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GALOIS-TUKEY CONNECTION INVOLVING
SETS OF METRICS

By

Masaru Kapa* and Yasuo YosHNoBU'

Abstract. Kada proved in a previous paper (Topology Appl., 2009)
that the collection of compatible metrics on a locally compact
separable metrizable space has the same cofinal type, in the sense of
Tukey relation, as the set of functions from w to w with respect to
eventually dominating order. By generalizing this result, we char-
acterize the order structure of the collection of compatible metrics on
a separable metrizable space in terms of generalized Galois—Tukey
connection.

1. Introduction

Tukey relation between directed sets is defined as follows. For directed sets
(D,<p) and (E,<g), we write (D,<p) <r (E,<g) if there is a mapping from E
to D which maps every cofinal subset of E to a cofinal subset of D. We write
D <7 E if referred order relations on D and E are clear from the context. Clearly
the relation < is transitive. We write D =7 E if D <7 E and E <7 D. See [7] for
details.

We also consider the notion of generalized Galois—Tukey connections
introduced by Vojtas [8]. We follow the formulation and terminology of Blass [1].
We deal with triples of the form A = (4_, 4, A), where A4_ and A, are non-
empty sets and 4 is a binary relation between A_ and A, (in other words,
A< A_xA.). For A=(4_,44,A) and B = (B_, B,, B), a morphism from A to
B is a pair ¢ = (¢p_, p,) of mappings such that ¢p_: B_ — A_, ¢, : A, — B, and,
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for be B_ and a€ A, if p_(b) Aa then b By, (a). We write A — B if there is a
morphism from A to B. Clearly, if A— B and B— C then A — C.

The generalized Galois—Tukey connections can be seen as a generalization of
the Tukey relation. The following lemma is easy to check:

LemMa 1.1.  For directed sets (D,<p) and (E,<g), D <r E holds if and only
if we have (E,E,<g) — (D,D,<p).

For f,gew®, we write f <g if f(n) <g(n) for all n < w, and f <*g if
f(n) < g(n) for all but finitely many n < . Let »'® denote the set of all strictly
increasing functions in w®. Since there are morphisms between (w®,w®,<) and
(w!® ®!'® <) in both directions, we will often identify these two triples.

We use the following notational convention: for two ordered sets (D, <p) and
(E,<g), <p x <g denotes the usual product order on D X E, that is,

(a’l,el) (SD X SE) (dz,ez) if and only if d} <pd, and e¢; <ge>.

For a metrizable space X, let M(X) denote the set of all metrics on X which
are compatible with the topology on X. For dj,d, € M(X), we write d; < d if
the identity mapping on X is uniformly continuous as a function from (X,d) to
(X,d).

We will often regard a separable metrizable space X as a subspace of the
Hilbert cube H = [0, 1]”. We fix a metric function x on H throughout this paper.
For a subspace X of H, let X* =clg X\X, and #(X*) denotes the set of all
compact subsets of X*. If X is a locally compact separable metrizable space, X *
is compact since X is then open in clg(X).

Todorcevi¢ asked the authors (in private communication) the following
question about the order structure of (M(X), =) for a separable metrizable space
X. X denotes the first Cantor—Bendixson derivative of X, that is, the subspace
of X which consists of all nonisolated points of X.

QUESTION 1.2.  For a separable metrizable space X such that XV is non-
compact, does (M(X), =) =7 (0® x A (X*),<* x &) hold?

Here we briefly review the background of this question. See Remark 2 at the
end of Section 4 for more about the origin of this question.

For a completely regular Hausdorff space X, let Cpt(X) denote the class
of compactifications of X. For aX,yX € Cpt(X), we let aX < yX if there is a
continuous surjection f : yX — oX such that f [ X is the identity map on X. If
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such an f can be chosen to be a homeomorphism, we write X ~ yX. When we
identify ~-equivalent compactifications, the ordered set (Cpt(X),<) is a complete
upper semilattice whose largest element is the Stone—Cech compactification fX.

