SPHERES, SYMMETRIC PRODUCTS, AND QUOTIENT OF HYPERSPACES OF CONTINUA

By

Enrique Castañeda-Alvarado and Javier Sánchez-Martínez

Abstract. A continuum means a nonempty, compact and connected metric space. Given a continuum X, the symbols $F_n(X)$ and $C_1(X)$ denotes the hyperspace of all subsets of X with at most n points and the hyperspace of subcontinua of X, respectively. If n > 1, we consider the quotient spaces $SF_1^n(X) = F_n(X)/F_1(X)$ and $C_1(X)/F_1(X)$ obtained by shrinking $F_1(X)$ to a point in $F_n(X)$ and $C_1(X)$, respectively. In this paper, we study the continua X such that $SF_1^n(X)$ is homeomorphic to $C_1(X)/F_1(X)$ and we analyze when the spaces $F_n(X)$ and $SF_1^n(X)$ are homeomorphic to some sphere.

Introduction

A continuum means a nonempty, compact and connected metric space. The symbols N and R will denote the set of all natural numbers and real numbers, respectively. Also I will be the unit interval [0, 1]. Consider the following hyperspaces of a continuum X:

$$2^X = \{A \subset X : A \text{ is closed and nonempty}\}, \text{ for } n \in \mathbb{N}$$

$$C_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ components}\},$$

$$F_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\}.$$

These hyperspaces are considered with the Vietoris topology (see [16, Theorem 0.11, p. 9]). The hyperspace $F_n(X)$ is also known as the n^{th} -symmetric product of X. Symmetric products were introduced by K. Borsuk and S. Ulam in [2], they proved that, if n = 1, 2, 3, $F_n(I)$ is homeomorphic to I^n , for $n \ge 4$, $F_n(I)$ is not

²⁰⁰⁰ Mathematics Subject Classification: Primary 54B15, 54B20.

Key words and phrases: Continuum, hyperspace, quotient space, symmetric product, spheres. Received July 7, 2013.

homeomorphic to any subset of \mathbb{R}^n and $F_2(S^1)$ is homeomorphic to Möbius Strip, where S^1 is the 1-sphere. In [14], R. Molski proved that $F_2(I^2)$ is homeomorphic to the 4-cell and for $n \geq 3$ neither $F_n(I^2)$ nor $F_2(I^n)$ is homeomorphic to any subset of \mathbb{R}^{2n} . In [3], R. Bott corrected Borsuk's statement (see [1]) that $F_3(S^1)$ is homeomorphic to $S^1 \times S^2$ by showing that, actually $F_3(S^1)$ is homeomorphic to S^3 , where S^n denotes the n-sphere. In this direction, in this paper we prove the following theorem:

Theorem 4.3. Let X be a continuum. The following statements are true:

- (1) (Triviality) If n = 1, then $F_n(X)$ is homeomorphic to S^m if and only if X is homeomorphic to S^m ,
- (2) $F_n(X)$ is homeomorphic to S^m for some $m \le n$ if and only if either n = 3 or n = 1, and $X = S^1$.

Furthermore, in 1979 S. B. Nadler, Jr. introduced the *hyperspace suspension* of a continuum X as the quotient space $C_1(X)/F_1(X)$, [17], in that paper the author studied the fixed point property of this quotient spaces. For $m, n \in \mathbb{N}$ with m < n and a continuum X, we consider the quotient space $F_n(X)/F_m(X)$ that we will denote by $SF_m^n(X)$ obtained by shrinking $F_m(X)$ to a point in $F_n(X)$, with the quotient topology (see [6]). It is well known that $C_1(I)/F_1(I)$ and $SF_1^2(I)$ are 2-cells (see [13, In proof of Corollary 3.10, p. 129] and [6, Example 3.1]), $C_1(S^1)/F_1(S^1)$ is homeomorphic to S^2 (see [13, In proof of Corollary 3.10, p. 129]), but $SF_1^2(S^1)$ is the Real Projective Plane (see [6, Example 3.1]). In view of this, it is easily suspected that the spaces X for which $C_1(X)/F_1(X)$ is homeomorphic to $F_n(X)/F_1(X)$ are very limited. In fact, in this paper we show the following results:

THEOREM 3.4. Let X be a finite-dimensional and arcwise connected continuum. Then $C_1(X)/F_1(X)$ is homeomorphic to $SF_1^2(X)$ if and only if X is homeomorphic to [0,1].

