A GEOMETRIC MEANING OF THE RANK OF HERMITIAN SYMMETRIC SPACES

Dedicated to Professor I. Mogi on his 60th birthday

By

Koichi Ogiue and Ryoichi Takagi

§ 1. Introduction.

Let M be a Kaehler manifold and denote by H the holomorphic sectional curvature of M. We say that H is δ-pinched if there exists a positive constant c such that

$$
\delta c \leqq H \leqq c .
$$

In this paper, we shall prove the following
Theorem. Let M be a compact irreducible Hermitian symmetric space of rank r. Then the holomorphic sectional curvature of M is $\frac{1}{r}$-pinched.

Although it is possible to verify the result for each Hermitian symmetric space one by one by using the curvature tensors given by E . Calabi and E . Vesentini [1], we shall given here a systematic proof.

§ 2. Preliminaries.

We begin by constructing a compact Hermitian symmetric space. For details, see e.g. [3].

Let \tilde{g} be a complex simple Lie algebra and \mathfrak{g} a Cartan subalgebra of \tilde{g}. The dual space of the complex vector space \mathfrak{h} is denoted by \mathfrak{h}^{*}. An element α of \mathfrak{h}^{*} is called a root of ($\mathfrak{g}, \mathfrak{h}$) if there exists a non-zero vector X_{α} in \tilde{g} such that

$$
\left[H, X_{\alpha}\right]=\alpha(H) X_{\alpha} \quad \text { for } \quad H \in \mathfrak{h} .
$$

We denote by Δ the set of all non-zero roots of ($\mathfrak{g}, \mathfrak{g}$) and put $\mathfrak{g}_{\alpha}=\boldsymbol{C} X_{\alpha}$. Then we have a direct sum decomposition :

$$
\tilde{\mathfrak{g}}=\mathfrak{h}+\sum_{\alpha \in \mathrm{S}} \mathfrak{g}_{\alpha} .
$$

Since the Killing form K of \tilde{g} is non-degenerate on $\mathfrak{h} \times \mathfrak{h}$, for each $\xi \in \mathfrak{h}^{*}$ we can

[^0]define $H_{\xi} \in \mathfrak{h}$ by
$$
K\left(H, H_{\xi}\right)=\xi(H) \quad \text { for } \quad H \in \mathfrak{h} .
$$

Put $\mathfrak{Y}_{0}=\sum_{\alpha \in \Delta} \boldsymbol{R} H_{\alpha}$. Then the dual space \mathfrak{h}_{0}^{*} of \mathfrak{h}_{0} can be considered as a real subspace of \mathfrak{h}^{*}. Define an inner product (,) on \mathfrak{h}_{0}^{*} by

$$
(\xi, \eta)=K\left(H_{\xi}, H_{\eta}\right) \quad \text { for } \quad \xi, \eta \in \mathfrak{H}_{0}^{*} .
$$

For each $\alpha \in \Delta$ we choose a basis E_{α} of g_{α} so that $\left\{H_{\alpha_{j}}(j=1, \cdots, 1), E_{\alpha}(\alpha \in \Delta)\right\}$ forms Weyl's canonical basis of $\tilde{\mathrm{g}}$. Then we have $\left[E_{\alpha}, E_{-\alpha}\right]=H_{\alpha}$, and a Lie algebra \mathfrak{g} defined as follows is a compact real form of \mathfrak{g} :

$$
\mathfrak{g}=\sum_{\alpha \in \Delta} \boldsymbol{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in \Delta} \boldsymbol{R}\left(E_{\alpha}+E_{-\alpha}\right)+\sum_{\alpha \in \Delta} \boldsymbol{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right) .
$$

We denote by $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ the fundamental root system of $\tilde{\mathfrak{g}}$ with respect to a linear ordering in \mathfrak{h}_{0}^{*} (so that $\operatorname{dim}_{c} \mathfrak{h}=l$).

