TSUKUBA J. MATH.
Vol. 37 No. 1 (2013), 153-177

THE NUMBER OF ARROWS IN THE QUIVER
OF TILTING MODULES OVER A PATH ALGEBRA
OF DYNKIN TYPE

By

Ryoichi KASE

Abstract. Happel and Unger defined a partial order on the set of
basic tilting modules. The tilting quiver is the Hasse diagram of the
poset of basic tilting modules. We determine the number of arrows in
the tilting quiver over a path algebra of Dynkin type.
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Introduction

In this paper we use the following notations. Let 4 be a finite dimensional
algebra over an algebraically closed field k, and let mod-4 be the category of
finite dimensional right 4-modules. For M € mod-A we denote by pdy M the
projective dimension of M, and by add M the full subcategory of direct sums of
direct summands of M. Let Q = (Qp, Q1) be a finite connected quiver without
loops and cycles, and Qy (resp. Qi) be the set of vertices (resp. arrows) of Q (we
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use this notation for an arbitrary quiver). We denote by kQ the path algebra of Q
over k, and by rep Q the category of finite dimensional representations of the
quiver Q which is category equivalent to mod-kQ. We note that for any two
paths,
Wixg xS Bx, w’:yoﬁyl &wu&ys,
o o B B .
e = dX0 e DX =y S Sy i X = o,
{O if x, # yo,

in kQ. For M e rep Q, denote by M, the vector space of M associated to a vertex
a, and denote by M, _,;, the linear map M, — M, of M. For a vertex a of Q, let
a,Q be the quiver obtained from Q by reversing all arrows starting at a or ending
at a. A module T € mod-4 is called a tilting module provided the following three
conditions are satisfied:

(@) pd T < o0,

(b) Ext/(T,T) =0 for all i >0,

(c) there exists an exact sequence

0-A—-Ty—T— - —T,—0 (TieaddT)

in mod-4. In the hereditary case the tilting condition above is equivalent to the
following:

(a) Ext!(T,T) =0,

(b) the number of indecomposable direct summands of 7 (up to isomor-
phism) is equal to the number of simple modules.

In Section 1, following [8], [9], [10], [15], we define a partial order on the set
Tilt(A) of all basic tilting modules (up to isomorphism) over 4 and define the
quiver of tilting modules ' (A4). In Section 2, we explain results from [11]. In
Section 3, we first show that the number of arrows of A~ (kQ) is equal to the
number of arrows of A (kQ') if Q and Q' share the same underlying graph by
applying the results from Section 2. Then we determine the number of arrows
of A (kQ) for any Dynkin quiver Q. Note that the underlying graph of A (kQ)
may be embedded into the exchange graph, or the cluster complex, of the cor-
responding cluster algebra of finite type:the tilting modules of kQ correspond to
positive clusters [3] and [12]. The number of positive clusters when the orientation
is alternating is given in [5, prop. 3.9]. However, according to experts, the number
of edges of this subdiagram of positive clusters is not known in the cluster tilting
theory. Note also that if we consider the similar problem for the exchange graph,
it is not interesting, because the number of edges is 5 x {the number of clusters},
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and the number of vertices is given in [5, Proposition 3.8]. The following is
known ([5, Proposition 3.9]).

type An D, Es | E; Eg
# A (kQ)y | 7 () %(”"*”) 418 | 2431 | 17342

n n n—1

The main result of this paper is as follows.

THeOREM 0.1. (1) Let Q be a quiver without loops and cycles. Then
#A (kQ), is independent of the orientation.
(2) #Jf‘(kQ)l is given by the following table,

type Ay D, Eg E; Eg
#A(kQ), (37;11) (3n74)(2(’;’:32)) 1140 | 8008 | 66976

Now we note that above number is equal to

1
g (1 - m) x {the number of positive clusters}--- (),

where /4 is the Coxeter number. In this paper we provide separate proof
about each type, but (x) suggests that it should be possible to provide a uniform
proof.

1. Preliminaries

In this section we define a partial order on tilting modules. First, for a tilting
module 7', we define the right perpendicular category

T+ = {X emod-4 | Ext;%(T, X) = 0}.

LemMa 1.1 (c.f. [9, Lemma 2.1 (a)]). For tilting modules T, T' the following

conditions are equivalent,
(1) TL — T/L}
(2) TeT" .

Recall that Tilt(A) is the set of basic tilting modules over A.
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DrrFINITION 1.2. We define a partial order on Tilt(4) by
of
T<T & it s TeT
for T,T" € Tilt(A).
REmArRk 1.3. By definition, A, is the unique maximal element of

(Tilt(A),<). On the other hand, (7ilt(A),<) does not always admit a minimal
element (c.f. [8]).

