A NOTE ON A FORMALIZED ARITHMETIC WITH FUNCTION SYMBOLS / AND +.

By

Tsuyoshi YUKAMI

Introduction.

Let \mathfrak{L}_0 be the first order language with function symbols ', + and the equality symbol =. By \mathfrak{L} we denote the first order language obtained from \mathfrak{L}_0 by adding a ternary predicate symbol P. The theory in \mathfrak{L} with the following axioms and axiom schemata is signified by \mathfrak{R} .

- $(N-1) \quad \forall x \neg (x'=0).$
- $(N-2) \quad \forall x \forall y (x'=y'\supset x=y).$
- $(N-3) \quad \forall x(x+0=x).$
- $(N-4) \forall y \forall y (x+y'=(x+y)').$
- $(N-5) \forall x P(x, 0, 0).$
- $(N-6) \quad \forall x \forall y \forall z \{ P(x, y, z) \supset P(x, y', z+x) \}.$
- $(N-7) \quad \forall x \forall y \forall z \forall w \{ (P(x, y, z) \land P(x, y, w)) \supset z = w \}.$
- $(N-8) \quad \forall x(x=x).$
- $(\mathbf{N}-9) \quad \forall x \forall y \{x = y \supset (\mathfrak{A}(x) \supset \mathfrak{A}(y))\}.$
- $(N-10) \quad \{\mathfrak{A}(0) \wedge \forall x ((\mathfrak{A}(x) \supset \mathfrak{A}(x')))\} \supset \forall x \mathfrak{A}(x).$
- (N-11) s=t, where s=t is valid.

For a term t, b(t) means the number of occurrences of bound varibles in t. For a formula \mathfrak{A} , $b(\mathfrak{A})$ is defined inductively as follows. 1. $b(r=s) = \max(b(r), b(s))$. 2. $b(P(r, s, t)) = \max(b(r), b(s), b(t))$. 3. $b(\neg \mathfrak{A}) = b(\mathfrak{A})$. 4. $b(\mathfrak{A}) = b(\mathfrak{A})$ $b(\mathfrak{A}) = b(\mathfrak{A})$ $b(\mathfrak{A}) = b(\mathfrak{A})$.

In [3] we proved that:

For any formula $\mathfrak{A}(a)$ of \mathfrak{L} ; if there is a number m such that, for any natural number n, there exists a proof \mathfrak{P} of $\mathfrak{A}(\bar{n})$ in \mathfrak{N} with the following properties (1) and (2), then $\forall x \mathfrak{A}(x)$ is provable in \mathfrak{N} .

- (1) The length of \mathfrak{P} is less than m.
- (2) For any induction schema \mathfrak{B} in \mathfrak{P} which is not a formula of \mathfrak{L}_0 , $b(\mathfrak{B}) \leq m$. The purpose of this paper is to prove the following theorem.

Theorem. There are a formula $\mathfrak{A}(a)$ and a natural number M such that: (a)

 $\forall x \mathfrak{A}(x)$ is not provable in \mathfrak{R} . (b) For any natural number n, $\mathfrak{A}(\bar{n})$ is provable in \mathfrak{R} with length $\leq M$.

We devote § 2 to proving the theorem. In § 1 we prepare for the proof.

The author wishes to thank Dr. T. Uesu and Dr. M. Fukuyama, on whose advices the author could simplify both the form of the formula $\mathfrak{A}(a)$ mentioned in the theorem and the related arguments.

$\S 2$. Preparations for $\S 2$.

LEMMA 1. If $m \cdot n = k$, then $P(\bar{m}, \bar{n}, \bar{k})$ is provable in \mathfrak{N} with length 13.

PROOF. Using (N-5) and (N-6), we can prove (1-1) and (1-2) with length ≤ 5 .

(1-1) $P(\bar{m}, 0, 0)$.