Now we fix a simple root $\alpha_{i}(i=1, \cdots, l)$. For simplicity, we put $A_{\alpha}=$ $E_{\alpha}+E_{-\alpha}$ and $B_{\alpha}=\sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)$. We define a subset Δ_{i} of Δ, a subalgebra \mathfrak{f}_{i} of \mathfrak{g} and a subspace \mathfrak{m}_{i} of g by

$$
\begin{aligned}
& \Delta_{i}=\left\{\alpha=\sum_{j} m_{j} \alpha_{j} ; m_{i} \geqq 1\right\}, \\
& \mathfrak{f}_{i}=\sum_{\alpha \in \Delta} \boldsymbol{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in J^{+}-\Delta_{i}}\left(\boldsymbol{R} A_{\alpha}+\boldsymbol{R} B_{\alpha}\right), \\
& \mathfrak{m}_{i}=\sum_{\alpha \in \Delta_{i}}\left(\boldsymbol{R} A_{\alpha}+\boldsymbol{R} B_{\alpha}\right)
\end{aligned}
$$

where Δ^{+}denotes the set of all positive roots.
Let G be the simply connected Lie group with Lie algebra g and K_{i} the connected Lie subgroup of G with algebra \mathfrak{f}_{i}. Let π denote the natural projection of G onto a compact homogeneous space $M_{i}=G / K_{i}$ and put $o=\pi\left(K_{i}\right)$. Then we can identify the vector space \mathfrak{m}_{i} with the tangent space $T_{0}\left(M_{i}\right)$ of M_{i} at o. It is easily seen that there exists a unique G-invariant Riemannian metric g on M_{i} such that $g=-K \mid \mathfrak{m}_{i} \times \mathfrak{m}_{i}$ at o. It is known that a compact Riemannian homogeneous space M_{i} obtained as above from a pair (\mathfrak{g}, α_{i}) of a complex simple Lie algebra \tilde{g} and a simple root α_{i} becomes a Hermitian symmetric space if and only if the coefficient m_{i} of α_{i} in every $\alpha \in \Delta_{i}$ is equal to 1 and the center $z\left(f_{i}\right)$ of f_{i} is 1 -dimensional, and that every compact irreducible Hermitian symmetric space can be obtained in this way.

Hereafter we assume that M_{i} is a Hermitian symmetric space. Then it is known that there exists an element Z_{0} in $子\left(f_{i}\right)$ such that the complex structure of M_{i} at o is given by $I=\operatorname{ad} Z_{0} \mid \mathfrak{m}_{i}$ and $I A_{\alpha}=B_{\alpha}, I B_{\alpha}=-A_{\alpha}$ for $\alpha \in \Delta_{i}$. Since $Z_{0} \in{ }_{z}\left(\mathrm{f}_{i}\right)$, we have

$$
\begin{equation*}
I \circ A d(k)=A d(k) \circ I \quad \text { for } \quad k \in K_{i} . \tag{1}
\end{equation*}
$$

Let $\theta^{\alpha}, \theta^{-\alpha}$ be the dual forms of $E_{\alpha}, E_{-\alpha}$. Then we have at o

$$
\begin{equation*}
g=2 \sum_{\alpha \in \Delta_{i}} \theta^{\alpha} \theta^{-\alpha} \tag{2}
\end{equation*}
$$

since $K\left(E_{\alpha}, E_{-\alpha}\right)=-1$. The norm of $X \in \mathfrak{m}_{i}$ is denoted by $|X|$.

§ 3. Proof of Theorem.

First we state a fundamental lemma without proof.
Lemma (E. Cartan). Let \mathfrak{a} and \mathfrak{a}^{\prime} be two maximal abelian subspaces of \mathfrak{m}_{i}. Then
(i) there exists an element k in K_{i} such that $\operatorname{Ad}(k) \mathfrak{a}=\mathfrak{a}^{\prime}$, and
(ii) $\mathfrak{m}_{i}=\bigcup_{k \in K_{i}} A d(k) \mathfrak{a}$.

The rank r of M_{i} as a symmetric space is, by definition, the common dimension of maximal abelian subspaces of \mathfrak{m}_{i}. By a theorem of Harish-Chandra ([2], Lemma 8), there exist r roots $\delta_{1}, \cdots, \delta_{r}$ in Δ_{i} such that none of $\delta_{i} \pm \delta_{j}$ belong to Δ, which are called strongly orthogonal roots. Thus the space \mathfrak{a}_{0} spanned by $A_{\delta_{1}}, \cdots, A_{\partial_{r}}$ over \boldsymbol{R} is a maximal abelian subspace of \mathfrak{m}_{i}. We denote by R the curvature tensor of $\left(M_{i}, g\right)$. Then we have the following formula due to E . Cartan:

$$
R(X, Y) Z=-[[X, Y], Z] \quad \text { for } \quad X, Y, Z \in \mathfrak{m}_{i} .
$$