There have been many studies about approximating X by simple sub-
classes of Cpt(X), in the sense that X is obtained as the supremum (taken in
(Cpt(X), <)) of each such class. The following theorem, which is due to Woods,
is one of those results. The Smirnov compactification of a metric space (X,d),
denoted by uyX, is the unique compactification characterized by the following
property: A bounded continuous function f from X to R is continuously
extended over u; X if and only if f is uniformly continuous with respect to the
metric d. It is easy to see that, for dj,d» € M(X), us X < ug X if and only if

THEOREM 1.3 [9, Theorem 2.11]. For a metrizable space X, we have X ~
sup{ugX : d e M(X)}.

The studies on approximation of X as in the theorem above may be seen
in the context of the investigation of the order structure of (Cpt(X),<). From
this perspective the theorem above may be understood as saying that (M(X), <)
is nicely embedded into (Cpt(X), <). The positive answer to Question 1.2 would
further underline this close connection of (M(X), <) to (Cpt(X),<).

Unfortunately, Question 1.2 is unanswered so far. As a partial answer, Kada
[3] proved the following theorem.

THEOREM 1.4 [3, Theorem 3.1]. For a locally compact separable metrizable
space X such that XV is noncompact, (M(X), =) =7 (0, <*) holds.

Note that Theorem 1.4 answers Question 1.2 in a case when X is locally
compact, since X * is then compact and (# (X *),<) has the largest element X *.

While attempting to find an answer to Question 1.2, we noticed that the
above theorem is nicely refined by involving yet another set PC(X) and using
generalized Galois—Tukey connection. For a metrizable space X, let PC(X)
denote the set of all pairs of disjoint closed sets of X, and for (A4, B) € PC(X)
we write (A,B)Sepd if d(A4,B) > 0. The proof of Theorem 1.3 [9, Theorem
2.11] actually claims that for any (4, B) e PC(X) there is d € M(X) such that
d(A,B) > 0 (see Lemma 4.8), which is one of the reason why the structure PC(X)
and the relation Sep fit in the present context.

Using PC(X) and Sep, Theorem 1.4 is refined to the following form.



56 Masaru Kapa and Yasuo YOSHINOBU

THEOREM 1.5. For a locally compact separable metrizable space X such that
XU s noncompact, the following cycle of morphisms exists:

(0”,0”,<*) = (M(X),M(X), %) — (PC(X),M(X), Sep) — (", ", <").
So it seems natural to ask the following question, instead of Question 1.2.

QUESTION 1.6. For a separable metrizable space X such that XV is non-
compact, does the following cycle of morphisms exist?

(@ % A (X*),0” x A (X*),<* x =) — (M(X),M(X), <) — (PC(X), M(X),Sep)

— (@ X H(X*),0” x H(X7*),<" x <.

The Tukey equivalence in Question 1.2 would follow from this cycle by
Lemma 1.1.

Although we do not have an answer to Question 1.6, we can construct a
cycle of morphisms of a slightly modified form. For (4, B) e PC(X), d e M(X)
and ¢ > 0, we write (4,B)Sep, d if d(A,B) >¢. For di,dr e M(X), di =. d» if
and only if, for p,qe X, di(p,q) = ¢ implies d»(p,q) = ¢. We replace Sep in
Question 1.6 by Sep;, < by =<; and <* by <.

TurorReM 1.7. For a separable metrizable space X such that XV is non-
compact, the following cycle of morphisms exists:
(@° X H(X"),0” x A (X"),<x <) = (MX),M(X),=1)
— (PC(X),M(X), Sepy)
= (0? x A (X7"),0” x A (X7"),<x 9).
The following corollary shows that Tukey equivalence quite similar to the

one in Question 1.2 holds. The corollary follows immediately from Theorem 1.7
by Lemma 1.1.

COROLLARY 1.8. For a separable metrizable space X such that XV is non-
compact, the Tukey equivalence (M(X), <) =r (0? x A (X*),< x €) holds.

The main purpose of this paper is to prove Theorem 1.7. In Section 2 we
observe how Theorem 1.4 is refined to Theorem 1.5, and in Section 3 we further
extend this result to establish Theorem 1.7.
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In Section 4 we discuss cardinality questions about approximating the Stone—
Cech compactification by Smirnov compactifications, which have been studied in
the preceding paper [6].

2. M(X) for a Locally Compact Separable X

Let X be a locally compact separable metrizable space such that X is
noncompact. In this section, we review the proof of Theorem 1.4 (presented in
[3]) and observe how it is refined to the construction of the following cycle of
morphisms (Theorem 1.5).

