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GENERALIZED FOURIER-STIELTJES ALGEBRA

By

G. A. BAGHERI-BARDI

Abstract. Let {G;}/., be locally compact groups and # be
Hilbert space. We define the n-variable Fourier-Stieltjes algebra
B([1} Gi,B(#)) consists all functions

¢:G X x G, — B(AH)

for which there exists unitary representations 7; : G; — B(#;) and a
diagram of bounded operators

L, I o Lo
with
¢(S1, cee >Sn) =Um (Sl)Tan(SZ) T nnfl(Snfl)Tnnn(Sn) V

We extend the pointwise product on B([]{ G;,B(#’)) under which it
forms a completely contractive commutative unital Banach algebra.
A diagram of its subalgebras will be introduced.

1. Introduction

Once and for all in this paper G; and G, are locally compact groups and #
is a Hilbert space with a fixed orthogonal basis &. We denote by B(#) (A (H#))
the algebra of all bounded (compact) operators on #.

The bi-Fourier-Stieltjes algebra B?(G; x G;) was introduced and studied as
a dual operator space in [9] and [16]. It consists all bi-coefficients of unitary
representations of Gy and Gy: ¢ : Gy x G — C is in B?>(Gy x G;) if there exist
unitary representations 7; : G; — B(#;), (connector) bounded operator T : # —
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A1 and (€ o) and 5 € A, such that

(s, 1) = (i (s) Tma ()| O

In this paper we introduce the generalized bi-Fourier-Stieltjes algebra
B?*(Gy x G2, B(#)) as an extension of the bi-Fourier-Stieltjes algebra. It consists
all operator bi-coefficients of unitary representations of Gy and Gy: ¢ : G1 X Gy —
B(#) is in B*(Gy x G2,B(#)) if there exist unitary representations 7; : G; —
B(#;) and a diagram of bounded operators

-
Lo Lom 5o

such that

(1.0.1) ¢(S, l) = Vl*TEl (S)Tnz(l) Vs

We extend the pointwise product on B%*(Gy x Gz, B(#)) and prove under which
the generalized bi-Fourier-Stieltjes algebra is a completely contractive commu-
tative Banach algebra. We also illustrate it by using of the following operator
spaces identification

w*h _
(10.2) B(G1 x G2, B(#)) = (B(G1) ® B(Ga)) ® B(#)
In fact we calculate the imposed pointwise product on the right hand of above
and then obtain a diagram of well-behaved subalgebras. Finally we calculate the
maximal ideals space and have a discussion about the operator amenability for
some particular of those subalgebras.

2. Preliminaries

We define a matrix norm {||.||,} on a linear space V" to be an assignment of a
norm ||.||, on the matrix space M,(V) for each n e N. An operator space is a
linear space V' together with a matrix norm {|.||,} for which

v 0
(1) Hl:o W:| m+n
(2) NewBll, < ol el A1

for all veM,(V), weM,,(W) and aeM,,,, f €M, ,. In [17] Ruan proved
operator spaces are just the abstract case of subspaces of C*-algebras.

= max{|[o[l,, [wl,}

Given operator spaces X and Y. We also let CB(X,Y) the linear space of
completely bounded linear maps, i.e. maps 7 : X — Y for which the amplifi-



Generalized Fourier-Stieltjes algebra 17

cation, T(,) : M, (X) — M,(Y), satisfy
1Ty = sup{[| Tl : n € N} < +0

Also T is called completely isometry (contraction) if 7, is isometry (contraction)
for all n e N. We will assign X* = CB(X, C) the operator space from [4]. We will
make use of tensor product here but just recall those facts which will be used. For
definitions and basic properties see the corresponded references.