Next we define the tilting quiver A (A), and recall some of its properties. Let
ind 4 be a category of indecomposable modules in mod-4.

DEFINITION 1.4. The tilting quiver A'(A) = (A’ (A)o,j (4),) is defined as
follows:

(1) oA(A), = Tili(A),

(2) T — T in A (A), for T,T' € Tilt(A), if T' =M @ X, T =M @ Y with
X,Y eind A and there is a non-split short exact sequence

0—-X—>M-—Y—0

with M e add M.

TueoreM 1.5 (cf. [8, Theorem 2.1]). A#(A) is the Hasse-diagram
of (Tilt(A),<) (ie. if T—T €A (A), and T>=T">T' then T"=T or
T" =T).

PROPOSITION 1.6 (c.f. [8, Corollary 2.2)). If #'(A) has a finite component %,
then A'(4) = %.

Let Q0 =(Qo, Q1) be a quiver without loops and cycles and A = kQ. For
T e Tilt(A), let

s(T) = #{T" € Til(A)|T — T' in A (kQ)}
o(T) = #{T' e Tilt(A)|T' — T in A (kQ)}

and define o(T) = s(T) + e(T).

ProposiTION 1.7 (c.f. [10, Proposition 3.2]). o(T) =n—#{ae Qy|(dim T),
=1}, where n = #Q.
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2. A Theorem of Ladkani

In this section, we review [11]. Let Q be a quiver without loops and cycles
and let x be a source of Q. Let Tilt(Q) := Tilt(kQ) and define

Tilt(Q)" := {T e Till(Q) | S(x)| T},

where S(x) is the simple module associated to x.

DerINITION 2.1, Let (X,<y), (Y, <y) be posets and f: X — Y an order-
preserving function. Then we define the partial-orders s{, </ of XUY as
follows:

a<yb if a,beX,
a<lbe{a<yb  ifabe?,
fla)<yb if aeX and beY.

<xb if a,beX,
a</bea<yb if a,be?Y,
a<yf(h) if aecY and be X.

LEMMA 2.2. Define the functors

! 1ep O — rep(Q\{x})

and
Ji 1 1ep(Q\{x}) — rep O,
by
(G'M), =My (j7'M), = Moy
and

S
*
Ra)

L @#x) [ New (
(]* )a - (_BXHJ} N(y) (a — X)’ (]* )aab - (]*N)‘C projection Nb (

Then j~' and j, are exact and j, is right adjoint to j~'.

S
I
&

Denote by %°(Q) the bounded derived category %°(rep Q).

1

LemMA 2.3. The functors j~' and j, induce functors

J2°(0) = 2"(O\{x)), i 2"(Q\{x}) — 2°(0)
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with

for all M € 2°(Q), N € 2°(0\{x}).

LeMMA 24. The functors j=' and j,. identify rep(Q\{x}) with the right
perpendicular subcategory

S(x)" ={M erep Q|Ext'(S(x), M) =0 for all i>0}
of rep Q.

LemMA 2.5. The functor j. takes indecomposables of rep(Q\{x}) to inde-
composables of rep Q.

PROPOSITION 2.6. Let T be a tilting module in rep Q. Then j~'T is a tilting
module in rep(Q\{x}).

For M =@ N/' (where N;eind Q, r; > 0), let basic(M) =P, N;.

1

COROLLARY 2.7. The map m,: T w basic(j~'T) is an order-preserving

function

(Til(Q), <) — (Tili(Q\{x}), <).
ProposITION 2.8. Let T € Tilt(Q\{x}). Then S(x) ®j.T € Tilt(Q).

COROLLARY 2.9. The map i1,:T — S(x)® j.T is an order-preserving
function

(Tile(Q\{x}), <) — (Tilt(Q), <).
ProrosiTION 2.10.  We have
max(T) =T,
for all T e Tilt(Q\{x}). In addition,
T > 1,7 (T),

for all T e Tilt(Q), with equality if and only if T € Tilt(Q)".
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In particular, . and 1, induce an isomorphism of posets between Tilt(Q)™ and

Tilt(Q\{x}).