(@7,0% <7) = (M(X),M(X), %) — (PC(X), M(X), Sep) — (0, 0, <7).

In Section 3, we extend the results in this section to obtain the main theorem
(Theorem 1.7).

We will frequently use the following lemma. It is derived from Theorems 4.5
and 4.6, however, one can easily find a direct proof.

LemMMA 2.1.  For a metrizable space X and dy,d, € M(X), the following are
equivalent.

(1) d = ds.
(2) For (A,B) e PC(X), if di(A4,B) >0 then dy(A,B) > 0.

REMARK 1. It is obvious that, for a metrizable space X, di,d, e M(X) and
&> 0, the following are equivalent.

(1) dy =, dy (that is, for p,qe X, if di(p,q) = ¢ then dr(p,q) = ¢).
(2) For (4,B) e PC(X), if d\(4,B) > ¢ then d»(A4,B) > e.

In this sense the relations < and =<, look alike, though there is no obvious
implication between them.

The second morphism in the sequence is easily obtained. The first and third
morphisms are obtained by refining the proof of [3, Theorem 3.1].

LemMA 2.2. For a metrizable space X, there is a morphism from
(M(X),M(X), =) to (PC(X),M(X),Sep).

Proor. In the proof of [9, Theorem 2.11] Woods proved the following fact:
for every (A4, B) € PC(X) there is a metric d € M(X) such that d(4, B) > 1 holds.
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Let ¢_ be the correspondence from (4, B) to d in this fact, and ¢, the identity
mapping on M(X). It is straightforward to check that ¢ = (p_, ¢, ) is a desired
morphism. O

LemMmA 2.3. For a locally compact subspace X of H such that XV is
noncompact, there is a morphism from (w® w®,<*) to (M(X),M(X), X).

Proor. We will use the following lemma, which was originally established
by Kada, Tomoyasu and Yoshinobu [6, Lemma 2.8]. For a function y from X to
R, we write y(x) — o0 as x — oo if, for any M € R there is a compact subset K
of X such that y(x) > M holds for all xe X\K.

LemmA 2.4 [3, Lemma 3.2]. Suppose that X is a locally compact separable
metrizable space, d e M(X), diamy(X) is finite, and y is a continuous function
from X to [0,00) such that y(x) — o0 as x — 0. For new, let K, ={xe X :
y(x) < diamy(X) 4+ n}. Then we can define a mapping from ©'® to M(X), which
maps g to dg, with the following properties.

(1) If x,y e X\K,, then dy(x,y) = g(n)-d(x,y).

(2) For x,y e X, dy(x,y) = [7(x) = 7(y)l.
(3) For g1,92 € ', g1 <* g> implies d,, < dy,, and g1 < g, implies dy, < d,,."

We apply the above lemma to (X,u) by letting y(p) = 1/u(p, X*) for
peX. Let g, be the mapping obtained by the lemma, which maps g € o!® to
Uy € M(X). For n < w, let K, be as in the above lemma. Define ¢_ by letting, for
peM(X), ¢_(p) =h,ew'® be a function recursively defined by /,(0) =0 and

hy(n) =min{/ : I > hy(n — 1) and Vp,q € Kyi2 (p(p,q) = 1/n — u(p,q) = 1/1)}

for n>1. We verify that ¢ = (¢p_,¢.) is a morphism from (0!” 0!” <*) to
(M(X),M(X),<). Fix pe M(X), g € ®'® and assume s, <*g. To see p =< p,, fix
(4, B) e PC(X) with p(4, B) > 0, and we shall show u (4, B) > 0. Take k €  so
that p(4, B) > 1/k and g(n) > h,(n) for all n > k. By the definition of /,, for all
n >k we have u(AN(Ky12\Ky), BN (Ky2\Ky)) > 1/h,(n). Since g(n) > h,(n) for
n >k and by the property of u,, we have u,(AN (Ky2\Ky), BN (Ky12\Ky)) > 1
for all n > k. Also, since p,(X\K11, Kin) > 1 for all m e o, we can conclude that
#,(4, B) = min{1, 1, (AN Kyy1, BN Kii1)} > 0. O

'In [3, Lemma 3.2], the corresponding clause does not have “g; < g, implies d,, < d,,” part. To make
the proof work for the modified statement, we slightly modified the definition of K,’s.
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LEMMA 2.5. For a locally compact subspace X of H such that X is
noncompact, there is a morphism from (PC(X),M(X),Sep) to (0?,w®,<*).