(1-2)
$$P(\bar{m}, a, \widehat{a+\cdots+a}) \supset P(\bar{m}, a', \widehat{a+\cdots+a+\bar{m}}).$$

By (N-11), (1-3), (1-4) and (1-5) are axioms.

$$(1-3) \quad 0 = \underbrace{0 + \cdots + 0}_{m}.$$

$$(1-4) \quad \overbrace{a+\cdots+a+\bar{m}=a'+\cdots+a'}^{m}.$$

$$(1-5) \quad \widehat{\bar{n}+\cdots+\bar{n}}=\bar{k}.$$

Using equality axioms with (1-1), (1-2), (1-3) and (1-4), we can deduce (1-6) with length 10.

$$(1-6) \quad P(\bar{m}, 0, 0+\cdots+0) \wedge \forall x (P(\bar{m}, x, x+\cdots+x)) \supseteq P(\bar{m}, x', x'+\cdots+x')).$$

From (1-6) with an iduction axiom, (1-7) is provable with length 11.

 $(1-7) \quad \forall x P(\bar{m}, x, x+\cdots+x).$

Hence we can deduce (1-8) with length 13 from (1-5) and (1-7).

(1-8) $P(\bar{m}, \bar{n}, \bar{k})$.

LEMMA 2. If m+n=k and $n\neq 0$, then $k\neq \bar{m}$ is provable in $\mathfrak N$ with length 25.

PROOF. By (N-11), (1-9) is an axiom.

 $(1-9) \quad \bar{k}=\bar{m}+\bar{n}.$

The following formula is provable with length 17.

 $(1-10) \quad \forall x \forall y (x+y=x\supset y=0).$

We can deduce (1-11) with length 21 from (1-9) and (1-10) with equality axioms. (1-11) $\bar{k} = \bar{m} \supset \bar{n} = 0$.

Hence (1-12) is provable with length 25 from (1-11) with the axiom (N-1). (Note that $n \neq 0$.)

(1-12)
$$\neg (\bar{k} = \bar{m}).$$

We define *E-formulas* inductively in the following manner. 1. Formulas of the forms r=s, $r\neq s$ and P(r, s, t) are *E-formulas*. 2. If $\mathfrak A$ and $\mathfrak B$ are *E-formulas*, then

71

so are \mathfrak{AAB} and \mathfrak{AVB} . 3. If \mathfrak{A} is an E-formula, then so is $\exists x\mathfrak{A}$.

LEMMA 3. Let $\mathfrak{A}(a_1, \dots, a_{\nu})$ be an E-formula. Assume that every free variable of $\mathfrak{A}(a_1, \dots, a_{\nu})$ is among a_1, \dots, a_{ν} . Then there is a natural number M such that: for any natural numbers n_1, \dots, n_{ν} , if $\mathfrak{A}(\bar{n}_1, \dots, \bar{n}_{\nu})$ is true, then $\mathfrak{A}(\bar{n}_1, \dots, \bar{n}_{\nu})$ is provable in \mathfrak{A} with length $\leq M$.

Lemma 3 is easily proved by the induction corresponding to the inductive difinition of E-formulas. We use Lemma 1 and Lemma 2 in the basis step of the proof.

Let $\mathfrak{F}(a,b,c)$ be

$$\exists x \lceil P(b+c, b+c+1, x) \land a+a=x+c+c \rceil$$
.

By formalizing the ordinary informal proof that the function

$$J(x, y) = \frac{(x+y)(x+y+1)}{2} + y$$

is a one-to-one function from ω^2 onto ω , we can prove

- (1-13) $\mathfrak{F}(a, b, c) \wedge \mathfrak{F}(a, d, e) \rightarrow b = d \wedge c = e$,
- (1-14) $\forall x \forall y \exists z \mathfrak{F}(z, x, y)$

and

 $(1-15) \quad \forall x \exists y \exists z \mathfrak{F}(x, y, z).$

We define E-formulas $\mathfrak{F}_{\nu}(a, b_1, \dots, b_{\nu+1})$ by induction on ν : 1. $\mathfrak{F}_0(a, b_1) = a = b_1$. 2. $\mathfrak{F}_1(a, b_1, b_2) = \mathfrak{F}(a, b_1, b_2)$. 3. $\mathfrak{F}_{\nu+1}(a, b_1, b_2, \dots, b_{\nu+1}, b_{\nu+2}) = \exists x [\mathfrak{F}_{\nu}(a, b_1, \dots, b_{\nu}, x) \land \mathfrak{F}(x, b_{\nu+1}, b_{\nu+2})]$.