THEOREM 3.6. If Y is an arcwise connected continuum and $n \ge 3$, then $C_1(Y)/F_1(Y)$ is not homeomorphic to $SF_1^n(X)$, for every finite dimensional continuum X.

Since $SF_1^2(S^1)$ is the Real Projective Plane (see [6, Example 3.1]), $SF_1^2(T_m)$ is homeomorphic to $F_2(T_m)$ (see [6, Example 3.3]) and $SF_1^n(Q)$ is homeomorphic to

Q for each $n \in \mathbb{N}$ (see [6, Example 3.1]), where T_m is a simple m-od and Q is the Hilbert Cube. As a consequence of the results obtained in this paper, we obtain the following

COROLLARY 4.8. If X is a continuum and $n \ge 2$, then $SF_1^n(X)$ is not homeomorphic to S^m , for each $2 \le m \le n$.

Finally, the following questions remain open.

QUESTION 3.7. Can we omit the arcwise connectedness hypothesis in Theorems 3.4 and 3.6?

QUESTION 4.9. Does there exist a continuum X and $n \ge 2$ such that $F_n(X)$ is homeomorphic to S^m for some $m \ge 4$?

QUESTION 4.10. Does there exist a continuum X and $m, n \ge 2$ such that $SF_m^n(X)$ is homeomorphic to S^m for some $m \in \mathbb{N}$?

2. Definitions and Preliminaries

Given a continuum Z and a subset A of Z, $\operatorname{cl}_Z(A)$, $\operatorname{int}_Z(A)$, $\operatorname{Bd}(A)$ denotes the closure, interior and boundary of A in Z, respectively. A *subcontinuum* of a space Z is a continuum contained in Z. The symbol |A| denotes the cardinality of A and $\operatorname{cone}(Z)$ denotes the quotient space $Z \times [0,1]/Z \times \{1\}$. Let $z \in Z$ and β be a cardinal number, we say that z has *order less than or equal to* β *in* Z, written $\operatorname{ord}(z,Z) \leq \beta$, provided that for each open subset $U \subset Z$ such that $z \in U$, there exists V an open subset of Z such that $z \in V \subset U$ and $|\operatorname{Bd}(V)| \leq \beta$.

An n-od ($n \in \mathbb{N}$ and $n \geq 3$) is a continuum X which contains a subcontinuum Y such that the complement of Y in X is the union of n nonempty mutually separated sets (if Y is a singleton and the components of $X \setminus Y$ are arcs, we say that X is a *simple n-od*). A simple 3-od, will be called a *simple triod*. An *arc* is any space homeomorphic to I. A *free arc* in a continuum X is an arc $\alpha \subset X$ such that $\inf_{X}(\alpha) \neq \emptyset$.

Given a finite collection, U_1, \ldots, U_m , of subsets of X, $\langle U_1, \ldots, U_m \rangle_n$, denote the following subset of $F_n(X)$

$$\left\{A \in F_n(X) : A \subset \bigcup_{i=1}^m U_i \text{ and } A \cap U_i \neq \emptyset \text{ for each } i = 1, \dots, m\right\}.$$

If each U_i is an open subset of X, it is known that the family of all subsets of the form $\langle U_1, \ldots, U_m \rangle_n$, is a basis for the topology of $F_n(X)$ called the *Vietoris topology* (see [16, Theorem 0.11, p. 9]).

Given a continuum X, $\rho_{m,n}^X: F_n(X) \to SF_m^n(X)$ denotes the natural quotient function. Also, let $F_m^n(X)$ denotes the point $\rho_{m,n}^X(F_m(X))$.

REMARK 2.1. Using an appropriate restriction of $\rho_{m,n}^X$, it is clear that $SF_m^n(X)\setminus \{F_m^n(X)\}$ is homeomorphic to $F_n(X)\setminus F_m(X)$.

In this paper, *dimension* means inductive dimension as defined in [16, (0.44), p. 21]. The symbol dim will be used to denote dimension. If $\dim(X) \in \mathbb{N} \cup \{-1,0\}$ we will writte $\dim(X) < \infty$ and $\dim(X) = \infty$ in other case. By [9, p. 20], for every continuum X, $\dim(X) \ge 1$.