Proor. Fix a sequence <{a,:n < w) in X1 converging to some ae X*.
Such a sequence exists because X (1) is noncompact. Note that the set {a, : n < w}
is closed discrete in X. For each n, fix a sequence <(b, ;: j < w) in X converging
to a,. We may assume that a,’s and b, ;’s are all distinct, and for each n, for all j
we have u(ay, b, ;) <27

We define a mapping ¢_ from w® to PC(X) in a simple way. For g € o®,
just let 4 ={a,:n<w}, By =1{b,4n:n<ow} and ¢_(g9) = (4,B,).

Now we define a mapping ¢, from M(X) to w®. For pe M(X) we define
9. (p) = H, e w® by letting

Hy(n) = min{i : % > i (plan, b)) <27}

for each n.

Suppose that g € w®, p e M(X) and p(4, B;) = ¢ > 0. Then for all but finitely
many n we have p(a,, b, 4u) =&>27", and by the definition of H,, we have
H,(n) > g(n). This means that ¢ = (¢p_,¢,) is a desired morphism. Il

Now we can check that we may replace <* with <, < with <, and Sep with
Sep; in the cycle of morphisms, which produces the following cycle.

THEOREM 2.6. For a locally compact separable metrizable space X such that
XU s noncompact, the following cycle of morphisms exists:

(@7, 0% <) = (M(X),M(X), 1) — (PC(X), M(X),Sep,) — (0, 0%, <).
For the second morphism, the pair ¢ = (¢p_,¢,) in Lemma 2.2 works.

LemmA 2.7. For a metrizable space X, there is a morphism from
(M(X), M(X), =) 10 (PC(X),M(X),Sep;).

The first and third morphisms are obtained by slightly modifying the proofs
of Lemmas 2.3 and 2.5 respectively, which we leave to the readers.

LeMMA 2.8. For a locally compact subspace X of H such that XV is
noncompact, there is a morphism from (0® w®, <) to (M(X),M(X), =<)).
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LEMMA 2.9. For a locally compact subspace X of H such that X is
noncompact, there is a morphism from (PC(X),M(X),Sep;) to (w®,w®, <).

3. The Main Result

This section is devoted to the proof of the main theorem (Theorem 1.7). For
a separable metrizable space X such that X () is noncompact, we shall provide
the following cycle of morphisms:

(0 x A(X7),0? x A (X*),<x =) — (M(X),M(X), =)
— (PC(X),M(X), Sep,)

= (0 x A (X7"),0” x H(X7"),<x 9).
The second morphism is already provided by Lemma 2.7.
We will use the following lemma for the construction of both the first and the
third morphisms.

LemMA 3.1 [5, Lemma 4.4].  Suppose that X is a subspace of H such that XV
is noncompact, d € M(X) and ¢ > 0. Then there is a compact subset Y;. of X*
with the following properties:

(1) For two sequences {p, :newy, {gy:-new)y in X, if d(pn,q.) = ¢ for all
new and both sequences converge to recly X, then re Yy ..

(2) For disjoint closed subsets A, B of X, if d(A,B) > ¢ then cly ANcly B <
Yi.

Proor. For each x € X, consider an open ball B,;(x,¢/3) with center x and
radius ¢/3 in the metric space (X,d). Since X is a dense subspace of cly X and
By(x,e/3) is open in X, we can choose an open subset U, of cly X so that
Uy,NX = By(x,¢/3) holds. Let U=(){U,:xeX} and Y = Y,,=cly X\U.
Since U is open in cly X and covers X, Y is closed in cly X and Y < X*, and
hence Y e #'(X*).