Using (1-13), (1-14) and (1-15), we can prove by induction on ν ,

- $(1-16) \quad \mathfrak{F}_{\nu}(a, b_1, \dots, b_{\nu+1}) \wedge \mathfrak{F}_{\nu}(a, c_1, \dots, c_{\nu+1}) \rightarrow b_1 = c_1 \wedge \dots \wedge b_{\nu+1} = c_{\nu+1},$
- $(1-17) \quad \forall x_1 \cdots \forall x_{\nu+1} \exists y \, \mathfrak{F}_{\nu}(y, x_1, \, \cdots, \, x_{\nu+1})$

and

(1-18)
$$\forall x \exists y_1 \cdots \exists y_{\nu+1} \mathcal{F}_{\nu}(x, y_1, \cdots, y_{\nu+1}).$$

REMARK. In connection with the definition of E-formulas, we state the following lemma. But it is superfluous for our purpose. It is proved by formalizing the proof of the theorem 1 in § 6 of the chapter 2 of [2].

Lemma 4. Let $\mathfrak{G}(a, b, c)$ be the standard formula which expresses the primitive recursive predicate ' $a=b^c$ '. There is an E-formula $\mathfrak{G}(a, b, c)$ such that $\mathfrak{G}(a, b, c) \equiv \mathfrak{F}(a, b, c)$ is provable in \mathfrak{N} .

§ 2. Proof of the theorem.

2.1 Let T(x) be a recursively enumerable predicate which is not recursive. By [1], there are polynomials $f(x, y_1, \dots, y_\nu)$ and $g(x, y_1, \dots, y_\nu)$ with natural number coefficients such that:

$$(*) \quad T(x) \leftrightarrow \forall y_1 \cdots \forall y_v (f(x, y_1, \dots, y_v) = \mathcal{G}(x, y_1, \dots, y_v)).$$

We can find an E-formula $\mathfrak{T}(x, y_1, \dots, y_{\nu})$ which expresses naturally $f(x, y_1, \dots, y_{\nu})$

 $=g(x, y_1, \dots, y_v)$. There is a primitive recursive function $\phi(x)$ such that

$$\phi(\mathbf{n}) = \lceil \exists y_1 \cdots \exists y_{\nu} \mathfrak{T}(\bar{\mathbf{n}}, y_1, \cdots, y_{\nu}) \rceil.$$

2.2 To deduce a contradiction, we assume that, for any natural number n, $\exists y_1 \dots \exists y_v \mathfrak{T}(\bar{n}, y_1, \dots, y_v)$ or its negation is provable in \mathfrak{R} .

Then

(**)
$$\Lambda x \vee y \{ [Proof_{\Re}((y)_0, \phi(x)) \& (y)_1 = 0] \}$$

or
$$[Proof_{\Re}((y)_0, Neg(\phi(x))) \& (y)_1=1]$$
,

where $\operatorname{Proof}_{\mathfrak{R}}$ is the proof predicate for \mathfrak{N} , and Neg is a function such that $\operatorname{Neg}(\lceil \mathfrak{A} \rceil) = \lceil \neg \mathfrak{A} \rceil$ for any formula \mathfrak{A} .

We define

$$\psi(n) = (\mu y \{ [\text{Proof}_{\Re}((y)_0, \phi(n)) \& (y)_1 = 0]$$
 or $[\text{Proof}_{\Re}((y)_0, \text{Neg}(\phi(n))) \& (y)_1 = 1] \})_1.$

From (**) and recursiveness of predicate $Proof_{\Re}$ and function Neg, we can conclude that:

(***) $\psi(n)$ is recursive.

Furthermore we can conclude (****) by the following arguments (a) and (b). (****) $\Lambda x(T(x) \leftrightarrow \psi(x) = 0)$.