CorOLLARY 2.11. Let X = Tilt(Q\Tilt(Q)* and Y = Tilt(Q)*. Define
f:X—>Y by f=17n Then

Tilt(Q) ~ (X U Y, </).
Now let Q' = 6,Q. Then x is a sink of Q' and, by arguing in the similar way,
we obtain the dual results by replacing
G et X, Y f <)
with
il XY <.
In particular we get
Till(Q')" ~ Tilt(Q\{x}),
and
Til(Q') ~ (X' LY’ <),
where X' = Tilt(Q")\Tilt(Q")* and Y’ = Tilt(Q")".
THEOREM 2.12. There exists an isomorphism of posets
p: Tilt(Q\Tilt(Q)* — Tilt(Q)\Tilt(Q')*
such that the following diagram commutes.

Tilt(Q)\Tilt(Q)" —> Tilt(Q"\Tilt(Q

/\/\

Tilt(Q)* <— Tilt(Q\{x}) —> Tilt(Q
CoroLLARY 2.13.  #Tilt(Q) = #Tilt(Q').

REMARK 2.14. 1In [11] the partial order on Tilt(A) is defined by

T>T & TcT"* (opposite to our definition).
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3. Main Results

In this section we determine the number of arrows in A~ (kQ) in the case Q is
a Dynkin quiver. Let

Gen(M) = {Nemod-A|M’MN for some M'eadd M}

injection

Cogen(M) := {N emod-A| N ———— M’ for some M'eadd M}

Lemma 3.1 (c.f. [4, Proposition 1.3]). Let A be hereditary, T=M ® Y €
Tilt(A) with Y eind A. If Y € Gen(M), then there exists a unique (up to iso-
morphism) indecomposable module X which is not isomorphic to Y s.t. M ® X €
Tilt(A) and there exists an exact sequence

0O X—-E—=Y—0

with E € add M.

Dually, if Y € Cogen(M) then there exists a unique (up to isomorphism)
indecomposable module X which is not isomorphic to Y s.t. M @ X € Tilt(A) and
there exists an exact sequence

0O—-Y—-E—X—0

with E € add M.

LemMA 3.2. Let Q be a quiver without loops and cycles. If x is a sink, then
forall T =M @ S(x) € Tilt(Q), S(x) is in Cogen(M). If x is a source, then for all
T=M® S(x)eTit(Q), S(x) is in Gen(M).

Proor. For any T e Tilt(Q\{x}), we define F(T)e mod-kQ as follows,

T, if a # x,
F(T), = @)HX T, if a=x and x is a sink,

@, T, if a=x and x is a source.
xX—y

Toup if a,b # x,
T, @, Ty if a=y with y — x and
F(T),_p = if h=x and x is a sink,

D, Ty T, if b=y with x— y and

if @ =x and x is a source.
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Then, by Proposition 2.10, 7 — F(T) @ S(x) induces a bijection
Till(Q\{x}) £ Tilt(Q)".
Now if x is a sink then
S(x) € Cogen(M) < M, # 0,
and if x is a source then
S(x) e Gen(M) & M, # 0.

So this Lemma follows from the fact that if T e Tilt(Q) then (dim T), > 1,
for all a. |

Lemma 3.3. If x is a sink then
{ae A(Q),|s() € Tilt(Q)", t(x) € Tilt(Q)\Tilt(Q)"} & Tilt(Q)".
If x is a source then
{a € &i?(Q)1 | 1(2) € Tilt(Q)™, s(a) € Tilt(Q)\Tilt(Q) ™} it Tilt(Q)™.
Where, for T = T', s(a) =T and t(«) = T'.
PROOF. Suppose x is a sink, and let T e Tilt(Q)". Then there exists a unique
T' e Tiltl(Q\Til((Q)* st. T — T' in #(Q) (by Lemma 3.1, 3.2).
On the other hand, let T e Tilt(Q)\Tilt(Q)" and suppose that there exists
T\, T € Tilt(Q)" st. Ty — T, Ty — T', for T'e Tilf(Q\Tilf(Q)*, in A (Q).
Write T; = M @ S(x) @ Y; with ¥; eind kQ (i =1,2) then Y;|T'; Ext(Y;, ¥;) =0
(i,j = 1,2) Thus EXt(Tl @Y, T @ Yz) =0 and Y; = Y, follows. O
COROLLARY 3.4.
#4(Q), = #A (9:0)-
In particular, if Q is a Dynkin quiver then #A (Q), depends only on the underlying
graph of Q.
Proor. By Corollary 2.11 and Lemma 3.3 we get,

#A'(Q)y = #A (Q\{x}), + #A (Tilt(Q\Tilt(Q)"), + #Til(0)*

:#j(UxQ)l- D
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3.1. case A. In this subsection we consider the quiver,
1 2 n

Q=0—0— -+ —o0.
By Gabriel’s Theorem, ind kQ = {L(i,j)|0 < i< j < n} where
k (i<a<y)),
0 otherwise,

1 (i<ab<)),
0 otherwise.

