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ODD DIMENSIONAL RIEMANNIAN SUBMANIFOLDS
ADMITTING THE ALMOST CONTACT METRIC
STRUCTURE IN A EUCLIDEAN SPHERE

By

Kazuhiro OKUMURA

Abstract. We investigate some odd dimensional Rimannian sub-
manifolds admitting the almost contact metric structure (¢, &,#,<,>)
of a certain Euclidean sphere from the viewpoint of the weakly
¢-invariance of the second fundamental form. The family of such
submanifolds contains some homogeneous submanifolds of the
ambient sphere. In the latter half of this paper, we caluculate the
mean curvature and the length of the derivative of the mean cur-
vature vector of these homogeneous submanifolds.

1. Introduction

We denote by (M?~' 1),) a real hypersurface M?"~! of an n-dimensional
complex projective space CP"(c¢) of constant holomorphic sectional curvature
¢(>0) through an isometric immersion 15, : M — CP"(c). In [3], Maeda and
Udagawa considered a Riemannian submanifold (M?'~! fj o1) of a certain
Euclidean sphere by using the isometric parallel minimal embedding f; : CP"(c)
— S"02=1 (4 1)e/(2n)), where S"271((n+1)¢/(2n)) is an (n(n+2) —1)-
dimensional sphere of constant sectional curvature (n+ 1)c/(2n). Note that this
submanifold (M?"~!, fj o 13/) has an almost contact metric structure (¢, ¢, 7, <, »)
induced from the Kéhler structure J and the standard metric {,)» of CP"(c).

In this paper, we pay particular attention on the structure tensor ¢ of
(M?=! fi o1pr). Motivated by Maeda and Naitoh’s work [2], we define the
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notion of weakly ¢-invariance of the second fundamental form of the im-
mersion fj o1y (for details, see Section 4). By virtue of this point of view
we can characterize two interesting examples of Riemannian submanifolds
(M1, fio1y) of the sphere S""*2=1((n+1)c/(2n)) (Theorem 1). One is a
homogeneous submanifold and the other is a non-homogeneous submanifold of
this sphere.

In this context, we are interested in a homogeneous submanifold (M>*~!,
fio1y) with weakly ¢-invariant shape operator in S""*2~1((n + 1)c¢/(2n)). We
remark that this manifold M?"~! is congruent to a homogeneous real hyper-
surface of type (A) in CP"(c), namely M?"~! is congruent to a tube of radius
r (0 <r<m/yc) around a totally geodesic Kdhler submanifold CP/(c) (1 £
/<n—1) of CP"(c), so that M>! is an orbit of some subgroup of the
isometry group SU(n+ 1) of CP"(c). We compute the mean curvature and the
length of the derivative of the mean curvature vector of this homogeneous
submanifold (M?"~!, fj o1y,) in the sphere S”"*2~1((n+ 1)c/(2n)) (Theorem
2).

The author would like to thank Professor S. Maeda for his valuable sug-
gestions and encouragement during the preparation of this paper. The author
would also like to thank the referee for valuable comments.

2. Real Hypersurface of Type (A) in CP"(c)

Let M?"~! be a real hypersurface with a unit local vector field 4" of CP"(c)
through an isometric immersion z),. The Riemannian connections V(') of CP"(c)
and V of M are related by

(2.1) VOY =V Y 4+ <AX, YO,

(2.2) VW =—ax

for vector fields X and Y tangent to M, where {,) denotes the induced
metric from the standard Riemannian metric of CP"(¢) and A is the shape
operator of M in CP"(c). (2.1) is called Gauss’s formula, and (2.2) is called
Weingarten’s formula. It is known that M admits an almost contact metric
structure (¢,&,n,{,>) induced from the Kéhler structure J of CP"(c). The
characteristic vector field & of M is defined as &= —J./ and this structure
satisfies

(23) ¢*=-T+n®& ) =1 and (X, 9Y> =X, Y>—n(X)n(Y),
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where I denotes the identity map of the tangent bundle TM of M. It follows
from the fact that V().J =0 and Equations (2.1) and (2.2) that

(2.4) Vyé = gAX.

Eigenvalues and eigenvectors of the shape operator A are called principal
curvatures and principal vectors of M in CP"(c), respectively. In the following, we
denote by V, the eigenspace associated to the principal curvature 4, namely we
set V, ={ve TM|Av = lv}.

We usually call M a Hopf hypersurface if the characteristic vector ¢ is a
principal curvature vector at each point of M. It is known that every tube of
sufficiently small constant radius around each Kéhler submanifold of CP"(c) is a
Hopf hypersurface. This fact tells us that the notion of Hopf hypersurface is
natural in the theory of real hypersurfaces in CP"(c) (see [4]).

