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SPHERES, SYMMETRIC PRODUCTS, AND QUOTIENT
OF HYPERSPACES OF CONTINUA

By

Enrique CASTANEDA-ALVARADO and Javier SANCHEZ-MARTINEZ

Abstract. A continuum means a nonempty, compact and connected
metric space. Given a continuum X, the symbols F,(X) and C;(X)
denotes the hyperspace of all subsets of X with at most » points and
the hyperspace of subcontinua of X, respectively. If n > 1, we con-
sider the quotient spaces SF|'(X) = F,(X)/Fi(X) and Ci(X)/Fi(X)
obtained by shrinking F;(X) to a point in F,(X) and C;(X), re-
spectively. In this paper, we study the continua X such that SF/'(X)
is homeomorphic to C;(X)/F;(X) and we analyze when the spaces
F,(X) and SF/'(X) are homeomorphic to some sphere.

1. Introduction

A continuum means a nonempty, compact and connected metric space. The
symbols N and R will denote the set of all natural numbers and real numbers,
respectively. Also I will be the unit interval [0,1]. Consider the following hyper-
spaces of a continuum X:

2¥ ={4 < X:4 is closed and nonempty}, for neN
C,(X)={A4€2: 4 has at most n components},
F,(X)={A4€2%: 4 has at most n points}.

These hyperspaces are considered with the Vietoris topology (see [16, Theorem
0.11, p. 9]). The hyperspace F,(X) is also known as the n"-symmetric product of
X. Symmetric products were introduced by K. Borsuk and S. Ulam in [2], they
proved that, if n =1,2,3, F,(I) is homeomorphic to I", for n >4, F,(I) is not
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homeomorphic to any subset of R" and F»(S!) is homeomorphic to Mdbius
Strip, where S' is the 1-sphere. In [14], R. Molski proved that F>(/?) is homeo-
morphic to the 4-cell and for n > 3 neither F,(I*) nor F>(I") is homeomorphic to
any subset of R*. In [3], R. Bott corrected Borsuk’s statement (see [1]) that
F3(S") is homeomorphic to S!' x §? by showing that, actually F3(S') is homeo-
morphic to S3, where S” denotes the n-sphere. In this direction, in this paper we
prove the following theorem:

THEOREM 4.3. Let X be a continuum. The following statements are true:

(1) (Triviality) If n = 1, then F,(X) is homeomorphic to S™ if and only if X is
homeomorphic to S™,

(2) F,(X) is homeomorphic to S™ for some m < n if and only if either n =73
orn=1, and X = S'.

Furthermore, in 1979 S. B. Nadler, Jr. introduced the hyperspace suspension
of a continuum X as the quotient space C;(X)/Fi(X), [17], in that paper the
author studied the fixed point property of this quotient spaces. For m,ne N
with m < n and a continuum X, we consider the quotient space F,(X)/F,(X)
that we will denote by SF)'(X) obtained by shrinking F,,(X) to a point in F,(X),
with the quotient topology (see [6]). It is well known that Cy(I)/F;(I) and SFZ([)
are 2-cells (see [13, In proof of Corollary 3.10, p. 129] and [6, Example 3.1]),
Ci(S")/F,(S") is homeomorphic to S (see [13, In proof of Corollary 3.10,
p. 129]), but SF2(S!) is the Real Projective Plane (see [6, Example 3.1]). In view
of this, it is easily suspected that the spaces X for which C;(X)/F(X) is home-
omorphic to F,(X)/Fi(X) are very limited. In fact, in this paper we show the
following results:

THEOREM 3.4. Let X be a finite-dimensional and arcwise connected con-
tinuum. Then Ci(X)/Fi(X) is homeomorphic to SF}(X) if and only if X is
homeomorphic to [0, 1].

THEOREM 3.6. If Y is an arcwise connected continuum and n >3, then
C\(Y)/F\(Y) is not homeomorphic to SF|'(X), for every finite dimensional con-
tinuum X.

Since SFZ(S!) is the Real Projective Plane (see [6, Example 3.1]), SFZ(T,,) is
homeomorphic to F>(T,,) (see [6, Example 3.3]) and SF'(Q) is homeomorphic to
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Q for each n e N (see [6, Example 3.1]), where T}, is a simple m-od and Q is the
Hilbert Cube. As a consequence of the results obtained in this paper, we obtain
the following

CoROLLARY 4.8. If X is a continuum and n > 2, then SF{'(X) is not homeo-
morphic to S™, for each 2 <m < n.

Finally, the following questions remain open.

QUESTION 3.7. Can we omit the arcwise connectedness hypothesis in Theorems
3.4 and 3.6?