Similar to classical case the operator projective tensor product linearize
completely bounded bilinear maps i.e. (see [3] [12] or [13] section 7)

CB(X x Y,C)~CB(X,Y")=(X®Y)"

For some particular case like Y* = B(2#) dual of the operator projective tensor
product may be expressed as the normal spacial tensor product i.e. (see [2] 1.6.5)

(2.0.3) (X ® T(#))" = CB(X,B(#)) = X* ® B(#)

where ® is the normal spatial tensor product ([13] or [18] section 7) and T(#) is
the set of all trace class operators on J#. y

The operator injective tensor product is denoted by ® (see [12] [3] or [13]
section 8). In general we have

X*® Y < CB(X, Y)
Therefore
(2.0.4) X' ® B(#) — X* ®B(H)

h
Finally the Haagerup tensor product ([10] or [13] section 9) is denoted by ®. In
(4] Blecher and Smith characterized the dual of the Haagerup tensor product in
terms of what they called the weak*-Haggerup tensor product i.e.

h w*h
XR®Y)=X"® Y*
w*l
Also u is in X* ®Z Y* if and only if u has a w*-representation ) x; ® y; where

[xi] € My 1(X7), [yil;,1 € M1 1(Y™) for some cardinal number / and

l[ullsyop, = E LD [HITyA ] = il € Mo (X7), [yl € Mia(Y7)}

which is actually achieved [4].

Let .o/ be an algebra over complex numbers. We call .o/ a completely con-
tractive Banach algebra if ./ is a complete operator space and the multiplication
o x of — o/ is completely contractive, i.e. it extends on the operator projective
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tensor product .o/ ® oA — . Equivalently, we have

e, jbw 01l < e AN 16

for all a =[a;;] and b= [b;;] in M,(/) (See [13] section 17). Completely con-
tractive Banach algebra were first mentioned in [4]; it was observed there that the
Fourier algebras of a locally compact group were examples of these.

We fix @ to be the isometry defined by

(2.0.5) 0 H - HRH we=e®Re¢ (e€b)

Given a,b € B(#), we regard a ® b as an element of B(# ®2 #) and we define
the Schur product of a and b as

(2.0.6) axb=0"(a®b)w
Equipped with the natural operator space and the Schur product, B(s#) and
H'(A) are completely contractive commutative Banach algebras (See 5.3.11 from
[2]). The main reference for the Schur product is [19].

3. Generalized Bi-Fourier-Stieltjes Algebra

Let & be a locally compact topological space. We denote by Cp(Z,B(#))
the set of all (norm) bounded continuous functions f : 2% — B(#). For each
neN, we have the following natural linear spaces identification

M, (Cp(Z,B(H))) =~ Cp(Z,B(H"))

Therefore we may say the uniform norm determines an operator space structure
on Cp(Z,B(#)). We extend the pointwise product on Cp(Z,B(#))

(3.0.7) Jog(x):=f(x)*g(x)

where f(x) % g(x) is the Schur product of the operators f(x) and g(x) [19].

PrROPOSITION 1. Under the point-wise product Cp(Z,B(H#)) is a completely
contractive commutative Banach algebra.

Proor. Since the Schur product is completely contractive on B(#°) (See
5.3.11 from [2]) then the assertion is obtained. ]

For given ne N, we say ®: Gy x Gz — B(#") is h-bounded if it has an
h-Stinespring’s representation i.e. there exist unitary representations 7, : G; —
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B(#;) and a diagram of bounded operators
12 T vy
H —= M — M — H
such that
(3.0.8) D(s, 1) = V' (8) T () W

We denote B*(Gy x Gy, B(#)) by the set of all h-bounded maps ® : Gy x G, —
B(#) and call it the generalized bi-Fourier-Stieltjes algebra. Note that for given
h-bounded maps i=1,2

(Dl' = I/i*ﬂ.'i(.)TiO'i(.) VV,

V] ¥ /4 0 T] 0 g 0 W]
O+ Dy =
L {VJ [0 ﬂzHO TzHO UZHWJ
Therefore B?(Gy x Gy, B(#)) is a subspace of Cy(Gy x Gz, B(#)). It is directly
to be checked that

We have

M, (B*(Gi x Gy, B(#))) — B*(Gy x Go, B(#")) : [¢, ] — @

is a linear spaces isomorphism, where ®(z,s) = [¢; ;(¢,5)]. From now on we
identify [¢, ;] and ©.

i

ReEMARK 2. It is well-known (see [6] or [13] corollary 9.4.6) for each
completely bounded map ¢ in CB(C*(G1) ® C*(Gz),B(#)) there exist non-
degenerate *-representations 7; of C*(G;), bounded operator T : #%, — #7 and
bounded operators V, W : # — #; such that

p=VaTuW, |¢l,=IVIITIIWI
Let ® = [4; ;] : G1 x G2 — B(#"). We define
[ jlll,, = k[ VIIT W

where the infimum is taken over all h-Stinespring’s representations @ =
V*rToW. The matrix norms {||.||,},—, puts an operator space structure on
B%(Gy x Gy, B(#)) under which the following map is a completely isometry
isomorphism

(3.0.9) B(Gy x Ga, B(#)) — CB(C*(G1) ® C*(Ga), B(#))

V*aToW — V*aTeW
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where 7 and ¢ are the corresponding non-degenerate *-representations of 7 and ¢
on C*(Gy) and C*(Gz) respectively.