The following lemma clarifies a fundamental property on Hopf hypersurfaces
in CP"(c), n=2.

LemMmA 1. For a Hopf hypersurface M*"~' (n = 2) with principal curvature o
corresponding to the characteristic vector field & in CP"(c), we have the following:

(1) o is locally constant on M,

(2) If X is a tangent vector of M perpendicular to & with AX = X, then

ald+(c/2)

ApX =
¢ 24—

oX

The following real hypersurfaces are so-called real hypersurfaces of type (Aj)
and (A;), respectively.

(A1) A geodesic sphere G(r) of radius r (0 <r < z/4/c) in CP"(c).

(A2) A tube of radius r (0 <r<m/y/c) around a totally geodesic Kahler

submanifold CP’(c) in CP"(c) with 1 </ <n—2.

In this paper, summing up the real hypersurfaces of type (A;) and type (A,),
we call them the real hypersurfaces of type (A). The real hypersurfaces of type (A)
are known as typical examples of Hopf hypersurfaces. The tangent bundle 7'M
of real hypersurfaces M of type (A;) with radius r (0 < r < /4/c) is decomposed
as TM = {&}p @ V), with o = /ccot(v/er), 4= (\/c/2) cot(y/er/2), dimg V; =
2n —2 and ¢V, = V,. The tangent bundle TM of real hypersurfaces M of type
(Az) with radius r (0 <r<m/y/c) is decomposed as TM = {E}p @ V), @ V),
with o= /ccot(/er), A = (\¢/2)cot(\/er/2), o= —(3/c/2)tan(\/cr/2),
dimg V), =2n—2/ -2, dimg V;, =2/ and ¢V:=V; (i=1,2).
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REMARK 1. A geodesic sphere G(r) of radius r (0 <r < n/y/c) in CP"(c) is
congruent to a tube of radius (n/y/c) —r around totally geodesic CP"~!(c) of
CP"(c). In fact, lir}1f G(r) = CP"!(c).

For the later use we here prepare the following which is a characterization of
the real hypersurfaces of type (A) (see [4]).

LEmMMA 2. Let M be a real hypersurface in CP"(¢) (n = 2). Then the fol-
lowing conditions are mutually equivalent:
(1) M is locally congruent to a real hypersurface of type (A);
(2) ¢4 = A¢;
(3) ((VxA) Y, Z5 = (c/A)(—n(Y)hX, Z5 — n(Z)<PX, Y>) for arbitrary vec-
tors X, Y and Z on M.

3. Ruled Real Hypersurfaces in CP"(c)

We recall ruled real hypersurfaces in CP"(c), which are typical examples of
non-Hopf hypersurfaces. A real hypersurface M is called a ruled real hypersurface
of CP"(¢) (n=2) if the holomorphic distribution T7°M defined by T°M = {X €
TM | X L&Y is integrable and each of its maximal integral manifolds is a totally
geodesic complex hyperplane CP"~!(c) of CP"(c). A ruled real hypersurface is
constructed in the following manner. Given an arbitrary regular real curve y in
CP"(c¢) which is defined on an interval I we have at each point y(¢) (rel) a
totally geodesic complex hyperplane CP?~!(c) orthogonal to the plane spanned
by {j(¢),J7(¢)}. Then we see that M = [ J,_, CP’~'(c) is a ruled real hypersurface
in CP"(c¢). The following gives a characterization of ruled real hypersurfaces in
terms of the shape operator 4 of M (see [4]).

Lemma 3. For a real hypersurface M in CP"(c) (n=2), the following
conditions (1), (2) and (3) are mutually equivalent:

(1) M is a ruled real hypersurface;

(2) The shape operator A of M satisfies the following equalities on the open
dense subset M\ = {x € M |v(x) # 0} with a unit vector field U orthogonal
to &: AE = pué+vU, AU =v¢, AX = 0 for an arbitrary tangent vector X
orthogonal to & and U, where u, v are differentiable functions on M, by
u=<AEE) and v = ||AE — |

(3) The shape operator A of M satisfies {Av,w) =0 for arbitrary tangent
vectors v,w € TyM orthogonal to &, at each point x € M.
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We treat a ruled real hypersurface locally, because generally this hyper-
surface has self-intersections and sigularities. When we study ruled real hyper-
surfaces, we usually omit points where ¢ is principal and suppose that v does
not vanish everywhere, namely a ruled hypersurface M is usually supposed
M, =M.