The following result is a particular case of [9, Corollary 1, p. 32].

THEOREM 2.2. Let X be a continuum and $n \in \mathbb{N} \cup \{0\}$. If $X = Y \cup Z$, Y is closed in X, $\dim(Y) \leq n$ and $\dim(Z) \leq n$, then $\dim(X) \leq n$.

COROLLARY 2.3. If X is a continuum, $n \in \mathbb{N}$, Y is a subcontinuum of X, $\dim(X) = n$ and $\dim(Y) < n$, then $\dim(X \setminus Y) = n$.

PROOF. Is clear that $\dim(X \setminus Y) \le n$. If $\dim(X \setminus Y) < n$, then $\dim(X \setminus Y) \le n - 1$. By Theorem 2.2, $\dim(X) \le n - 1$, this is a contradiction.

3. $SF_1^n(X)$ Homeomorphic to $C_1(X)/F_1(X)$

PROPOSITION 3.1. If X is a finite-dimensional continuum, then $F_n(X)$ and $SF_m^n(X)$ are finite-dimensional continua.

PROOF. By [8, proof of Lemma 3.1, p. 253], $\dim(F_n(X)) \leq n \cdot \dim(X)$, thus $F_n(X)$ is a finite-dimensional continuum. On the other hand, since $\dim(F_n(X) \setminus F_m(X)) \leq \dim(F_n(X))$ and $F_n(X) \setminus F_m(X)$ is homeomorphic to $SF_m^n(X) \setminus \{F_m^n(X)\}$, $\dim(SF_m^n(X) \setminus \{F_m^n(X)\}) \leq n \cdot \dim(X)$. Thus, by Corollary 2.3, $\dim(SF_m^n(X))$ is finite.

PROPOSITION 3.2. Let X be a 1-dimensional continuum and $n \ge 2$, then $\dim(F_n(X)) = \dim(SF_1^n(X))$ and $\dim(C_1(X)) = \dim(C_1(X)/F_1(X))$.

PROOF. Notice that $\dim(F_1(X)) = 1$. By Corollary 2.3, $\dim(F_n(X)) = \dim(F_n(X) \setminus F_1(X))$. We conclude

$$\dim(SF_1^n(X)\setminus \{F_1^n(X)\}) = \dim(F_n(X)).$$

By Theorem 2.2, $\dim(SF_1^n(X)) = \dim(F_n(X))$. In a similar method we can show that $\dim(C_1(X)) = \dim(C_1(X)/F_1(X))$.

LEMMA 3.3. If an arcwise connected continuum X has hyperspace $C_1(X)$ of dimension at most 2, then X is homeomorphic to either S^1 or I.

PROOF. By [10, Theorem 70.1, p. 337] X does not contain simple triods. Therefore, $ord(x, X) \le 2$ for every $x \in X$ because X is arcwise connected. Thus, by [18, Proposition 9.5, p. 142], X is an arc or X is homeomorphic to S^1 .

THEOREM 3.4. Let X be a finite-dimensional and arcwise connected continuum. Then $C_1(X)/F_1(X)$ is homeomorphic to $SF_1^2(X)$ if and only if X is homeomorphic to [0,1].

PROOF. If X is an arc, both $C_1(X)$ and $SF_1^2(X)$ are 2-cells. Conversely, suppose that $C_1(X)/F_1(X)$ is homeomorphic to $SF_1^2(X)$. By Proposition 3.1, $\dim(SF_1^2(X)) < \infty$, thus $\dim(C_1(X)/F_1(X)) < \infty$. Hence, $\dim(C_1(X)) < \infty$. By [11, Theorem 2.1], we have $\dim(X) = 1$. So, $\dim(SF_1^2(X)) \le 2$ and $\dim(C_1(X)) \le 2$. By Lemma 3.3 X is an arc or X is homeomorphic to S^1 . But, $C_1(S^1)/F_1(S^1)$ is the 2-sphere and $SF_1^2(S^1)$ is homeomorphic to the real projective plane. We conclude that X most be an arc.

LEMMA 3.5. If X is a continuum and $n \ge 3$, then $F_n(X)$ and $SF_1^n(X)$ does not contains 2-dimesional subsets with nonempty interior.