L) - { L) = {

And

o JLi+ 1 j+1) (j<n),
TL(l,]){O G=n),

where 7 i1s a Auslander-Reiten translation.

DEFINITION 3.5. A pair of intervals ([i, ], [i’, j']) is compatible if
i, 1N j 1= or [i, < [i",j] or [i'j] = [ijl.
Applying Auslander-Reiten duality,
DExt(M,N) ~ Hom(N,tM) (D = Homy(—,k)),

we get the following Lemma.

LemmA 3.6. We have
Ext(L(i, j), L(i', ') = 0 = Ext(L(i", '), L(i, ))

if and only if ([i,]],[i’,j']) is compatible.

Proor. It is obvious that Hom(L(i, j), L(i’, j')) # 0 if and only if i’ <i <
j' < j. So the lemma follows from this fact and the AR-duality. O

Lemma 3.7. For any T € Tilt(Q), we get

oT)y=n-1.

Proor. Let T e Tilt(Q) then the projective-injective module L(0,n) is a

direct summand of 7. From this fact, we get o(T) < n.

Denote by X the set of indecomposable direct summands of 7 not iso-
morphic to L(0,n) and define

g {max{i | L(0,i) e X} if L(0,i) e X for some i,
. 0 otherwise.
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Then, by Lemma 3.6, we get
Ext(T,L(a+ 1,n)) =0=Ext(L(a+ 1,n), T).

By Ext =0 condition, we can see L(a+ 1,n) is a direct summand of 7.
In particular

dm7T),=1ei=a+1

This Lemma follows from this fact and Proposition 1.7. O

Now it is easy to check the number of arrows in #(Q), because it is equal to

1
3 > o)

TeTilt(Q)

COROLLARY 3.8. #Jf(Q)l = 2(’;;431) (2,;’) = (z,f__zl)-

3.2. case D. Through this subsection, we consider the quiver

N
1 2 n—1_»°1"

0=0,=0—0— - — o
\On’

Then
ind kQ = {L(a,b)|0<a<b<n—1}U{L*(a,n)|0<a<n-—1}

U{M(a,h)|0<a<b=<n-1}

where
k ifa<i<b
L(ab), = -
(a,b), 0 otherwise,
if i < b
L(a,b)H_i: Ha<i<o,

otherwise,

1
0
k if a<i<n-—1 ori=n?,
0

otherwise,
Lanyt = [l fa<i<n—Tori=n—1 j=n*,
Y 0 otherwise,

k if a<i<b ori=n%
K if b<i<n—1,
0  otherwise,
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if a<i<b,

1
1
() i

(1,0) if i=n—1,j=n",
=) (0,1) if i=n—1,j=n",

1 0 . .
(0 1) if b<i<n-—1,
0

otherwise.
Then
La+1,b+1) if b<n-1,
L =
tL(a,b) {M(O,a+1) it b=n—1,
L (a+1,n) ifa<n-—1
L* = ’
L) {0 if a=n—1,
+ : _
L (a,n) = Lt(a+ 1,n) %f a<n-—1,
0 if a=n-—1,
rM(a,b):{M( a+1,b+1) %f b<n-—1,
0 if b=n-—1.
Lemma 3.9.

(1) Ext(L(a,b),L(a’,b")) = 0 = Ext(L(a’,b"), L(a,b))
< ([a,b],[a’,b']) : compatible.

(2) Ext(L(a,b),L*(a’,n)) = 0 = Ext(L*(a’,n), L(a,b))
< ([a,b], [a’',n]) : compatible.

(3) Ext(L(a,b), M(a',b")) = 0 = Ext(M(a',b"), L(a, b))
< ([a,b],[a’,n]), ([a, D], [b",n]) : compatible.

4) (M(a,b),L*(a’,n)) = 0 = Ext(L*(a’,n), M(a,b)) & a < a' <b.
(5) (L*(a,n),L*(a’,n)) = 0 = Ext(L*(a’,n), L*(a,n)) for all a,a’.
(6) Ext(L*(a,n),L™(a',n)) =0=Ext(L (a’,n),L"(a,n)) & a=ad
(7) Ext(M(a,b), M(a',b")) = 0 = Ext(M(a',b"), M(a, b))

& la,b] = [d',b"] or [a',b") = [a,b]

Proor. (1) and (2) follow from a case 4 and (5), (6) are obvious.
(3) (case b < a’) It is obvious that

Ext(L(a,b), M(a',b")) =0 = Ext(M(a',b"), L(a,b)).
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(case a < a’ <b < b') In this case we claim that
Hom (M (a’,b"),7L(a, b)) # 0.
In fact 0 # f = (f;); € Hom(M(a',b’),7L(a, b)) where

f:{l if @/ <i<bh+1,
' 0 otherwise.