QUESTION 4.9.  Does there exist a continuum X and n > 2 such that F,(X) is
homeomorphic to S™ for some m > 47

QUESTION 4.10. Does there exist a continuum X and m,n > 2 such that
SF™(X) is homeomorphic to S™ for some m e N?

m

2. Definitions and Preliminaries

Given a continuum Z and a subset 4 of Z, clz(A4), intz(A4), Bd(A4) denotes
the closure, interior and boundary of A4 in Z, respectively. A subcontinuum of a
space Z is a continuum contained in Z. The symbol |4| denotes the cardinality of
A and cone(Z) denotes the quotient space Z x [0,1]/Z x {1}. Let z€ Z and f be
a cardinal number, we say that z has order less than or equal to B in Z, written
ord(z,Z) < f, provided that for each open subset U = Z such that z € U, there
exists ¥ an open subset of Z such that ze VV = U and [Bd(V)| < .

An n-od (n e N and n > 3) is a continuum X which contains a subcontinuum
Y such that the complement of Y in X is the union of n nonempty mutually
separated sets (if Y is a singleton and the components of X'\ Y are arcs, we say
that X is a simple n-od). A simple 3-od, will be called a simple triod. An arc is
any space homeomorphic to 1. A free arc in a continuum X is an arc o < X such
that inty (o) # .

Given a finite collection, Uy, ..., U,, of subsets of X, (Uy,..., U,),, denote
the following subset of F,(X)

{Aan(X):Ac ) Ui and ANU; # & for each i:l,...,m}.
i=1
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If each U; is an open subset of X, it is known that the family of all subsets of
the form (Uy,..., U,>,, is a basis for the topology of F,(X) called the Vietoris
topology (see [16, Theorem 0.11, p. 9]).

Given a continuum X, p  : F,(X) — SF}(X) denotes the natural quotient

m

function. Also, let F!(X) denotes the point p,)n(n(Fm(X))

RemaRk 2.1. Using an appropriate restriction of pJ . it is clear that
SFNX)\{F!(X)} is homeomorphic to F,(X)\F,(X).

In this paper, dimension means inductive dimension as defined in [16, (0.44),
p. 21]. The symbol dim will be used to denote dimension. If dim(X) e NU {—1,0}
we will writte dim(X) < oo and dim(X) = oo in other case. By [9, p. 20], for
every continuum X, dim(X) > 1.

The following result is a particular case of [9, Corollary 1, p. 32].

THEOREM 2.2. Let X be a continuum and ne NU{0}. If X =YUZ, Y is
closed in X, dim(Y) <n and dim(Z) < n, then dim(X) <n.

COROLLARY 2.3. If X is a continuum, ne N, Y is a subcontinuum of X,
dim(X) =n and dim(Y) < n, then dim(X\Y) = n.

Proor. Is clear that dim(X\Y) <n. If dim(X\Y) <n, then dim(X\Y) <
n—1. By Theorem 2.2, dim(X) <n — 1, this is a contradiction. Ol

3. SF/'(X) Homeomorphic to C;(X)/F(X)

ProrosiTioN 3.1. If X is a finite-dimensional continuum, then F,(X) and
SE'(X) are finite-dimensional continua.

Proor. By [8, proof of Lemma 3.1, p. 253], dim(F,(X)) <n-dim(X),
thus F,(X) is a finite-dimensional continuum. On the other hand, since
dim(F,(X)\F,(X)) <dim(F,(X)) and F,(X)\F,(X) is homeomorphic to
SENX)O\{FX(X)}, dim(SFL(X)\{F:(X)}) < n-dim(X). Thus, by Corollary 2.3,
dim(SF!(X)) is finite. O

PropoSITION 3.2. Let X be a 1-dimensional continuum and n > 2, then
dim(F, (X)) = dim(SF/"(X)) and dim(C,(X)) = dim(C:(X)/Fi(X)).
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Proor. Notice that dim(F;(X))=1. By Corollary 2.3, dim(F,(X))=
dim(F,(X)\F1(X)). We conclude

dim(SF{ (X)\{F{(X)}) = dim(F,(X)).

By Theorem 2.2, dim(SF/'(X)) = dim(F,(X)). In a similar method we can show
that dim(C;(X)) = dim(C,(X)/Fi(X)). O

LemMa 3.3, If an arcwise connected continuum X has hyperspace Ci(X) of
dimension at most 2, then X is homeomorphic to either S' or I.

Proor. By [10, Theorem 70.1, p. 337] X does not contain simple triods.
Therefore, ord(x,X) <2 for every x € X because X is arcwise connected. Thus,
by [18, Proposition 9.5, p. 142], X is an arc or X is homeomorphic to S'.