PROOF. Suppose that there exist a 2-dimensional subset \mathscr{D} of $F_n(X)$ with nonempty interior. Let $\mathscr{U} = \langle U_1, \dots, U_n \rangle_n$ be an open subset of $F_n(X)$ such that $\mathscr{U} \subset \mathscr{D}$. By the denseness of $\{A \in F_n(X) : |A| = n\}$ in $F_n(X)$ (see [7, In the proof of Lemma 3.1]) there is $A \in (F_n(X) \setminus F_{n-1}(X)) \cap \mathscr{U}$. Since |A| = n we can assume that $U_i \cap U_j = \mathscr{D}$ and $A \cap U_i \neq \mathscr{D}$ for every $i, j \in \{1, 2, \dots, n\}$. Under this conditions we can take C_1, C_2, \dots, C_n nondegenerate subcontinua of X such that $C_i \subset U_i$ for each i. Notice that $\langle C_1, \dots, C_n \rangle_n$ is homeomorphic to $C_1 \times \dots \times C_n$.

So, \mathscr{U} contains a homeomorphic subset to $C_1 \times \cdots \times C_n$. Hence $\dim(\mathscr{U}) \geq 3$. This is a contradiction.

THEOREM 3.6. If Y is an arcwise connected continuum and $n \ge 3$, then $C_1(Y)/F_1(Y)$ is not homeomorphic to $SF_1^n(X)$, for every finite dimensional continuum X.

PROOF. Suppose that there is a finite dimensional continuum X, such that $C_1(Y)/F_1(Y)$ is homeomorphic to $SF_1^n(X)$. By Proposition 3.1, $\dim(C_1(Y)/F_1(Y)) < \infty$. Thus, $\dim(C_1(Y)) < \infty$. By [11, Theorem 2.1], $\dim(Y) = 1$. Let $m = \dim(C_1(Y))$. By [10, Theorem 70.1, p. 337] and using arcwise connectedness of Y, this continuum does not contain simple (m+1)-ods. By [12, Theorem 11, p. 179], Y must contain a free arc, which implies that $C_1(Y)/F_1(Y)$ contains a 2-dimensional subset with nonempty interior, but this contradicts Lemma 3.5. So, the theorem is true.

QUESTION 3.7. Can we omit the arcwise connectedness hypothesis in Theorems 3.4 and 3.6?

4. Continua X such that $F_n(X)$ and/or $SF_1^n(X)$ are n-spheres

THEOREM 4.1. If X is a continuum, then for each $n \ge 2$, neither $F_n(X)$ nor $SF_1^n(X)$ is homeomorphic to S^2 .

PROOF. Let X be a continuum such that $F_n(X)$ is homeomorphic to S^2 for some $n \ge 2$. Then, $F_n(X)$ is locally connected. By [8, Lemma 2.2, p. 252] X is locally connected. Since, $\dim(S^2) = 2$ then $\dim(X) = 1$ and n = 2. By [6, Lemma 5.9], X cannot contain simple m-ods, for each $m \ge 3$. Therefore, by [18, Proposition 9.5, p. 142], X must be an arc or a simple closed curve. But, $F_2(I)$ is a 2-cell and $F_2(S^1)$ is a Möbius Strip, which contradicts the assumption $F_n(X)$ homeomorphic to S^2 .

Now, to the case $SF_1^n(X)$. Let X be a continuum and suppose that $SF_1^n(X)$ is homeomorphic to S^2 . Thus, X is locally connected. Since $C_1(S^1)/F_1(S^1)$ is homoemorphic to S^2 (see [13, In proof of Corollary 3.10, p. 129]), by Theorem 3.6, we have n=2. It is clear that $\dim(X)$ must be equal to 1. By [6, Example 3.3] and [6, Lemma 5.9], X cannot contain simple m-ods, for each $m \ge 3$. So, by [18, Proposition 9.5, p. 142], X is an arc or a simple closed curve. By [6, Example 3.1], in both cases $SF_1^2(X)$ is not homeomorphic to S^2 .

THEOREM 4.2. Let X be a continuum. If $n \ge 2$ and $n \ne 3$, then neither $F_n(X)$ nor $SF_1^n(X)$ is not homeomorphic to S^m , for each $2 \le m \le n$.

PROOF. The conclusion for n = 2 follows from Theorem 4.1.