(case a <a' <b'<b<n-—1) In this case we claim that
Hom(M (a',b"),7L(a, b)) # 0.
In fact 0 # f = (f;); € Hom(M(a',b"),7L(a,b)) where
1 if o <i<b,
fi=14(0,1) if b’ <i<b,
0 otherwise.
(case a <a’ <b'<b=mn—1) In this case we also claim that
Hom (M (a’,b"),7L(a, b)) # 0.

In fact 0 # f = (f;); € Hom(M(a’,b"),7L(a,n — 1)) where

(i) if o/ <i<b,

1 if ’<i<n-—1 ori=n%,
0 otherwise.

fi=

(case @'’ <a<b< b <n-—1) In this case we claim that
Hom(M (a',b"),7L(a,b)) = 0 = Hom(L(a,b),tM(a’,b")).

Let f=(f); e Hom(M(a',b'),7L(a,b)). If i<a+1 or b+1<i<n—1 or
i =n* then (dim 7L(a,b)); =0 and this implies f; = 0. Note that

Jar2 = far3 = = fot1.
Now the commutative square for f,.1, f,i2 shows f,,» =0. So
Hom(M (a',b"),7L(a,b)) = 0.
And similarly
Hom(L(a,b),tM(a’,b")) = 0.
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(case @’ <a<b<b' =n—1) Similar to the case (¢’ <a<b<b' <n—1) we
can get

Hom(M (a',n —1),7L(a,b)) = 0.
And since M(a’,n— 1) is projective, we have
Hom(L(a,b),tM(a’,b")) = 0.
(case @’ <a<b'<b<n—1) In this case we claim that
Hom(M (a',b"),7L(a, b)) # 0.
In fact 0 # f = (f;); € Hom(M(a',b’),7L(a,b)) where
fie {(1,—1) if ' <i<b+1,
0 otherwise.
(case @' <a<b'<b=n-—1) In this case we also claim that
Hom(M (a',b"),7L(a, b)) # 0.
In fact 0 # f = (f;); e Hom(M(a’,b"),7L(a,n — 1)) where
if @ <i<a+1 ori=n*

) ifa+l<i<b,

S = = =
—_ O

) if b'<i<n-—1,

E
|

(case b’ < a) Similar to the case a’ <a <b <b’, we get

otherwise.

Hom(M (a’,b"),7L(a,b)) = 0 = Hom(L(a,b),tM(a’,b")).

So we have proved (3).
(4),(7) The proofs are similar to (3). N

LemmA 3.10. Let T € Tilt(Q).

(1) L(O,n—1)| T implies L*(0,n)|T.

(2) If LT(0,n)| T (resp. L=(0,n)|T) and all indecomposable direct summands
of T are insincere, then

L (0,n)|T (resp. L*(0,n)|T).
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Proor. (1) Suppose L(0,n—1)|T. Then
Ext(T,L(0,n—1)) =0=Ext(L(0,n—1),T)
and there exist injections

tL*(0,n) — tL(0,n — 1).
So we get
Ext(L*(0,n), T) ~ Hom(T, <L*(0,1)) = 0.

Since L*(0,n) is injective, we also get

Ext(7,L*(0,n)) = 0.
Therefore, L*(0,n)|T.
(2) Suppose L*(0,n)|T and that all indecomposable direct summands of T
are insincere. Now (dim 7),- # 0, so there exists some indecomposable direct
summand N s.t.

(dim N),- # 0.

If N = M(a,b) then Ext(M(a,b),L"(0,n)) =0 = Ext(L*(0,n), M(a,b)) so a=0
and N is sincere. This is a contradiction. So N =L"(a,n) and a=0 by
LT(0,n)|T. O

LemMa 3.11. For all T € Tilt(Q) there exists some indecomposable direct
summand N of T s.t.
(dim N), > 1, for all i<n-—1.
Thus, N = L(0,n— 1), L*(0,n) or M(0,b), for some b.

Proor. For an indecomposable direct summand N of T s.t. (dim N), =1,
define

a(N)défsup{iHSign—l,(di_mN),»zl}.

Suppose that sup a(N) =a <n—1, then L(0,a)|T. So indecomposable direct
summands of 7 are of the following form

L(a',b") for b’ <aora+l<d,
Lt (a';n) fora+1<d,
M(a',b") for a+1<d'.