U

THEOREM 3.4. Let X be a finite-dimensional and arcwise connected con-
tinuum. Then Cy(X)/Fi(X) is homeomorphic to SF}(X) if and only if X is
homeomorphic to [0, 1].

Proor. If X is an arc, both Ci(X) and SF?(X) are 2-cells. Conversely,
suppose that C;(X)/Fi(X) is homeomorphic to SF?(X). By Proposition 3.1,
dim(SFZ(X)) < oo, thus dim(Cy(X)/Fi(X)) < co. Hence, dim(Ci(X)) < c0. By
[11, Theorem 2.1], we have dim(X) = 1. So, dim(SF3(X)) < 2 and dim(C; (X)) <
2. By Lemma 3.3 X is an arc or X is homeomorphic to S!. But, C;(S")/F(S")
is the 2-sphere and SF?(S!) is homeomorphic to the real projective plane. We
conclude that X most be an arc. |

Lemma 3.5, If X is a continuum and n > 3, then F,(X) and SF|'(X) does not
contains 2-dimesional subsets with nonempty interior.

PrOOF. Suppose that there exist a 2-dimensional subset & of F,(X) with
nonempty interior. Let % = (Uj,..., U,), be an open subset of F,(X) such that
U < 9. By the denseness of {4 € F,(X) : |4| = n} in F,(X) (see [7, In the proof
of Lemma 3.1]) there is A € (F,(X)\F,—1(X))N4%. Since |4| =n we can assume
that U;NU; = J and ANU; # & for every i, je {1,2,...,n}. Under this con-
ditions we can take C),C,,...,C, nondegenerate subcontinua of X such that
C; < U; for each i. Notice that {(Cy,..., C,>, is homeomorphic to C; X --- X C,.
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So, % contains a homeomorphic subset to C; X --- x C,. Hence dim(%) > 3. This
is a contradiction. O

THEOREM 3.6. If Y is an arcwise connected continuum and n >3, then
C\(Y)/F\(Y) is not homeomorphic to SF['(X), for every finite dimensional
continuum X.

PrOOF. Suppose that there is a finite dimensional continuum X, such
that C(Y)/Fi;(Y) is homeomorphic to SF/'(X). By Proposition 3.1,
dim(Cy(Y)/F,(Y)) < oo. Thus, dim(Ci(Y)) <oo. By [l11, Theorem 2.1],
dim(Y) =1. Let m =dim(C,(Y)). By [10, Theorem 70.1, p. 337] and using
arcwise connectedness of Y, this continuum does not contain simple (m + 1)-ods.
By [12, Theorem 11, p. 179], Y must contain a free arc, which implies that
C1(Y)/F,(Y) contains a 2-dimensional subset with nonempty interior, but this
contradicts Lemma 3.5. So, the theorem is true. O

QUESTION 3.7.  Can we omit the arcwise connectedness hypothesis in Theorems
3.4 and 3.6?

4. Continua X such that F,(X) andfor SF/'(X) are n-spheres

THEOREM 4.1. If X is a continuum, then for each n > 2, neither F,(X) nor
SF(X) is homeomorphic to S*.

PrOOF. Let X be a continuum such that F,(X) is homeomorphic to S? for
some n > 2. Then, F,(X) is locally connected. By [8, Lemma 2.2, p. 252] X is
locally connected. Since, dim(S?) = 2 then dim(X) = 1 and n = 2. By [6, Lemma
5.9], X cannot contain simple m-ods, for each m > 3. Therefore, by [18, Proposi-
tion 9.5, p. 142], X must be an arc or a simple closed curve. But, F>(I) is a 2-cell
and F>(S') is a Mobius Strip, which contradicts the assumption F,(X) home-
omorphic to S2.

Now, to the case SF/'(X). Let X be a continuum and suppose that SF{*(X)
is homeomorphic to S2. Thus, X is locally connected. Since C;(S')/Fi(S!) is
homoemorphic to S? (see [13, In proof of Corollary 3.10, p. 129]), by Theorem
3.6, we have n = 2. It is clear that dim(X) must be equal to 1. By [6, Example
3.3] and [6, Lemma 5.9], X cannot contain simple m-ods, for each m > 3. So, by
[18, Proposition 9.5, p. 142], X is an arc or a simple closed curve. By [6, Example
3.1], in both cases SFZ(X) is not homeomorphic to S2. ]
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THEOREM 4.2. Let X be a continuum. If n > 2 and n # 3, then neither F,(X)
nor SF['(X) is not homeomorphic to S™, for each 2 <m < n.

Proor. The conclusion for n =2 follows from Theorem 4.1.