Let n > 3 and suppose that $F_n(X)$ (or $SF_1^n(X)$) is homeomorphic to S^m for some $2 \le m \le n$. Then, $F_n(X)$ is locally connected. By [8, Lemma 2.2, p. 252] X is locally connected. Thus, X is arcwise connected. Let α be an arc in X and $x, y \in \alpha$, $x \ne y$. So, there is a system of neighborhoods γ of $\{x, y\}$ in $F_n(X)$ (of $\rho_{n,1}^X(\{x,y\})$ in $SF_1^n(X)$, respectively) such that for every $V \in \gamma$, V cannot be embedded in \mathbb{R}^n (see [2]). But, each point in S^m have a system of neighborhoods, each one of which is embedded in \mathbb{R}^n , this is a contradiction.

THEOREM 4.3. Let X be a continuum. The following statements are true:

- (1) (Triviality) If n = 1, then $F_n(X)$ is homeomorphic to S^m if and only if X is homeomorphic to S^m ,
- (2) $F_n(X)$ is homeomorphic to S^m for some $m \le n$ if and only if either n = 3 or n = 1, and $X = S^1$.

PROOF. (1) is true, because $F_1(X)$ is homeomorphic to X. The sufficiency of (2) is true by [3] and (1).

For the necessity of (2), suppose that $F_n(X)$ is homeomorphic to S^m for some $m \le n$. By Theorem 4.2, n = 1 or n = 3. If n = 1, since $F_1(X)$ is homeomorphic to X, then X is homeomorphic to S^1 . If n = 3, by [5, Corollary 5.9], X is homeomorphic to S^1 .

Since each continuum Z is a compact, metric space, cone(Z) is homeomorphic to the so-called geometric cone over Z (see [18, Exercise 3.28, p. 47]). So, the following remark is easy to be seen.

REMARK 4.4. If Z is a continuum and $n \ge 2$, cone(Z) can be embedded in \mathbf{R}^n if and only if Z can be embedded in \mathbf{R}^{n-1} .

LEMMA 4.5. If T_3 is a simple triod, then $F_3(T_3)$ and $SF_1^3(T_3)$ can not be embedded in \mathbb{R}^3 .

PROOF. Let v_1 , v_2 and v_3 the end points of T_3 . Let

$$Z = \{A \in F_3(T_3) : A \cap \{v_1, v_2, v_3\} \neq \emptyset\}.$$

Since cone(Z) is homeomorphic to $F_3(T_3)$ (see [4]). In order to prove that $F_3(T_3)$ can not be embedded in \mathbf{R}^3 we only need to show Z can not be embedded in \mathbf{R}^2 . Let v be the vertex of T_3 . Is easy to construct a system of neighborhoods γ of the point $\{v_1, v\}$ such that for each $V \in \gamma$, V contain a homeomorphic copy of $T_3 \times I$, but by [4, Lemma 3.1, p. 58], each one of them can not be embedded in \mathbf{R}^2 . In a similar method, we can show that $SF_1^3(T_3)$ can not be embedded in \mathbf{R}^3 .

LEMMA 4.6. If X is homeomorphic to I or S^1 , then $F_3(X)$ is not homeomorphic to $SF_1^3(X)$.

PROOF. First suppose that X is homeomorphic to I. By [2, Theorem 6, p. 880], there exists a homeomorphism $k: F_3(X) \to D$ where

$$D = \{(x, y, z) \in \mathbf{R}^3 : x^2 + y^2 + z^2 \le 1\}$$

and $k(F_1(X))$ is the linear segment that joint the points (0,0,1) and (0,0,-1). So, $SF_1^3(X)$ is not homeomorphic to I^3 , and then $F_3(X)$ and $SF_1^3(X)$ are not homeomorphics.

Now, if X homeomorphic to S^1 , suppose that there is a homeomorphism $h: SF_1^3(X) \to F_3(X)$. Let $p = h(F_1^3(X))$. By Remark 2.1, $S^3 \setminus \{p\}$ is homeomorphic to $F_3(X) \setminus F_1(X)$. On the other hand, $S^3 \setminus \{p\}$ is homeomorphic to \mathbf{R}^3 . Moreover by [15, Theorem 2] there is a homeomorphism between $F_3(X)$ and S^3 such that the image of $F_1(X)$ is a trefoil knot T in S^3 . Thus, \mathbf{R}^3 and $S^3 \setminus T$ are homeomorphic. But, its first fundamental groups $\pi_1(\mathbf{R}^3)$ and $\pi_1(S^3 \setminus T)$ are not isomorphic, which is a contradiction.