So (dim T'),,; = 0. This is a contradiction. O
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LEmMA 3.12. We have
#ill<i<n—-1,(dim7T), =1} <1.

In particular, 6(T) = n— 2.

Proor. Let i # n® s.t. (dim 7); = 1. Then we claim that
LO,i—1)|T.

By Lemma 3.11 there exists a unique indecomposable direct summand N of
T s.t.

(dim N); > 1 for all j<n-—1.

So, by Lemma 3.10, N = M(0,b) for some i<b<n—1 and any inde-
composable direct summand of 7 not isomorphic to N is one of the

following,
L(a,b) for b<i—1 ori<a,
L*(a,n) for i <a,
M(a,b) for i<a.
It implies
Ext(T,L(0,i — 1)) =0 = Ext(L(0,i — 1), T),
so that

L(0,i—1)|T. O

CorOLLARY 3.13. Let T e Tilt(Q) then 6(T)=n—1, and 5(T)=n—1 if
and only if L*(0,n)| T and other indecomposable direct summands of T have the
form L(a,b) (0 <a<b<n-—1). In particular,

#{TeTilt(kQ)|6(T)nl}%(z(n_1)> ! (251”__21))

n—-1) n-1

Proor. Suppose that all indecomposable direct summands of 7T are in-
sincere. Then, by Lemma 3.10 and Lemma 3.11, L*(0,n) and L~ (0,n) are
both direct summands of 7. So (dim 7), =1 if and only if i =n*. We have
o(T) = n— 1. If the equality holds then indecomposable direct summands of T
not isomorphic to L*(0,n) are of the form L(a,b).
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Next we suppose there is a sincere indecomposable direct summand N of 7.
If 6(T) =n—2 then, by Lemma 3.12, there is a unique i <n—1 s.t.

(dim T); = (dim 7),.. = 1.

So all indecomposable direct summands of 7" not isomorphic to N are of the
form L(a,b) (b <i or i<a). As their direct sum may be viewed as a rigid
module in type 4,1 X A,_;1, we get

#{L(a,b) | L(a,b) | T} <(i—1)+n—-1—-i)=n-2,

which is a contradiction. Next we consider the case o(7) =n— 1.
(@) (dim T); = (dim T'),, = 1, for a unique i(< n — 1). Then indecomposable
direct summands of 7 not isomorphic to N are of the following form:

L(a,b) for b<iori<a,
L™ (a,n) for i<a.
We get by the same argument that
#{LeindkQ|L|T, LN} <(i—-1)+n—i)=n-1,

which is a contradiction.

(b) (dim T); = (dim T),- = 1, for a unique #(<n — 1). Then, similar to (a),
we reach a contradiction.

(c) (dim T),. = 1. Then indecomposable direct summands of 7 mnot iso-
morphic to N are of the form L(a,b). Thus

#{L(a,b) | L(a,b)| T} <n—1.

It is a contradiction. So we get 6(7) > n and 6(7) = n — 1 does not occur in this
case.

Thus we have proved that if 6(7) =n—1 then L*(0,n)|T and the other
indecomposable direct summands of 7 has the form L(a,b). The converse
implication is clear. |

Now we define subsets of Tilt(Q) by

Ty = {T e Tilt(Q)|8(T) =n+ 1},
71 = {T e Till(Q) |(T) = n},
Ty = {T e Tilt(Q)|6(T) =n — 1}.
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LemMA 3.14. Fix 1 <i<n-—1, then

{Te7|(dim T),=1} & Tili(o — 0 — - — o)

x{T eTilt(Qy—i11)| (dim T), = 1,6(T) =n—i+ 1}.
Proor. Let Te J; st. (dim T); =1, for a unique i(<n—1). By Lemma
3.10 and Lemma 3.11 there exists a unique j = j(T)(= i) s.t. M(0, /)| T. Now let
X(T)={L(a,b)|L(a,b)| T,b < i}
and
¥(T) = {N eind kQ| N | TH\{X(T) U{M(0, /)}}.
We define the maps

i—1

(PTX(T)—>1ndk(O—>O—)_> O)

and
Y Y(T) —ind kQ,_i11,
by
(pr(N)), = (N), (1<a<i),
Wr(N)), = (N)yy; g (et (n—i+1)F +i—1=n%).
Then

