ERRATUM TO "ASYMPTOTIC DIMENSION AND BOUNDARY DIMENSION OF PROPER CAT(0) SPACES"

By

Naotsugu Chinen and Tetsuya Hosaka

Abstract. The review on [1] in Mathematical Reviews points out that the proof of its main result is incorrect. The aim of this paper is to correct the previous paper's argument and clarify the statement.

In [2] it is stated that the proof of [1, Theorem 1.1] is incorrect, i.e., the map f does not satisfy $(*)_{\rho}$, as claimed on line 4 of the first paragraph on [1, p. 188]. In fact, diam $f(B(\psi^{i_k}(x_0), 1)) = \operatorname{diam} a_1(B(x_0, 1)) \neq 0$ for each $k \in \mathbb{N}$. In this paper, we redefine the map $f = \bigcup_{k \in \mathbb{N}} f_k : (Y, \rho) \to (\mathbf{B}^{n+1}, \sigma)$, in particular $f_k : \psi^{i_k}(B(x_0, k)) \to \mathbf{B}^{n+1}$, where let $B(x_0, r) = \{y \in X : d(x_0, y) \leq r\}$ for r > 0.

Let (X,d) be a proper CAT(0) space and let $\psi:(X,d)\to (X,d)$ be an isometry satisfying that $\{\psi^i(x):i\in \mathbf{Z}\}$ is unbounded (see [1, Theorem 1.1]). Fix a point x_0 of X. For every $x\in X$, let $\xi_x:[0,d(x_0,x)]\to X$ be the geodesic from x_0 to x in (X,d). Recall the projection map $p_1:X\to B(x_0,1)$ in [1, p. 187] defined by $p_1(x)=\xi_x(\min\{d(x_0,x),1\})$ for each $x\in X$.

Since $\{\psi^i(x): i \in \mathbf{Z}\}$ is unbounded, we have a sequence i_1, i_2, \ldots of \mathbf{N} satisfying an additional condition: $d(\psi^{i_k}(B(x_0,k)), \psi^{i_{k'}}(B(x_0,k')) > \max\{k,k'\}$ whenever $k \neq k'$ (see the second line from the bottom of [1, p. 187]). For every $k \in \mathbf{N}$, now we define a continuous map $q_k : B(x_0,k) \to B(x_0,1)$ by $q_k(x) = \xi_x(d(x_0,x)/k)$ for each $x \in B(x_0,k)$. Here, we *redefine* the map f_k in the first line of [1, p. 188] by a map $a_1 \circ q_k \circ \psi^{-i_k} : \psi^{i_k}(B(x_0,k)) \to \mathbf{B}^{n+1}$. Let $Y = \bigcup_{k \in \mathbf{N}} \psi^{i_k}(B(x_0,k))$ and let $f = \bigcup_{k \in \mathbf{N}} f_k : Y \to \mathbf{B}^{n+1}$.

We see that $p_1|_{B(x_0,k)}$ is homotopic to q_k . Indeed, we have a homotopy $H: B(x_0,k)\times [0,1]\to B(x_0,1): p_1|_{B(x_0,k)}\simeq q_k$ defined by

$$H(x,t) = \xi_x((d(x_0,x)/k - \min\{d(x_0,x),1\})t + \min\{d(x_0,x),1\})$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 20F69; Secondary 20F65, 54F45. Key words and phrases: asymptotic dimension; CAT(0) space; Higson corona; boundary. Received July 23, 2014.

for each $(x,t) \in B(x_0,k) \times [0,1]$. Thus, $0 \neq [a_k] = [a_1 \circ p_1] = [a_1 \circ q_k] \in H^{n+1}(B(x_0,k),S(x_0,k))$, where $a_k : (B(x_0,k),S(x_0,k)) \to (\mathbf{B}^{n+1},\mathbf{S}^n)$ is the map in the fifth line from the bottom of [1, p. 187]. Therefore, every f_k is essential.

We show that $f:(Y,\rho)\to (\mathbf{B}^{n+1},\sigma)$ has property $(*)_{\rho}$: for every r>0 and every $\varepsilon > 0$, there exists a compact set K of Y such that diam $f(B(x,r) \cap Y) < \varepsilon$ for all $x \in Y \setminus K$. Here $\rho = d|_{Y}$ and σ is the usual metric of \mathbf{B}^{n+1} . Let r > 0 and let $\varepsilon > 0$. By the uniformly continuity of a_1 , there exists $\delta > 0$ such that for every $E \subset B(x_0, 1)$ with diam $E < \delta$, diam $a_1(E) < \varepsilon$. We see that for every r > 0 there exists $k_0 \in \mathbb{N}$ with $k_0 > \max\{r, 4r/\delta\}$ such that for every $k \ge k_0$ and every $D \subset B(x_0, k)$ with diam $D \le 2r$, diam $q_k(D) < \delta$. Let $k \ge k_0$ and let $x, y \in B(x_0, k)$ with $d(x, y) \le 2r$. We note that $q_k(x) = \xi_x(d(x_0, x)/k)$ and $q_k(y) = \xi_v(d(x_0, y)/k)$. By the comparison triangle for $\triangle(x_0, x, y)$, we have $d(q_k(x), q_k(y)) \le d(x, y)/k \le 2r/k < \delta/2$. Thus, every $D \subset B(x_0, k)$ with diam D $\leq 2r$ satisfies that diam $q_k(D) < \delta$. Let $K = \bigcup_{k=1}^{k_0-1} \psi^{i_k}(B(x_0,k))$, let $x \in Y \setminus K$ and let $k \in \mathbb{N}$ with $k \ge k_0$ such that $x \in \psi^{i_k}(B(x_0, k))$. Since $B(x, r) \cap Y \subset \psi^{i_k}(B(x_0, k))$, $\psi^{-i_k}(B(x,r) \cap Y) = B(\psi^{-i_k}(x),r) \cap B(x_0,k) \subset B(x_0,k)$. Since diam $\psi^{-i_k}(B(x,r)) \cap B(x_0,k) \subset B(x_0,k)$. $(1) \cap Y \leq 2r$, by the above we see that diam $q_k \circ \psi^{-i_k}(B(x,r) \cap Y) < \delta$. Hence diam $f(B(x,r) \cap Y) = \text{diam } f_k(B(x,r) \cap Y) = \text{diam } a_1(q_k \circ \psi^{-i_k}(B(x,r) \cap Y)) < \varepsilon$. Therefore, the map f has property $(*)_a$.

Thus, there exists an extension $\bar{f}: \overline{Y}^{\rho} \to \mathbf{B}^{n+1}$ of f. By the same manner on the second paragraph of [1, p. 188], we can show that $g = \bar{f}|_{v_{\rho}Y}: v_{\rho}Y \to \mathbf{B}^{n+1}$ is essential because every f_k is essential. Therefore, $\dim v_d X \ge \dim v_{\rho}Y \ge n+1$.

References

- N. Chinen and T. Hosaka, Asymptotic dimension and boundary dimension of proper CAT(0) spaces, Tsukuba J. Math. 36 (2012), 185–191.
- [2] X. Xie, The Mathematical Review on "Asymptotic dimension and boundary dimension of proper CAT(0) spaces, Tsukuba J. Math. 36 (2012), 185–191".

Department of Mathematics National Defense Academy of Japan Yokosuka 239-8686, Japan E-mail: naochin@nda.ac.jp

Department of Mathematics Shizuoka University, Suruga-ku Shizuoka 422-8529, Japan E-mail: sthosak@ipc.shizuoka.ac.jp