4. Preliminaries and Statements of Results

In order to obtain Theorems 1 and 2, we first define ¢-invariances of the
second fundamental form of a submanifold (M?>'~! fio1y) in the sphere
§"+2)=1((n 4 1)c/(2n)). Since (M~ 15/) is a real hypersurface of CP"(c), the
manifold M?"~! has an almost contact metric structure (¢,¢,7,<,>) from the
Kéhler structure J and the standard metric (,» of CP"(c) (see Section 2). Then
the second fundamental form ¢ of the immersion f) o1y, is called strongly ¢-
invariant if o satisfies o(¢pX,¢Y) = (X, Y) for all vectors X and Y on M. Also,
it is called weakly ¢-invariant if o satisfies o(¢X,¢Y) = o(X, Y) for all vectors X
and Y on M orthogonal to the characteristic vector ¢ on M.

We next recall fundamental geometric properties of the isometric embedding
fi: CP"(c) — §""*2=1((n 4 1)c/(2n)). The inner product of the first normal
space of f; is given by

4.1) Lo(X,Y),01(Z,W)>=—(c/2n)){X, Y )XZ, W)+ (c/3H) (KX, W)Y,Z)
+LX,ZXY, WH +JX, WHJY, Z)

+ JX,ZXJTY, WD),

Here, o) denotes the second fundamental form of f;. Equation (4.1) shows the
following properties of f:
(i) f1 is minimal;
(i) o1(JX,JY)=0,(X,Y) for VX,Y € TCP"(c) (namely, g; is J-invariant);
(i) ||o1(X, X)|| = v/(n — 1)c/(2n) for each unit vector X on CP"(c) (that is,
fi is \/(n— 1)c/(2n)-isotropic in the sense of O’Neill [5)).
Note that o) is J-invariant is equivalent to saying that the second fundamental
form o) of our embedding f; is parallel (for example see [2], Proposition 3). The
embedding f; is usually called the first standard minimal embedding.

TueoREM 1. (1) There exists no Riemannian submanifold (M>"~', fi o 1p/) in
§"+2)=1((n 4 1)c/(2n)) such that the second fundamental form & of the immersion
f1 o1y is strongly ¢-invariant.
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(2) Let (M, fi o1y) be a Riemannian submanifold in S""+2~1((n+ 1)c/
(2n)) such that the second fundamental form o of the immersion fi o1y is weakly
¢-invariant. Then the following hold.

21) If (M 1y) is a Hopf hypersurface in CP"(c), then (M*~' 1) is

locally a real hypersurface of type (A) in CP"(c);

2ii) If the holomorphic distribution T°M of (M*' ' 1)) is integrable, then

(M?=Y 15r) is a ruled real hypersurface in CP"(c).

ProoF. Let A be a shape operator of M in CP"(c). Then, second fun-
damental form ¢ of the immersion fj o1y, is given by

(4.2) o(X,Y) = {AX, YO N +ay(X, Y)

for all vectors X and Y on M.
(1) Suppose that o is strongly ¢-invariant. Then, from (4.2) we have

{<A¢X7¢Y> = {A4X,Y>,
o1(¢X,9Y) =0a1(X,Y)

for all vectors X and Y on M. However, the equation a;(¢X,¢Y) =0;(X,7Y)
for VX,Y € TM does not hold. Indeed, setting X = Y =&, we get 01(&, &) =0,
which cotradicts the property (iii) of the immersion fi. Therefore ¢ is not strongly
¢-invariant.

(2) Since ¢ is weakly ¢-invariant, from (4.2) we have

CAPX,¢Y) = <{AX, Y),
{01(¢X7¢Y) = O-1(/\/7 Y)

for all vectors X, Y € T°M. On the other hand, using the property (ii) of f;, we
have

(4.3) a1(pX,9Y) = a1 (JX — (IX,JEWIE Y — (JY,JEVIE)
= 01(JX,JY) = {JY,JEa1 (JX, JE)
— IX,JEGI(TY,JE) + (IX, JENTY, JEDG (JE, JE)
=01(X,Y) =Y, $a1(X, <) — X, Ea1(Y, <)
+ <X, Y, a1 (&, €).

=o(X,Y) for all vectors X,Y e T°M.
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The above equation implies that in the case 2i) we have only to determine
Hopf hypersurfaces M of CP"(c) having {A¢X,pY ) =<AX,Y) for all X, Y e
T°M. We take an unit vector X € T°M with AX = AX. Then, by weakly ¢-
invariance, we see that

CAPX,$X> = CAX, X = ).