TH( D orlx), D lPT(y)CﬁM(O,j(T)iH))
xeX(T) ye Y(T)
induces a bijection between

{Te7i|(dimT), =1}
and

Tilt(o — 0 — -+ — '0') x {T € Tilt(Qys+1) | (dim T), = 1,8(T) =n—i+1}. O
Let us define the following subsets of 77:

all indecomposable direct summands of 7 are insincere
R4 4+ = T e % )

and (dim 7). =1

B, :={T e€7|(dim T),. =1, there exists some j s.t. M(0,)|T},
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B:()) = AT € A | M(0, )| T},
¢ :={Te€7|6(T)=n,(dim T), =1},
©(j) ={Te%|M(0,))|T}.
THEOREM 3.15. (1) oy =

i .
(2) Bs(j) & {T" € Tilt(o — -+ — &) [min{j' | L(j',n — 1) | T'} = j}. In par-

ticular,

B Tilt(o — -+ — S\{T" € Tilt(o — -+ — &) |L(0,n —1)| T"},

P 2n\ 1 2(n—1)

#ﬂ+_n+l<n> n(n—l )
(3) €()) & {T" € Til(Qu-1) | j = J'(T") + 1}

where

and we have

JI(T") =sup{b|L*(b,n—1) or L™ (by,n—1) or M(a,b)|T for some a}.

In particular,
@ 8 Tilt(Q 1),

~3n—4/(2(n-1)
7= 2n (n—l>'

and we have

Proor. (1) Suppose that there exists some 7 € ./,. Then, by Lemma 3.11,
we have L*(0,n) | T. Now there exists some indecomposable direct summand N
of T not isomorphic to L~(0,n) s.t. (dim N),_ = 1.

If N=M(a,b) or L (a,n) then a=0. This is a contradiction because
L*(0,n)|T. So o/, = ¢ and similarly we have 4_ = .

(2) Define the maps

p:{L(a,b)|0<a<b<n—1}U{L (a,n)|0<a<n—1}
—>indk(o—>o—>---—>g)
and
lp:indk(o—>o—>~--—>g)

—{L(a,h)|0<a<b<n—1}U{L (a,n)|0<a<n-1}
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by

L, if0<a<n-1,
L,- if a=n,

L if0<a<n-—1,
W(L)),=qL, if a=n",

0 if a=n".
Then poyy =1 =1 o¢p. Define
Z(T):={Neind kQ|N|T,N £ M(0,/)}
and
Y(T'):={Neindk(c —o0—---—0)|N|T'}.
Then it is easy to see that the maps induce a bijection
B()) AT € Tili(o — - — 8) [ min{j' | L(j',n = 1) | T'} = j}
by

The inverse map is

(@, su)ous

L'eY(

In fact, if T e %,(j) then all indecomposable direct summands of 7 not iso-
morphic to M(0, j) are either

L(a,b) (a=jor b<j) or L (a,n) (a<j),

which implies L(j,n—1),L~(j,n)|T. It follows

min{j'|L(j',n— 1)

@ so(L)} =

LeZ(T)

Conversely, if
T' e {T'eTilt(c — -+ — o) |min{j' | L(j',n—1)| T'} = j}

then (D, yirn V(L)) © M(0, ) € B.(j).
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(3) Define the maps

9: {N €ind kQ, | (dim N), = 0} — ind k0, |
and

Y :ind kQ,_1 — {N e ind kQ, | (dim N), = 0}
by the obvious way. Then poy =1 = o ¢p. Define

Z(T):={N eind kQ, | N|T,N # M(0, j)}
and
Y(T'):={NeindkQ, | |N|T'}.
Then they induce a bijection
C(j) AT € Til(Qu 1) | j = J/(T') +1}
by
T @ o).

NeZ(T)

The inverse map is

In fact, if 7€ () then
Z(T)c{L(a,b)|1 <a<b<jor j<a}lU{L¥(b,n)|1 <b<j}
U{M(a,b)|1 <a<b<j}

It implies M(1, /)| T and jl(@NeZ(T) @(N)) = j— 1. Conversely, if j=j(T')+1
then

v

(dim ®y/e y(77) lﬁ(Nl))a{

I
O =
—
INTRERNY
—_
~—

It implies

( @ )lP(N'))@M(O»J')G‘g(j)- O
7

N'eY(
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COROLLARY 3.16.

47 3<251n—21)>.

Proor. First we claim that

2": 1 (2(1- - 1)) (Z(n - i)) 1 (211)
—in+1-i)\ i—1 n—i n+1\n
This follows from the fact that
Tili(o — -+ — 0) =| |{T € Tilt(o — --- — ) [ min{i' | L(i’,n) | T,i' > 0} = i}.