Theorem 4.7. If X is a continuum, then $SF_1^3(X)$ is not homeomorphic to S^3 .

PROOF. Suppose that X is a continuum and $SF_1^3(X)$ is homeomorphic to S^3 . So, X is locally connected. By Lemma 4.5, X cannot contain simple triods, because each point in S^3 has a system of neighborhoods, γ , such that for each $V \in \gamma$, V can be embedded in \mathbb{R}^3 . So, X must be an arc or a simple closed curve. This contradicts Lemma 4.6.

By Theorems 4.2 and 4.7 we obtain the following corollary.

COROLLARY 4.8. If X is a continuum and $n \ge 2$, then $SF_1^n(X)$ is not homeomorphic to S^m , for each $2 \le m \le n$.

To finish this paper, we pose the following questions.

QUESTION 4.9. Does there exist a continuum X and $n \ge 2$ such that $F_n(X)$ is homeomorphic to S^m for some $m \ge 4$?

QUESTION 4.10. Does there exist a continuum X and $m, n \ge 2$ such that $SF_m^n(X)$ is homeomorphic to S^m for some $m \in \mathbb{N}$?

5. Acknowledgment

The authors thank the referee's suggestion, which helped to substantially improve the writing of this paper.

References

- [1] Borsuk, K., On the third symmetric potency on the circumference, Fund. Math., **36** (1949), 235–244.
- [2] Borsuk, K. and Ulam, S., On symmetric products of topological spaces, Bull. Amer. Math. Soc., 37 (1931), 875–882.
- [3] Bott, R., On the third symmetric potency of S_1 , Fund. Math., 39 (1952), 364–368.
- [4] Castañeda, E., Symmetric products as cones and products, Topology Proc., 28 (2004), 55-67.
- [5] Castañeda-Alvarado, E. and Illanes, A., Finite graphs have unique symmetric products, To-pology Appl., 153 (2006), 1434–1450.
- [6] Castañeda-Alvarado, E. and Sánchez-Martínez, J., On the unicoherence of $F_n(X)$ and $SF_m^n(X)$ of continua, Topology Proc., **42** (2013), 309–326.
- [7] Castañeda-Alvarado, E., Orozco-Zitli, F. and Sánchez-Martínez, J., Induced mappings between quotient spaces of symmetric products of continua, Topology Appl., 163 (2014), 66–76.
- [8] Curtis, D. and Nhu, N. T., Hyperspaces of finite subsets which are homeomorphic to κ₀-dimensional linear metric spaces, Topology Appl., 19 (1985), 251–260.
- [9] Hurewicz, W. and Wallman, H., Dimension Theory, Princeton, 1948.
- [10] Illanes, A. and Nadler, S. B., Jr., Hyperspaces, Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, New York: Marcel Dekker, Inc., 1999.
- [11] Levin, M. and Sternfelf, Y., The space of subcontinua of a 2-dimensional continuum is infinitely dimensional, Proc. Amer. Math. Soc., 125 (1997), 2771–2775.
- [12] Macías, S., On symmetric products of continua, Topology Appl., 92 (1999), 173-182.
- [13] Macías, S., On the n-fold hyperspace suspension of continua, Topology Appl., 138 (2004), 125–138.
- [14] Molski, R., On symmetric products, Fund. Math., 44 (1957), 165–170.
- [15] Mostovoy, J., Lattices in C and finite subsets of a circle, Am. Math. Mon. 111 (2004), 357–360.
- [16] Nadler, S. B., Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, New York: Marcel Dekker, Inc., 1978.
- [17] Nadler, S. B., Jr., A fixed point theorem for hyperspace suspension, Houston J. Math., 5 (1979), 125–132.
- [18] Nadler, S. B., Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158. New York: Marcel Dekker, Inc., 1992.

84 Enrique Castañeda-Alvarado and Javier Sánchez-Martínez

Universidad Autónoma del Estado de México Facultad de Ciencias Instituto Literario No. 100, Col. Centro, C.P. 50000, Toluca Estado de México, México

E-mail: eca@uaemex.mx

E-mail: jsanchezm@uaemex.mx