Put $S=\left\{X \in \mathfrak{n}_{i} ;|X|=1\right\}$. Then, for $X \in S$, the holomorphic sectional curvature $H(X)$ of the plane section spanned by X and $I X$ is given by

$$
\begin{align*}
H(X) & =g(R(X, I X) I X, X) \tag{3}\\
& =-g([[X, I X], I X], X) \\
& =|[X, I X]|^{2} .
\end{align*}
$$

We assert that the range of the function H on S coincides with that of H on $S \cap \mathfrak{a}_{0}$. In fact, Lemma implies that, for every $H \in S$, there exists an element k in K_{i} such that $\operatorname{Ad}(k) X \in S \cap a_{0}$. Therefore from (1) and (3) we have

$$
\begin{aligned}
H(A d(k) X) & =|[\operatorname{Ad}(k) X, \operatorname{IAd}(k) X]|^{2} \\
& =|[\operatorname{Ad}(k) X, \operatorname{Ad}(k) I X]|^{2} \\
& =|\operatorname{Ad}(k)[X, I X]|^{2} \\
& =|[X, I X]|^{2}
\end{aligned}
$$

$$
=H(X)
$$

which proves our assertion.
Let $X=\sum_{j=1}^{r} x_{j} A_{\delta_{j}} \in S \cap \mathfrak{a}_{0}$. Then by (2) we have

$$
\begin{aligned}
1=|X|^{2} & =\sum_{j, k=1}^{r} x_{j} x_{k} g\left(E_{\delta_{j}}+E_{-\delta_{j}}, E_{\delta_{k}}+E_{-\delta_{k}}\right) \\
& =2 \sum_{j=1}^{r} x_{j}^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
{[X, I X] } & =\left[\sum_{j=1}^{r} x_{j} A_{\delta_{j}}, \sum_{k=1}^{r} x_{k} B_{\delta_{k}}\right] \\
& =\sum x_{j}^{2}\left[A_{\delta_{j}}, B_{\delta_{j}}\right] \\
& =\sum x_{j}^{2}\left[E_{\delta_{j}}+E_{-\delta_{j}}, \sqrt{-1}\left(E_{\delta_{j}}-E_{-\delta_{j}}\right)\right] \\
& =-2 \sqrt{-1} \sum x_{j}^{2}\left[E_{\delta_{j}}, E_{-\delta_{j}}\right] \\
& =-2 \sqrt{-1} \sum x_{j}^{2} H_{\delta_{j}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
|[X, I X]|^{2} & =4\left|\sum x_{j}^{2} H_{\delta_{j}}\right|^{2} \\
& =4 \sum x_{j}^{4}\left(\delta_{j}, \delta_{j}\right)
\end{aligned}
$$

But by a theorem of C. C. Moore ([3], p. 362) we have ($\left.\delta_{1}, \delta_{1}\right)=\cdots=\left(\delta_{r}, \delta_{r}\right)$. Thus the range of H is given by

$$
4 r\left(\frac{1}{2 r}\right)^{2}\left(\delta_{1}, \delta_{1}\right) \leqq H \leqq 4\left(\frac{1}{2}\right)^{2}\left(\delta_{1}, \delta_{1}\right),
$$

since $\sum x_{j}^{2}=\frac{1}{2}$. Therefore our theorem is proved.

§4. Remark.

Let $\left(M_{\lambda}, g_{\lambda}\right)$ be a compact irreducible Hermitian symmetric space of rank r_{λ} and H_{λ} the holomorphic sectional curvature of $\left(M_{\lambda}, g_{\lambda}\right), \lambda=1, \cdots, n$. Assume that $\max H_{1}=\cdots=\max H_{n}$. Then a compact Hermitian symmetric space ($M_{1} \times$ $\cdots \times M_{n}, g_{1} \times \cdots \times g_{n}$) of rank $r_{1}+\cdots+r_{n}$ is $\frac{1}{r_{1}+\cdots+r_{n}}$-pinched

References

[1] Calabi, E. and Vesentini, E., On compact locally symmetric Kaehler manifolds, Ann. of Math. 71 (1960), 472-507.
[2] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math. 78

A geometric meaning of the rank of Hermitian symmetric spaces
(1956), 564-628.
[3] Helgason, S., Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[4] Moore, C.C., Compactifications of symmetric spaces II: the Cartan domains, Amer. J. Math. 86 (1964), 358-378.

Tokyo Metropolitan University
University of Tsukuba

[^0]: Received July 21, 1980.