Thus, by Lemma 3.14 and Theorem 3.15, #7; is equal to
S L (2 _1(2(n—1) L 3(n—i) 20— 1)\ [2(n — i)
n+1\n n\ n—1 21n—l+1 i—1 n—i
1 (2n 1 /2(n—1) — 1 2(i = 1)\ [2(n — i)
=2 - = - ) | . .
n+1\ n n\ n—1 —in—i+1)\ i—1 n—i
Zli (i— 1)\ [2(n—1i)
—2i\ i—1 n—i

SEACED D),

Now let

= (00 )

and
2
(2= 1) L,
f<X><;l.( - )X)

Then the coefficient of X"*! in f/(X) is equal to

a=2(()
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On the other hand, the coefficient of X”"*? in f(X) is equal to
n+1 1 2(i .
Z (—=D\(2n—i+1)\ 2 (2n
—~in—i+2)\ i1 n—i+1 n+1\n
_ 1 2w+ 2 (2n
S n+2\ n+l n+1\n)

2a, = <2:1—:—11)) _nil (2:> _4(n2—nl>'

We conclude that

So

2:1__21)).

COROLLARY 3.17. We have

P (U _11) (2(11 _21))
n+ n—

Proor. In fact,

THEOREM 3.18.

#A(0), = (3n— 1)(2;”‘21)).

Proor. In fact, #4° (0), is equal to

i (o) + 0 (02)) e (5

— (3n— 1)(251”__2”).

175
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3.3. case Eg, E7, Eg. By using AR-sequences, it is possible to establish the
dimension vector of any indecomposable modules and the dimension of the space
of the morphism between any two indecomposable modules. So, by using AR-
duality and Proposition 1.7, we can calculate the number of arrows in tilting
quiver. Now it is clear that to calculate the number of arrows in tilting quiver
could be left to a computer. A reader can download a source code from following
address, http://rkase.web.fc2.com/source.pdf

Acknowledgement

The author would like to express his gratitude to Professor Susumu Ariki for
his mathematical supports, careful reading of this paper and warm encourage-
ments. The author also thanks Professor Syu Kato for his mathematical advices
and warm encouragements.

References

[1] M. Auslander, I. Reiten and S. Smale, Representation theory of artin algebras, Cambridge
University Press, 1995.

[2] 1. Assem, D. Simson and A. Skowronski, Elements of the representation theory of associative
algebras Vol. 1, London Mathematical Society Student Texts 65, Cambridge University
Press, 2006.

[3] A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster
combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.

[4] F. Coelho, D. Happel and L. Unger, Complements to partial tilting modules, J. Algebra 170
(1994), no. 3, 184-205.

[5] S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158,
(2003), no. 3, 977-1018.

[6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras. Representation theory

I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), pp. 1-71, Lecture Notes in
Math., 831, Springer, Berlin, 1980.
[7] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2,
399-443.
[8] D. Happel and L. Unger, On a partial order of tilting modules, Algebr. Represent. Theory 8
(2005), no. 2, 147-156.
[9] D. Happel and L. Unger, On the quiver of tilting modules, J. Algebra 284 (2005), no. 2,
857-868.
(10] D. Happel and L. Unger, Reconstruction of path algebras from their posets of tilting modules,
Trans. Amer . Math. Soc 361 (2009), no. 7, 3633-3660.
Ladkani, Universal derived equivalences of posets of tilting modules, arXiv:0708.1287v1.
. Marsh, M. Reineke and A. Zelevinsky, Generalized associahedra via quiver representations,
Trans. Amer. Math. Soc 355 (2003), no. 10, 4171-4186.
[13] 1. Reiten, Tilting theory and homologically finite subcategories, Handbook of tilting theory,
L. Angeleri Hiigel, D. Happel, H. Krause, eds., London Mathematical Society Lecture
Note Series 332, Cambridge University Press, 2007.
[14] C. Riedtmann and A. Schofield, On a simplicial complex associated with tilting modules,
Comment. Math. Helv 66 (1991), no. 1, 70-78.

(1]
[12]

=



The number of arrows in the quiver of tilting modules 177

[15] L. Unger, Combinatorial aspects of the set of tilting modules, Handbook of tilting theory,
L. Angeleri Hiigel, D. Happel, H. Krause, eds., London Mathematical Society Lecture
Note Series 332, Cambridge University Press, 2007.

Department of Pure and Applied Mathematics

Graduate School of Information Science and Technology
Osaka University

Toyonaka, Osaka 560-0043

Japan

E-mail: r-kase@cr.math.sci.osaka-u.ac.jp