The generalized bi-Fourier-Stieltjes algebra B*(Gy x Gz, B(#)) is closed
under the pointwise product (see 3.0.7). In other words it is a subalgebra of
Cy(G1 x G2,B(#)). To prove it we take the h-Stinespring’s representations

Bs,0) = Vim () Tma()Vay (s, £) = Wiar(s)Saa(t) Wa
Then
po(s,t) = (s, 1) «Y(s,1)
=" (¢(s, 1) @ Y(s, 1))
=o' (Vm(s)Tra(1)V2) @ (W ai(s)Sax (1) Wa)w
=o' (V1 @ 12) (11 O m)(s)(S® T)(01 © 02) (1) (W1 @ Wa)w
where
m O G — By, @ Hy,) 15— mi(s) @ mas)
THEOREM 3. Let Gy and Gy be locally compact groups. Then the generalized

bi-Fourier-Stieltjes algebra B*(Gy1 x Ga,B(#)) is a completely contractive com-
mutative Banach algebra under the point-wise product.

ProOF. Let @) = [¢ and @, = [i}; ;|,,, be h-bounded maps and put

(¢1,1"ﬁi,j) (¢1,n"//i,j)

i,j}nxn

O @D, = : ;
(¢n,1 b ‘ﬁi,j) T (¢n,n b ‘//i,j)
We take the following h-Stinespring’s representations
O, =V'm T, W, ® = M*e1SoN
With
[@ull = IVINTIIW AL (P2l = [ MIFIS IV

We consider the projections

P — A (.. hy) — by

and put E; = P;. Then
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PV PiM*

VM) @ )(T®S)(m®@a2)(WRN) = ([PzV* PzM*:|)
PV PsM*

®

(7[] ® O'])(T@ S)([WE] WE2 WE3] ® [NEl NE2 NE3])

= [(PiV")mTo1(ME})),,,, ® [(PrM")nTor(NE;)]

nxn nxn

=0 R D,
Therefore

@1 @ Baf| < |(V" @ M7)(m1 @ 01)(T ® S)(7m2 @ 02)(W @ N)||
< (VT IDAMIISITIND

< (| ]| [| D2 O

By definition of the Schur product one may see in particular case # = C the
pointwise product is given by the natural way.

COROLLARY 4. The bi-Fourier-Stieltjes algebra B*(Gy x G3) is a unital com-
pletely contractive Banach algebra under the pointwise product.

Now we begin to illustrate the generalized bi-Fourier-Stieltjes algebra. On the
basis [4], we have
w*h

(3.0.10) (C*(G1) & C*(Ga))" = B(G1) ® B(Gy)

Therefore there is a completely isometry isomorphism from the bi-Fourier-
Stieltjes algebra B?(Gy x G;) onto the weak*-Haagerup tensor product of the
Fourier-Stieltjes algebras B(G1) and B(G;) which we show by

w*h
(3.0.11) j:B(G)) ® B(G3) — B*(Gy x G)

We may also assume j is w*-continuous. Therefor we obtain the following dual
operator spaces identifications

B?*(Gy x Gy, B(#)) = CB(C*(Gy) é C*(Gy),B(#))

— (C*(G1) ® C*(Ga)) B T(#))"
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w*h

= (B(G1) ® B(G2)) @ B(X)
= B*(G; x G3) ® B(X#)

We partially calculate the imposed point-wise product on its tensor type.
One may conclude by the beginning part of section 7 of [11]

(3.0.12) (fi®91) (L ®a9):=fifr ® 9192
w*h

induces a completely contractive multiplication on B(Gy) ® B(Gz). First we

show that the bi-Fourier-Stieltjes algebra B?(Gy x G;) and B(Gy) w®h B(G;) are
the same in the category of completely contractive Banach algebras which will be
done in the following three steps.

