T_{0}(M_{i})$ of $M_{i}$ at $0$ .
It is easily seen that there exists a unique G-invariant Riemannian metric $g$ on
$M_{i}$ such that $g=-K|\mathfrak{m}_{i}\times \mathfrak{m}_{i}$ at $0$ . It is known that a compact Riemannian
homogeneous space $M_{i}$ obtained as above from a pair $(\tilde{\mathfrak{g}}, \alpha_{i})$ of a complex simple

Lie algebra $\tilde{\mathfrak{g}}$ and a simple root $\alpha_{i}$ becomes a Hermitian symmetric space if and

only if the coefficient $m_{i}$ of $\alpha_{i}$ in every $\alpha\in\Delta_{i}$ is equal to 1 and the center $\partial(\mathfrak{k}_{i})$

of $f_{i}$ is l-dimensional, and that every compact irreducible Hermitian symmetric

space can be obtained in this way.

Hereafter we assume that $M_{i}$ is a Hermitian symmetric space. Then it is

known that there exists an element $Z_{0}$ in $\partial(f_{i})$ such that the complex structure of
$M_{i}$ at $0$ is given by $I=adZ_{0}|\mathfrak{m}_{i}$ and $IA_{\alpha}=B_{\alpha},$ $IB_{\alpha}=-A_{\alpha}$ for $\alpha\in\Delta_{i}$ . Since
$z_{0}\in \mathfrak{z}(\mathfrak{k}_{i})$ , we have
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(1) $IoAd(k)=Ad(k)oI$ for $k\in K_{i}$ .
Let $\theta^{\alpha},$ $\theta^{-\alpha}$ be the dual forms of $E_{\alpha},$ $E_{-\alpha}$ . Then we have at $0$

(2)
$g=2\sum_{\alpha\in\Delta_{i}}\theta^{\alpha}\theta^{-\alpha}$

,

since $K(E_{\alpha}, E_{-\alpha})=-1$ . The norm of $X\in \mathfrak{m}_{i}$ is denoted by $|X|$ .

\S 3. Proof of Theorem.

First we state a fundamental lemma without proof.

LEMMA (E. Cartan). Let $\mathfrak{a}$ and $\mathfrak{a}^{\prime}$ be two maximal abelian subspaces of $\mathfrak{m}_{i}$ .
Then
(i) there exists an element $k$ in $K_{i}$ such that $Ad(k)\mathfrak{a}=\mathfrak{a}^{\prime}$ , and
(ii)

$\mathfrak{m}_{i}=\bigcup_{k\in K_{i}}Ad(k)\mathfrak{a}$ .

The rank $r$ of $M_{i}$ as a symmetric space is, by definition, the common dimen-
sion of maximal abelian subspaces of $\mathfrak{m}_{i}$ . By a theorem of Harish-Chandra ([2],

Lemma 8), there exist $r$ roots $\delta_{1},$ $\cdots$ , $\delta_{r}$ in $\Delta_{i}$ such that none of $\delta_{i}\pm\delta_{j}$ belong to
$\Delta$ , which are called strongly orthogonal roots. Thus the space $\mathfrak{a}_{0}$ spanned by
$A_{\delta_{1}},$ $\cdots$ , $A_{\delta_{r}}$ over $R$ is a maximal abelian subspace of $\mathfrak{m}_{i}$ . We denote by $R$ the
curvature tensor of $(M_{i}, g)$ . Then we have the following formula due to E.
Cartan:

$R(X, Y)Z=-[[X, Y],$ $Z$] for $X,$ $Y,$ $Z\in \mathfrak{m}_{i}$ .
Put $S=\{X\in \mathfrak{m}_{i} ; |X|=1\}$ . Then, for $X\in S$ , the holomorphic sectional curvature
$H(X)$ of the plane section spanned by $X$ and IX is given by

(3) $H(X)=g(R(X, IX)IX,$ $X$ )

$=-g([[X, IX], IX], X)$

$=|[X, IX]|^{2}$ .
We assert that the range of the function $H$ on $S$ coincides with that of $H$ on
$S\cap \mathfrak{a}_{0}$ . In fact, Lemma implies that, for every $H\in S$ , there exists an element $k$

in $K_{i}$ such that $Ad(k)X\in S\cap \mathfrak{a}_{0}$ . Therefore from (1) and (3) we have

$H(Ad(k)X)=|[Ad(k)X, IAd(k)X]|^{2}$

$=|[Ad(k)X, Ad(k)IX]|^{2}$

$=|Ad(k)[X, IX]|^{2}$

$=|[X, IX]|^{2}$
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$=H(X)$ ,

which proves our assertion.

Let $X=\sum_{j=1}^{r}x_{j}A_{\delta_{j}}\in S\cap \mathfrak{a}_{0}$ . Then by (2) we have

$1=|X|^{2}=\sum_{j,k=1}^{r}x_{j}x_{k}g(E_{\delta_{f}}+E_{-\delta_{j}}, E_{\delta_{k}}+E_{-\delta_{k}})$

$=2\sum_{j=1}^{r}x_{j}^{2}$ ,

and

[X, $IX$ ] $=[\sum_{j=1}^{r}x_{j}A_{\delta_{j}},\sum_{k=1}^{r}x_{k}B_{\delta_{k}}]$

$=\Sigma x_{j}^{2}[A_{\delta_{j}}, B_{\delta_{j}}]$

$=\Sigma x_{j}^{2}[E_{\delta j}+E_{-\delta_{j}}, \sqrt{-1}(E_{\delta_{j}}-E_{-\delta_{j}})]$

$=-2\sqrt{-1}\sum x_{j}^{2}[E_{\delta_{j}}, E_{-\delta_{j}}]$

$=-2\sqrt{-1}\sum x_{j}^{2}H_{\delta_{j}}$ .
Hence

$|[X, IX]|^{2}=4|\Sigma x_{j}^{2}H_{\delta_{j}}|^{2}$

$=4\sum x_{j}^{4}(\delta_{j}, \delta_{j})$ .
But by a theorem of C. C. Moore ([3], p. 362) we have $(\delta_{1}, \delta_{1})=\cdots=(\delta_{r}, \delta_{r})$ . Thus

the range of $H$ is given by

$4r(\frac{1}{2r})^{2}(\delta_{1}, \delta_{1})\leqq H\leqq 4(\frac{1}{2})^{2}(\delta_{1}, \delta_{1})$ ,

since $\sum x_{j}^{2}=\frac{1}{2}$ . Therefore our theorem is proved.

\S 4. Remark.

Let $(M_{\lambda}, g_{\lambda})$ be a compact irreducible Hermitian symmetric space of rank $r_{\lambda}$

and $H_{\lambda}$ the holomorphic sectional curvature of $(M_{\lambda}, g_{\lambda}),$ $\lambda=1,$
$\cdots,$ $n$ . Assume

that $\max H_{1}=\cdots=\max H_{n}$ . Then a compact Hermitian symmetric space $(M_{1}\times$

... $\chi M_{n},$ $g_{1}\times\cdots\times g_{n}$ ) of rank $r_{1}+\cdots+r_{n}$ is $\frac{1}{r_{1}+\cdots+r_{n}}$ -pinched
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