Moreover, using the assumption that M is a Hopf hypersurface, we obtain
pAE =0 = A¢pé. Hence, we can see that ¢4 = A¢ holds on TM, so that by
Lemma 2, M is a real hypersurface of type (A). Thus we have proved Statement
of 2i).

Next, we investigate Statement 2ii). So, we suppose that the holomorphic
distribution T°M of M is integrable. This assumpution is equivalent to saying
that

(4.4) (pA+ AP)X,Y> =0 for VX, Y e T'M.

(See Proposion 5 of Kimura and Maeda [1]).
We next show that our real hypersurface M satsfies the following:

{AX,Y>=0 for arbitrary X,Y e T'M.

Indeed,
CAX,Y) =<ApX,9Y)

= —{PAX,9Y > (from (4.4))
= (AX,$*Y> (from the skew-symmetry of ¢)
— —(4X,Y) =0,

so that by (3) of Lemma 3, M is a ruled real hypersurface. Therefore we get
Statement 2ii). O

THEOREM 2. For a real hypersurface (M, 1)) of type (A) in CP"(c), namely a
tube (M, 13r) of radius r (0 < r < m/\/c) around totally geodesic CP’(c) (1 </ <
n—1) in CP"(c), we denote by b,(r) the mean curvature vector of the immersion
fiony : M — S"F27Y((n 4 1)c/(2n)). Then we obtain the following statements
(1) and (2).

(1) The mean curvature H(r) := ||b,(r)|| is given by

1

n—1)c
(2n —1)? )

(4.5) H,(r)* = 5

(Trace A)* +
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Here, A is the shape operator of our real hypersurface (M,1y) in CP"(c) and
Trace 4 is given by

(4.6) Trace d = (2n—2/ — 1)% 00t<§r> -2+ 1)% tan(gr).

In this case, when Trace A=0, ie tan’(y/cr/2)= (2n—2/—1)/(2¢/ +1),
H,(r) has the minimal value \/((n —1)¢)/2n(2n — 1)* which is independent of
/(1 /=n-1)

(2) The length of the derivative of the mean curvature vector |DYy,(r)|| is given
by

Cz ¢
(4.7) ||D[)/( )H S(z_nl(n—/—l){(Zn—M+l) COt({r)

—(2/+1) tan(§r> }2 +/{(2n—2/— 1) Cot(?r)

ey

where D is the normal connection of the immersion fyouy. In particular,
DYy, (r) = 0, namely the immersion f o1y : M — S""2-1((n 4 1)c/(2n)) has par-
allel mean curvature vector with respect to the normal connection D if and only if
¢ =n—1 and tan®(\/cr/2) = 2n — 2/ — 1)/(2/ + 3). This means that Db,(r) =0
if and only if M is a tube of radius r = (2/+/c) tan"'(1/\/2n + 1) around totally
geodesic CP"~'(c) in CP"(c), that is M is a geodesic sphere G(r) of radius r =
(2//¢) tan~'(v2n+ 1) of CP"(c).

Proor. (1) We take a local field of orthonormal frame {ej,...,e, i,
dei(=Jey),...dey_1(= Je,—1),£} on M. Then, as a matter of course {ej,...,e,_1,
Jey, ... Je,—1,E JE(= A} is a local field of orthonormal frames of CP"(c) along
M. 1t follows from the definition of the mean curvature vector that by,(r) is
expressed as

1 -1
b,(r) =51 (Trace A).AN" Z oi(ei, e) +a1(Je;, Jer)) +a1(E, )|,

so that

[(Trace A) N — a1(&,&)].

(48) () =5
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Here, we have used the property (i) of the immersion f;. Hence, it follows
from the property (iii) of the immersion f; that we obtain (4.5). We find easily
that

Trace A = (2n — 2/ — 2)% cot(\/TEr) - 2/% tan(%r) + /¢ cot(v/cr).

This, together with /c cot(y/cr) = (y/¢/2) cot(y/cr/2) — (v/c/2) tan(y/cr/2), yields
(4.6).