Step 1. In this step for given w*-representation

u=3"¢:® < BG) ® BGy)

we give a suitable h-Stinespring’s representation for j(u) (see 3.0.9).
Let the basic element ¢ ® ¥ in B(G1) ® B(Gz). Then
(3.0.13) (@@ W) =l Ok)aih|n)
where
¢(x) = () |n>, w(y) =Lar()h|k>
and
(Ok:Hr— Ay — k)

As in [4] we may assume

DIA=27

where [¢;] € M\ ;(B(Gy1)) and [y,] € M, 1(B(G3z)). By the generalized Stinespring’s
theorem ([14] or [15] theorem 8.4) there is a continuous unitary representation 7,
bounded operator 7, : 12(1 ) — H#, and 5, € A, with

[Bily.1 = namaTuy N18i]1 1l = il 1T

Similarly there is a continuous unitary representation o¢,, bounded operator
V,:1?(I) — #, and h, € #, with

Wilry = Viouhe,  |Wilpall = 1Al 11Vl

= gy, Tl ol

w*
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We put T,(e;) =(; and V,(e;) = k; where {e;} is the standard orthogonal
basis of /*(I). Since [¢,], ; and [i),], | are row and column matrices respectively
then

¢i = <nugia”u>7 lrbi = <O-llhu7ki>

We put for each finite subset # = I

Ty = <nu <§73 Lo k,) auhu|nu> = <nu <§7: Tu(er) OV, )auh |m,>
(e (w300 )%hm>

Therefore {77} ;. is a uniformly bounded net and for each finite subset .7

Tz is a corresponded h-Stinespring’s representation for > ;- ¢; ® ; and so is w*
convergent (see 3.0.9). Now we show Tz is w*-convergent to <{n, T,V a,h, | 77u>.
To prove it first we need to show the bounded net of finite ranks operators
{37 Ok;)} converges to T, V, in the strong operator topology. Let &, € .
Then

TV e = (D2 Viho leve;)
=" Tu(<he | Valen))es)
=Y o | Vule)>Tuler)
=D (Tuler) © Vile)hoe = (G O kidho

Let the basic element f ® g € C*(Gy1) ® C*(G;). We may assume f, g are con-
tinuous functions with compact support.

n, T, Vu*o'uhu |’7u>7f ®g>

- ”<nu<x> TV 0u(p)ha | 15 F (x)g(y) dxdy

- “<Tu Vo) | 7> f (x)g(y) dixdy

~ lim J J < (Z %o k)au Vi |nu<x1>nu>f<x>g<y> dxdy
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= 11m<<7zu (Z Ci © kz) ouly | 77u>af ® g>

= (T, / ® g
Therefore
(3.0.14) (=30 ®@v) = @IV, o 0>

Indeed

>4

Step 2. Let the basic element ¢ ® i and w*-representation > ¢; ® ;. In this
Step we show

= [l 1l 1Vl 1T

(X tew)von)=i(>d6ew)ivey)
Just as in (3.0.13) and (3.0.14) we take the h-Stinespring’s representations
J@@) = mEoRah, j(X4® ;)= TV o n)

Since the multiplication on the Fourier-Stieltjes algebra B(G;) is w*-separately
continuous (i.e. it is a dual completely contractive Banach algebra) then

(>seu)ven =3 dsovy
It is obvious that the bounded net {(3°,(; O k;) ® ((Ok)}, is convergent to

TV* ® ({ O k) in the strong operator topology. We also note that for each finite
subset # < [

j(Zqﬁicb@wiw)
< (T O 1) <<Zél©k> CQk)>(0u®01)hu®h’7u®’7>

Therefore similar to process in step 1

I3t @v) = m O m)(TV") ® (COK)) (0w @ 1) ® h |1, @ 1>
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Step 3. Since j is w*-continuous in the second variable then one conclude the
completely isometry j is also a homomorphism by using of similar method which
applied in step 2.

THEOREM 5. Let Gy and Gy be locally compact groups. There is a completely
w
isometry isomomorphism form B(Gy) ® B(Gz) onto B*(Gy x Gy).