We prove that Y satisfies the property (1). To prove this by contradic-
tion, suppose that there are sequences {p, :ne€ w), {q, :ne€w) in X such that
d(pn,qn) = ¢ for all ne w and both sequences converge to some recly X\Y =
U. Find x € X such that r € U,. Since U, is an open neighborhood of r and both
{pp:new)y and {q, : n € w) converge to r, we can pick n e w so that p, e U,
and ¢, € U,. Note that the points x, p,, ¢, are all from X. Since U,NX =
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By(x,¢/3), we have d(pp,qn) < d(x,p,) +d(x,g,) <2¢/3. This contradicts the
assumption that d(p,,q,) = e.
The property (2) follows from (1). O

For the construction of the first morphism, we will use Lemma 2.4 in an even
stronger form. The following lemma is easily checked by reviewing the proof of
[3, Lemma 3.2] and hence we omit the proof.

LemMma 3.2. Let X be a subspace of H such that XV is noncompact. Suppose
that Ly,Ly e A (X*) and Ly < L,. For ie{l,2}, let X;=clg X\L;, y;(p) =
l/u(p,L;) for peX, ﬂéeM(X,-) the one obtained by applying Lemma 2.4
to (Xi,u), y; and gew'®, and p} the restriction of [, to X, that is, p}=
,Hé NX x X). Then for every g e w!® we have ﬂ{} s,uf/.

TurOREM 3.3.  For a subspace X of H such that XV is noncompact, there is a
morphism from (w?® x A (X*),0® x A (X*),<x <) to (M(X),M(X), =<).

ProOF. First we define a mapping ¢_ from M(X) to w!® x #(X*). Fix
d e M(X). Let Y = Y, be the one in Lemma 3.1 applied to X, d and ¢ = 1, and
Xy =clg X\Y. Xy is a locally compact subspace of H and contains X as a
subspace. We will define 4y € @' in a similar way as in the proof of Lemma 2.3.
For peXy let y(p)=1/u(p,Y), and for n<w let K,={xe Xg:yp(x) <
diam,(X) + n}. Define hy € 0! recursively by letting h4(0) =0 and

ha(n) =min{/ : I > hg(n—1) and Vp,qe K, 2NX (d(p,q) =1 — u(p,q) =1/}

for n > 1. The minimum in the right-hand side exists by the following reason.
Suppose not. Then there are two sequences {p,:new), {g,:new) in K, ,NX
such that d(pn,q,) =1 for all new and u(p,,q,) — 0 as n— co. We may
assume that both sequences converge, and then they must converge to the
same point, say r. By Lemma 3.1, re Y;; = Y. But it is impossible because
wr, K, oNX) > u(Y,K,») >0. Now define ¢_(d) by letting ¢_(d) = (hy, Y).

We turn to the definition of ¢, from @'® x #(X*) to M(X). Fix ge 0!
and L e #(X*). Let Xp = clg X\L, p = u, € M(X.) as in Lemma 2.3, applied to
the space X, the metric &, y(p) = 1/u(p, L) for p e X, and g. Let p e M(X) be
the restriction of p to X. Define ¢, ((g,L)) by letting ¢, ((g,L)) = p.

Now we are going to check that ¢ = (¢_, ¢, ) is a desired morphism. Suppose
that d e M(X), gew'!®, Le #(X*), ¢_(d) = (ha,Y), ha <g and Y < L. Let

p=0.(9,L). We will show that d <, p. Fix p,qe X. If p,q € K,;2\K, for some
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n € w, then by the definition of 4; we have u(p,q) > 1/h,s(n). By the assumption
that i; > g, Y = L, and Lemma 3.2, we have p(p,q) > 1. If it is not the case, we
may assume that p € X\K,,;1 and g € K, for some m € w. By the property of x,
shown in Lemma 2.4, we have p(X\K,1,K,) =1 and hence p(p,q) = 1. O

THEOREM 3.4.  For a subspace X of H such that XV is noncompact, there is a
morphism from (PC(X),M(X),Sep;) to (0® X A (X*),0® x A (X*),< x S).

Proor. We define a mapping ¢_ from w® x #(X*) to PC(X). Fix f € w®
and K e #(X*). We will construct a pair (4,B) =¢_(f,K) of disjoint closed
subsets of X so that K = cly 4 Ncly B and the information of f is “embedded”
into the pair (4, B).