(2) We take again a local field of orthonormal frames {ey,...,exn 22,
Sisooos fu, &} on M such that e; e Vi 7)) cot(ver/2) (1<i<2n—-2/-2) and fi e
V_(/e/2)tan(yarzy (1 = =2/). Then [[Dh,(r)|| is expressed as

, , w2 , X ,
49) 1D, (> =D+ D I1Pb)* + D 1D ()]
j=1

i=1

We shall calculate ||Deh,(r)ll, [|Deb,(r)|| and ||Dgh,(r)|| one by one. In the
following computation, we shall use fundamental equations and terminologies in
submanifold theory without explanation. Now we denote by ()" the normal
component of the vector (x) along M in TS""2-1((n+1)c/(2n)), V? the
Riemannian connection of S""+2~!((n+ 1)c/(2n)), AV the shape oparetor of
CP"(c) in S"™*2=1((n 4 1)c/(2n)) and D) the normal connection of CP"(c) in
S 2= ((n 4 1)/ (2n)).
We have

et = (VON) = (VI +a1(E, )" (from (2.1))
= (—AE+a1(&,JE)"  (from (2.2))
=01(&,JE) = —01(JEE) =0 (from the property (ii) of fi)

and
D¢(01(¢,¢))
= (V&)
= (—A\). ¢+ DV (01(¢,9))"  (from Weingarten’s formula)
= (AL o ETENIE + 201 (VVEE)  (from the parallelism of o)

= —(a1(&,€),01(E,TENIE + 201 (VVE, &)
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=201(Vel 4 (AE,EHIEE)  (from the property (i) of f; and (2.1))
=201(¢AE E) =0 (from (2.4) and the property (ii) of fi).
Hence, we obtain
(4.10) Deb(r) = 0.
Next, for ¢; (1 <i<2n—2/—2) we see that
DoV = (VONY = (VO + 0y (es, N))*

= (—Ae; + gy (e,‘,Jé))L =oi(e;, JE)

)( et Dgf)(ol (&,8))"  (from Weingarten’s formula)

= —<A((Tl]>(f.é)ei,J£>Jf+2al (Vg)é, &) (from the parallelism of o)

= —<01(¢,¢), 01(e;, JEDIE + 201 (Ve & + {de;, $HJIEE)  (from (2.1))
=201(V,,&,¢)  (from (4.1) and the property (ii) of f)
= 201(pAde;, &)  (from (2.4))

= /¢ cot (\/TEV) o1(pe;, &) = /e cot <§r> o1(Je;, &)

__ ccot(%)al(enm

Thus we get

(4.11) Db, (r) :2(T\/il) [(zn—zzur 1) cot(\/;r>
e yan() s

Similarly,

(4.12) Db, (r) = 2(T¢51) {(2;1 —2/—1) cot <§r>

— (24 +3) tan(%zr)]al(ﬁ,Jf).
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By (4.1) we have

(4.13) (o1 (e JE), o1 (e, JE)) = Z‘;.
Hence, from (4.11), (4.12) and (4.13) we can get
2= 672 n — LEV
(4.14) DA = e (2n- 204 1) ot ()
-\ 12
—(2/+1) tan(%r)] ,
PRV w2/ Ve,
(4.15) 1Dgb,(r)]|> = T [(z 20— 1) cot( : )
-\ 12
—(2¢+3) tan(%r)] .

Thus from (4.9), (4.10), (4.14) and (4.15) we obtain (4.7).

127

Finally, we shall show that Db, (r) =0 if and only if /=n—1 and

tan?(y/cr/2) = 1/(2n+1). It is obvious the “if” part.

So, we suppose that Db,(r) =0. Since />0 and n—/ —1 =0, from (4.7)

and DbY,(r) =0 we find the following equations:

4.16) (n—¢— 1){(211 —2041) cot(‘fr) — @2/ +1) taIl(\/E )} =0

7}"
and
(4.17) (2n—2/—1)cot(§r>—(2/+3) tan(§r>:0.
So, from (4.17) we have
(Ve m—2-1
(4.18) tan <2 r>_—2/+3 .

We here remark that in (4.16)
2n—-2/+1) cot(%r) - (2¢+1) tan(%r) # 0.

In fact we suppose that

(2n—2/+1) cot(%r) —(2/+1) tan(?r) =0,
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which implies that

2fVe N _2n—=20+1
(4.19) tan(zr)—2/+1 .

Solving equations (4.18) and (4.19), we find that n = —1, which contradicts n = 2.
Therefore, we get £/ =n— 1. ]

REMARK 2. It is known that an isometric immersion f of a Kéhler manifold
M with Kéhler structure J into a sphere has parallel second fundamental form ¢
if and only if ¢ is J-invariant, that is ¢(JX,JY) = (X, Y) holds for each vector
X, Y on M. On the other hand, there exist no submanifolds (M~ £} o 15,) with
parallel second fundamental form in the sphere S"("*2~1((n + 1)c/(2n)). However
our homogeneous submanifolds (M?'~!, fj o 1)) stated in Theorem 2 have the
weakly ¢-invariant second fundamental form.
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