Let ¢ ® v be a basic element in B*(Gy x G3) ® B(#) and the Stinespring’s
representation ¢ = {nTal|ny. We define
T,: A -H, QN : k—-n®k
Sty - H, @K :h—{Q@vh

Then we obtain a suitable corresponding Stinespring’s representation for ¢ ® v as
follows

pRv=T,(nO) (T ®id)(cO1)S,,

Where 1 is the trivial continuous unitary representation. If we consider the basic
elements ¢; ® v; in B*(Gy x G2) @ B(#) (i = 1,2) with the Stinespring’s rep-
resentations

¢ ®@vi=T,(m O)(T; ®id)(0: O 1)Sg,y,-
Then for each e, f in &
) @ 1) o (4 @ v2)(x)e| [

=T, (m O 1)S, o T, (2 O 1) S, v, (X)e| [

=Ty, ® T),0)" ((m ©1) © (12 O 1)) (x)(St;,0 ® St m)e| £

= {((m(x) ® 1(x)) ® (m2(x) @ 1(x))) ({1 ® vie)

R (L®@ne) (@) ® (& f)>

= < ()¢ [ )<ma(x)C [ <vie | fH<ve | [

= $1 (%) (x){@" (1 @ v2)we| [

= 1 (xX) by (x) vy vae | [
These calculations show that

(3.0.15) (P @ 1) e (hy @ V1) =1y ® Vi * 02
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Since the pointwise product is norm continuous on B?*(Gy x Gy, B(#)) then we
have for given uniformly convergence series > .”, ¢; ® u; and Zf;] Y; @ w; in
BZ(GI X Gz) ® B(%)

(3016) <Z ¢1‘ ® ui) b <Z lpj ® Wj) = 2 ¢,le ® u; * Wy
i=1 j=1

i,j=1
As a result of the self-duality for the Haagerup tensor product ([8][5][4])

h

B(G1) ® B(G2) < B(G1) ® B(Gs)
Also (see 2.0.4)
BY(G % Gy) ® B(#) < BX(Gy x Gy) ® B(#)

We use of the injectivity property of the Haagerup and operator injective tensor
product we obtain the following diagram of subalgebras of the generalized
Fourier-Stieltjes algebra B?*(Gy x Gz, B(#)).

w*h

(B(G1) ® B(Gz)) ® B(A)

(B(G1) ® B(Ga)) ® ()

|

(4(G1) ® B(Ga) + B(Gy) ® A(Gy)) @ A'(H)

/\
)
Y

(A(Gr) ® A(Ga)) ® #(H)

|

0

(A(G1) & B(G2)) ® H(H#)  (BGr) ® AGy)) & A'(H)

It is well-known that
A(G) ® A(Gy) ~ A(G; x Gy)

Since || - ]|, < |- I, (2] page 36) then we may transfer some properties from the
Fourier algebra 4(G; x Gz) to bi-Fourier algebra A(Gy) ® A(Gz) by the fol-
lowing inclusion mapping

(3.0.17) A(Gy) ® A(Gy) — A(Gy) ® A(G,)
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COROLLARYh 6. (1) The maximal ideal space of the bi-Fourier algebra
A(G1) ® A(Gz) is the cartesiag product Gy x Gy and so is semisimple.
(2) The bi-Fourier algebra A(Gi) ® A(Gz) is always weakly amenable.
h

(3) The bi-Fourier algebra A(Gy) ® A(Gz) is operator amenable if G; are
amenable.

ProposITION 7. Let Gy and Gy be compact groups. Then M is a w*-closed
maximal ideal of B*(Gy x Gp) if and only if there is (x,y) e Gy x Gy such
that

M = {{=nTal,n) : <n(x)Ta(y){,n> = 0}

Therfore the bi-Fourier-Stieltjes algebra B*(Gy x Gy) is semisimple.

Proor. Let y be a w*-continuous charactelf on B%(Gy x Gy). Then the re-
striction of y is a non-zero character on A(G1) ® A(G3) and so it is in the form
of y; ® y, where y; is a non-zero character of A(G;). Since the spectrum of the
fourier algebras A(G;) are just G; then there is a (x, y) € Gy x Gz such that y =
Ax) ® A(). O
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