Fix a sequence <a,:n < o) in X converging to some ae X*. Such a
sequence exists because X (! is noncompact. For each n, fix a sequence
{by,j:j < w)in X converging to a,. We may assume that a,’s and b, ;’s are all
distinct, and for each n, for all j we have u(a,, b, ;) <27".

We will construct two closed subsets 4, B of X from f and K in w steps. We
are going to define two increasing sequences of finite subsets of X, 4o = 4, < ---
and Bys B <---, and let A=), _, 4, B=1)
vention, let 4| =B_| = .

Note that, since X is totally bounded with respect to u and dense in cly X,
for any ¢ > 0 there is a finite subset F of X such that | J{B,(x,¢) : x € F} covers
K, where B,(x,¢) denotes the open ball with center x and radius ¢ in the metric

B,. For notational con-
n<w

space (cly X, u).

We describe the construction in the step n below.

First, let A = A,_1U{a,} and B, = B,_ U{b,, ;}, where i = min{j: j > f(n)
and bnyj ¢ An,1 U B,,,l}.

Let r, = u(A],U B}, K)/2. Find a finite subset E, of X such that ( J{B,(x,r,) :
x € E,} covers K and B,(x,r,) NK # & (in other words, u(x,K) < r,) for every
x € E,. Note that E, and 4, U B, never intersect. Let 4, = A, UE,.

Let s, = (4, UB,,K)/2. Find a finite subset F, of X such that | J{B,(x,s,) :
x € F,} covers K and B,(x,s,) NK # & (in other words, u(x,K) < s,) for every
x € F,. It may happen that F, contains a; for some k < w. In such a case, we
replace ax by by; where i=min{j: by ;¢ A,UB, and pu(ax, by ;) < s,/2}, for
each such k (to ensure that B and the set {a, : n < w} never intersect). Note that
F, and A,UB, do not intersect, and | J{B,(x,3s,/2): x € F,} covers K. Let
B, =B/ UF,.

This completes the construction in the step n.
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It is easy to see that 4 and B are disjoint, closed in X, and satisfy K <
KU{a} ccly ANclyg B. We let ¢_(f,K) = (4, B).

We turn to the definition of ¢, from M(X) to w® x A (X*). Fix d e M(X).
We define g, € 0 by letting g4(n) = max({j : d(ay, b, ;) > 1} U{0}) for each n,
and let ¢ (d) = (ga, Ya,1), where Y, is the one obtained by Lemma 3.1 applied
to X, d and ¢ = 1.

Now we check that ¢ = (¢_,p,) is a morphism from (PC(X),M(X),Sep,)
to (0” X A(X*),w® x #(X*),<x<). Suppose that few” KeA(X"),
deM(X), (4,B)=9_(f,K), (ga,Ya1)=¢,(d), and d(A4,B)>1 holds. We
have to check that f <g; and K < Yy ;.

First we show that f < g,. Fix n < w. By the construction of (4, B) and gy,
A contains a, and B contains b, ; for some i with i > f(n). For such an i, since
d(A,B) =1, we have d(a,,b,;) =1, and by the definition of g,(n) we have
) <i < galn).

Next we show that K = Y, ;. By the assumption that d(4,B) > 1 and the
property of Yy, we have K € KU{a} =cly ANcluy B< Y4,. O

This concludes the proof of Theorem 1.7.

4. Applications to the Cardinal Function sa(X)

In a preceding paper [4] the following cardinal function was introduced.

DerINITION 4.1 [4, Definition 2.2]. For a metrizable space X, let sa(X) =
min{|D|: D € M(X) and pX ~ sup{usX :d e D}}.

It is known that sa(X) =1 holds (that is, fX ~ u;X for some d e M(X)) if
and only if X is compact [9, Corollary 3.5].
Kada, Tomoyasu and Yoshinobu [5] proved the following theorem.

THEOREM 4.2 [5, Corollary 4.6].  For a separable metrizable space X such that
XU is noncompact, sa(X) =0 -cof((#(X*),<)) holds.

COROLLARY 4.3 [6, Theorem 2.10]. For a locally compact separable met-
rizable space X such that XV is noncompact, sa(X) ="> holds.

Proor. Since X is locally compact and separable, X * is compact and hence
cof((#(X*),=)) = 1 holds. O
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In this section, we observe the relationship between the cardinal sa(X) and
generalized Galois—Tukey connection involving M(X).