(a) Assume T(n). By (*), $\exists y_1 \cdots \exists y_{\nu} \mathfrak{T}(\bar{n}, y_1, \cdots, y_{\nu})$ is true.

Because $\mathfrak{T}(\bar{n}, y_1, \dots, y_{\nu})$ is an E-formula,

(****)
$$\forall y \operatorname{Proof}_{\mathfrak{N}}(y, \phi(n)).$$

From the consistency of \mathfrak{N} .

(*****)
$$\sim \forall y \operatorname{Proof}_{\mathfrak{N}}(y, \operatorname{Neg}(\phi(n))).$$

We can obtain the conclusion that $\psi(n)=0$ from (*****), (******) and the difinition of $\psi(n)$.

(b) Conversely assume $\psi(n) = 0$. Then, by the difinition of $\psi(n)$, $\forall y \operatorname{Proof}_{\mathfrak{R}}(y, \phi(n))$. Because every provable formula in \mathfrak{R} is valid,

 $\exists y_1 \cdots \exists y_\nu \mathfrak{T}(\bar{n}, y_1, \cdots, y_\nu)$ is true. Hence, by (*), T(n).

We can deduce a contradiction from (***), (****) and the hypothesis that T(x) is not recursive. Hence we can obtain the conclusion that:

(******) For some m, $\exists y_1 \cdots \exists y_v \mathfrak{T}(\bar{m}, y_1, \cdots, y_v)$ and its negation are not provable in \mathfrak{N} . Furthermore $\exists y_1 \cdots \exists y_v \mathfrak{T}(\bar{m}, y_1, \cdots, y_v)$ is false, because $\exists y_1 \cdots \exists y_v \mathfrak{T}(\bar{m}, y_1, \cdots, y_v)$ is an E-formula.

2.3 We can find an E-formula $\mathfrak{U}(y_1, \dots, y_{\nu})$ which expresses naturally $f(m, y_1, \dots, y_{\nu}) \neq g(m, y_1, \dots, y_{\nu})$ and for which

(2-1)
$$\mathfrak{U}(y_1,\,\cdots,\,y_{v}) \equiv \neg \mathfrak{T}(\bar{m},\,y_1,\,\cdots,\,y_{v})$$
 is provable.

By $\mathfrak{A}(a)$, we denote the following formula:

$$\exists y_1 \cdots \exists y_{\nu} \{ \mathfrak{F}_{\nu-1}(a, y_1, \cdots, y_{\nu}) \land \mathfrak{U}(y_1, \cdots, y_{\nu}) \}.$$

Note that $\mathfrak{A}(a)$ is an E-formula. In the remainder of this paper, we shall prove that $\mathfrak{A}(a)$ has the two properties in the theorem.

- 2.3.1 Because of (******) with (1-18) and (2-1), $\mathfrak{A}(\bar{n})$ is true for any natural number n. Hence, by Lemma 3, we can conclude that: there is a natural number M such that, for any natural number n, $\mathfrak{A}(\bar{n})$ is provable with length $\leq M$.
 - 2.3.2 Using (1-16), (1-17) and (1-18), we can prove
 - $(2-2) \quad \forall x \mathfrak{A}(x) \supset \forall y_1 \cdots \forall y_{\nu} \mathfrak{U}(y_1, \, \cdots, \, y_{\nu}).$

From (2-1) and (2-2), we can deduce

 $(2-3) \quad \forall x \mathfrak{A}(x) \supset \neg \exists y_1 \cdots \exists y_\nu \mathfrak{T}(\bar{m}, y_1, \cdots, y_\nu).$

Hence, from (******) and (2-3), we can conclude that $\forall x \mathfrak{A}(x)$ is not provable.

References

- [1] Ju. V. Matijasevič, Enumerable sets are diophantine, Soviet Math. Dokl., 11 (1970), 354-358.
- [2] G. Takeuti, The mathematical logic-the word problem (Japanese), Tokyo, 1973.
- [3] T. Yukami, A theorem on the formalized aritmetic with function symbols, and +, this journal, 1 (1977), 195-211.

Institute of Mathematics The University of Tsukuba Ibaraki, 300-31, Japan