Let n > 3 and suppose that F,(X) (or SF/'(X)) is homeomorphic to S for
some 2 < m < n. Then, F,(X) is locally connected. By [8, Lemma 2.2, p. 252] X
is locally connected. Thus, X is arcwise connected. Let o« be an arc in X and
x,y€ea, x# y. So, there is a system of neighborhoods y of {x,y} in F,(X)
(of p¥\({x, y}) in SF'(X), respectively) such that for every ¥ €y, ¥ cannot be
embedded in R” (see [2]). But, each point in S” have a system of neighborhoods,
each one of which is embedded in R”, this is a contradiction. |

THEOREM 4.3. Let X be a continuum. The following statements are true:

(1) (Triviality) If n = 1, then F,(X) is homeomorphic to S™ if and only if X is
homeomorphic to S™,

(2) Fu(X) is homeomorphic to S™ for some m < n if and only if either n =3
orn=1, and X = S'.

Proor. (1) is true, because F;(X) is homeomorphic to X. The sufficiency of
(2) is true by [3] and (1).

For the necessity of (2), suppose that F,(X) is homeomorphic to S™ for
some m < n. By Theorem 4.2, n=1 or n=23. If n=1, since F;(X) is home-
omorphic to X, then X is homeomorphic to S!. If n =3, by [5, Corollary 5.9],
X is homeomorphic to S!. |

Since each continuum Z is a compact, metric space, cone(Z) is homeo-
morphic to the so-called geometric cone over Z (see [18, Exercise 3.28, p. 47]).
So, the following remark is easy to be seen.

REMARK 4.4. If Z is a continuum and n > 2, cone(Z) can be embedded in
R” if and only if Z can be embedded in R""!.

LemMA 4.5. If Ts is a simple triod, then F5(Ts) and SF{(T;) can not be
embedded in R>.

ProOOF. Let vy, v; and v3 the end points of 73. Let

Z = {A €F3(T3) IAﬂ{Ul,Uz,U3} # @}
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Since cone(Z) is homeomorphic to F3(73) (see [4]). In order to prove that F3(73)
can not be embedded in R*® we only need to show Z can not be embedded in R>.
Let v be the vertex of 73. Is easy to construct a system of neighborhoods y of
the point {v;,v} such that for each ¥ €y, V' contain a homeomorphic copy of
T5 x I, but by [4, Lemma 3.1, p. 58], each one of them can not be embedded in
R2. In a similar method, we can show that SF?(7T3) can not be embedded in R®.

O

LEMMA 4.6. If X is homeomorphic to I or S, then F3(X) is not homeomorhic
to SF(X).

Proor. First suppose that X is homeomorphic to /. By [2, Theorem 6,
p. 880], there exists a homeomorphism k : F3(X) — D where

D={(x,y,2)eR*: X+ 2+ 2 <1}

and k(Fi(X)) is the linear segment that joint the points (0,0,1) and (0,0,—1).
So, SF}(X) is not homeomorphic to I°, and then F3(X) and SF?(X) are not
homeomorphics.

Now, if X homeomorphic to S!, suppose that there is a homeomorphism
h:SF}(X) — F3(X). Let p=h(F$(X)). By Remark 2.1, S*\{p} is homeo-
morphic to F3(X)\F;(X). On the other hand, S3\{p} is homeomorphic to R>.
Moreover by [15, Theorem 2] there is a homeomorphism between F3(X) and S*
such that the image of F|(X) is a trefoil knot T in S3. Thus, R® and S3\T are
homeomorphic. But, its first fundamental groups 7;(R®) and 7;(S*\7) are not
isomorphic, which is a contradiction. ]

THEOREM 4.7. If X is a continuum, then SF}(X) is not homeomorphic to S>.

PrOOF. Suppose that X is a continuum and SF?(X) is homeomorphic to
S3. So, X is locally connected. By Lemma 4.5, X cannot contain simple triods,
because each point in S* has a system of neighborhoods, 7, such that for each
V ey, V can be embedded in R3. So, X must be an arc or a simple closed curve.
This contradicts Lemma 4.6. O

By Theorems 4.2 and 4.7 we obtain the following corollary.

CorOLLARY 4.8. If X is a continuum and n>2, then SF'(X) is not
homeomorphic to S™, for each 2 <m < n.
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To finish this paper, we pose the following questions.

QUESTION 4.9. Does there exist a continuum X and n > 2 such that F,(X) is

homeomorphic to S™ for some m > 4?7

QUESTION 4.10. Does there exist a continuum X and m,n > 2 such that

SE!(X) is homeomorphic to S™ for some m e N?
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