We will use the following basic facts about the order relation < on Cpt(X)
and Smirnov compactifications. For a compactification «X of X and (4,B) €
PC(X), we write A||B (oX) if clyy ANcl,y B= .

THEOREM 4.4 [2, Theorem 6.5]. For a compactification oX of a normal space
X, aX ~ X if and only if A||B (aX) for every (A,B)ePC(X).

THEOREM 4.5 [9, Theorem 2.2]. For compactifications o X, yX of a completely
regular Hausdorff space X, the following are equivalent.

(1) aX <yX.
(2) For (A,B) e PC(X), if A||B (¢X) then A||B (yX).

THEOREM 4.6 [9, Theorem 2.5]. For a compactification a«X of a metric space
(X,d), the following are equivalent.

(1) aX ~uysX.
(2) for (4,B) e PC(X), A||B (aX) if and only if d(A4,B) > 0.

LEmMa 4.7 [4, Lemma 1.2].  Suppose that € < Cpt(X). For (A, B) € PC(X),
the following are equivalent.

(1) 4B (sup ).
(2) A||B (sup &) for some nonempty finite subset F of .

For a directed set (D,<p), cof((D,<p)) denotes the smallest cardinality of
a cofinal set of D with respect to the order relation <p,. We write cof(D) if the
referred order relation on D is clear from the context. It is easy to see that
D <7 E implies cof(D) < cof(E).

The dominating number d is the cardinal defined by d = cof((w?, <)) =
cof((w®, <*)).

The norm ||A|| of a triple A = (4_, A4, A) is the smallest cardinality of a set
Y < A, such that for any xe A_ there is a ye Y with x4 y. It is easy to see
that A — B implies ||B|| < ||A|. For a directed set (D,<p), cof((D,<p)) is also
described as ||(D,D,<p)]||.

Using generalized Galois—Tukey connection, we can redefine sa(X) in the
following way.
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LeEMMA 4.8. Let X be a metrizable space.

(1) For a subset D of M(X), if for each (A, B) € PC(X) there is d € D such
that d(A,B) > 0, then sup{usX :d € D} ~ fX.

(2) For a subset D of M(X) with |D| =1 or |D| = Ry, if sup{usX :d e D} ~
PX, then there is a subset D' of M(X) such that |D'| = |D| and for each
(A,B) e PC(X) there is d € D' such that d(A,B) > 0.

Proor. (1) Follows from Theorems 4.4, 4.5 and 4.6.

(2) Note that M(X) is closed under pointwise addition as functions from
X x X to R. It is easy to see that, for py,...,p,_; e M(X) and 6 =py+--- +
pn_1, we have sup{u, X :i <n} <u,X. Given D as in the assumption of (2), let
D' be the closure of D under finite sums. Using Theorem 4.4 and Lemma 4.7 one
can check that this D’ works. O

THEOREM 4.9. For a metrizable space X, sa(X) = ||(PC(X),M(X), Sep)|.

Proor. Follows from Lemma 4.8. Note that the argument in the proof of
Lemma 4.8 also shows that sa(X) is either 1 or infinite. O

COROLLARY 4.10. For a metrizable space X such that XV is noncompact,
sa(X) = [|(PC(X), M(X), Sep, )].

Proor. Modify the proof of Lemma 4.8 so that D’ is also closed under
multiplications by positive integers. O

Let X be a separable metrizable space such that X is noncompact. By
Theorem 1.7 and Corollary 4.10, we have
sa(X) = [|(PC(X), M(X), Sep, ) ||
= [[(0® x H(X*),0” x A(X*),<x D)
= cof((w” X A (X*),< x 9))
— b cof ((#(X"), ),

which gives an alternate proof of Theorem 4.2.

REMARK 2. After hearing the statement of Theorem 4.2 [5, Corollary 4.6]
and its original proof, Todorcevi¢ suspected that d-cof((:#'(X*),=)) might be

y =
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resulted from the cofinal structure of the ordered set (w® x # (X *),<* x <), and
told the authors that the equality of cardinalities should reflect some relationship
between the order structure of (w® x #'(X*),<* x <) and some structure of the
set M(X). That was the origin of Question 1.2 and our investigation into the
structure of M(X).
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